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Abstract
We consider a class of inertial second order dynamical system with Tikhonov reg-
ularization, which can be applied to solving the minimization of a smooth convex
function. Based on the appropriate choices of the parameters in the dynamical system,
we first show that the function value along the trajectories converges to the optimal
value, and prove that the convergence rate can be faster than o(1/t2). Moreover, by
constructing proper energy function, we prove that the trajectories strongly converges
to a minimizer of the objective function of minimum norm. Finally, some numerical
experiments have been conducted to illustrate the theoretical results.

Keywords Convex optimization · Inertial gradient system · Tikhonov regularization ·
Convergence analysis

1 Introduction

In recent years, convex optimization problems drawmany researchers’ attention due to
its arisen in a lot of application areas, such as machine learning [10,30], statistics [18],
image processing [20,32] and so on. Hence, various algorithms have been proposed
for solving different structured convex optimization problems. One simple and often
powerful algorithm is Nesterov accelerated gradient algorithm, whose convergence
rate can be O(1/t2). Many accelerated algorithms based on Nesterov’s accelerated
technique has been proposed since then, we refer the readers to [11,19,25,26,29,31]
and the reference therein for an overview of these algorithms.
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Most literatures consider Nesterov’s accelerated method by using different numer-
ical optimization techniques. However, differential equations are also important and
efficient tools to study numerical algorithms. Recently, Su, Boyd, Candés [28] propose
a class of second order differential equations to study Nesterov’s accelerated gradient
method, which is ⎧

⎨

⎩

ẍ + α

t
ẋ + ∇�(x) = 0

x (t0) = u0, ẋ (t0) = v0,

(1.1)

where � is convex and differentiable, and ∇� is Lipschitz continuous, t0 > 0. They
show that this system can be seen as the continuous version of Nesterov’s accelerated
gradient method. In addition, they prove that the convergence rate of the function value
along the trajectories of (1.1) is O(1/t2), if α is chosen as 3, which is the same as
the convergence rate of Nesterov’s accelerated gradient method. Moreover, they show
that 3 is the minimum constant that guarantees the convergence rate of O(1/t2).

Su, Boyd, Candés work [28] motivates subsequent studies on the second order
differential equation (1.1), see, for example, [3,8,13–16,24,33]. Particularly, Attouch,
Chbani, Peypouquet and Redont [3] establish the weak convergence of the trajectory if
α > 3, and they also show that the convergence rate of the objective function along the
trajectory is o(1/t2). Later, Attouch, Chbani and Riahi [5] consider the convergence
properties under the condition that α < 3. They prove that the convergence rate is

�(x (t)) − min� = O

(
1

t
2α
3

)

.

In order to establish the strong convergence of the trajectory, Attouch, Chbani and
Riahi [4] propose the following second order dynamical system:

⎧
⎨

⎩

ẍ + α

t
ẋ + ∇�(x) + ε (t) x (t) = 0

x (t0) = u0, ẋ (t0) = v0,

(1.2)

which add a Tikhonov regular term compared with system (1.1). They show that the
function value along the trajectory converges to the optimal value fast, if ε(t) decreases
to 0 rapidly. In addition, they establish the strong convergence of the trajectory x(t)
to the element of minimum norm of argmin�, if ε(t) tends slowly to zero. There are
many other literatures considering the Tikhonov regular techniques, the readers can
result the references [1,2,9,17,23].

In 2019, Attouch, Chbani and Riahi [6,7] study another differential equation:

{
ẍ + γ (t) ẋ + β (t)∇�(x) = 0

x (t0) = u0, ẋ (t0) = v0,
(1.3)

where γ (t) and β(t) are scalar functions. They first consider the convergence prop-
erties of (1.3). Then a discretized numerical algorithm for solving structured convex
composite optimization problem based on the differential equation has been proposed.
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Inspired by the proof of the convergence of the trajectory of (1.1), they establish the
convergence and convergence rate of the algorithm. Concretely, they obtain that the
convergence rate of �(x(t)) is

�(x (t)) − min� = O

(
1

β (t) �(t)2

)

,

where � (t) = p (t)
∫ +∞
t

1
p(u)

du, p (t) = e
∫ t
t0

γ (u)du . In particular, if γ (t) is chosen
as α

t , the convergence rate becomes

�(x (t)) − min� = O

(
1

β (t) t2

)

.

According to the above relation, it can be easily seen that the convergence rate

of �(x(t)) can be faster than O
(

1
t2

)
, if we choose proper β(t). For the nonsmooth

optimization problems, which means the objective function is not differentiable, dif-
ferential equations can not be applied directly, we recommend the readers to [12,21]
to see the details.

From the above literatures, we note that somework consider the strong convergence
of the trajectory x(t), the other work study the faster convergence rate of objective
�(x(t)). A natural question is that whether we can combine these discussions together.
In this work, both the strong convergence property of the trajectory x(t) and the
fast convergence rate of objective �(x(t)) are studied under different choice of the
parameters. To this end, this papermainly considers the followingdifferential equation:

⎧
⎨

⎩

ẍ (t) + α

t
ẋ (t) + β (t) (∇�(x (t)) + ε (t) x (t)) = 0

x (t0) = u0, ẋ (t0) = v0,

(1.4)

where� is convex and differentiable,∇� is Lipschitz continuous, u0, v0 ∈ H, t0 > 0,
α is a positive parameter, β(t) is a time scaling parameter, and ε (t) x (t) is a Tikhonov
regularization term. Throughout the whole paper, we assume that

H1

⎧
⎪⎪⎨

⎪⎪⎩

t0 > 0, ε : [t0,+∞) → R
+ is a nonincreasing function ;

ε(t) is continuously differentiable and lim
t→+∞ ε (t) = 0;

β : [t0,+∞) → R
+ is a non-negative continuous function.

Our main contributions are as follows:

• By constructing proper energy function, we first prove that the existence and
uniqueness of the global solution of dynamical system (1.4);

• We establish the fast convergence rate of �(x(t)) and strong convergence
of the trajectory x(t) of system (1.4). In details, under the condition that
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∫ +∞
t0

tβ (t) ε (t) dt < +∞, we establish the global convergence rate of �(x(t))
which is

�(x (t)) − min� = o

(
1

t2β (t)

)

.

Moreover, if
∫ +∞
t0

ε(t)β(t)
t dt = +∞, we show that the global solution x(t) of (1.4)

satisfies the following ergodic convergence result:

lim
t→∞

1
∫ t
t0

ε(τ )β(τ)
τ

dτ

∫ t

t0

ε (τ ) β (τ)

τ
‖x (τ ) − p‖2 dτ = 0,

where p is the element of minimal norm of argmin�. In addition, we prove that
lim inf
t→∞ ‖x (t) − p‖ = 0.

The rest of the paper is organized as follows: Section 2 presents some basic notation
and preliminary materials. In Sect. 3, the global existence and uniqueness result is
established for (1.4). In Sect. 4, we first establish the fast convergence rate of �(x(t))
based on the condition

∫ +∞
t0

tβ (t) ε (t) dt < +∞, and then show that the trajectory
x(t) of (1.4) converges to a minimizer of the objective function of minimum norm. In
Sect. 5, we perform some numerical experiments to illustrate our theoretical results.

2 Notation and preliminaries

The problems we consider in this paper are all in Hilbert spaceH , and we denote its
inner product by 〈·, ·〉, the corresponding norm is denoted as ‖·‖.

For the real valued convex and differentiable function � : H → R, the gradient of
� is said to be L�-Lipschitz continuous, if

‖∇�(x) − ∇�(y)‖ ≤ L� ‖x − y‖ ,∀x, y ∈ H.

We say that � is a σ -strongly convex if and only if �(·) − σ
2 ‖·‖2 is convex, σ > 0.

Moreover, if � is continuously differentiable, then

�(y) ≥ �(x) + 〈∇�(x) , y − x〉 + σ

2
‖y − x‖2.

A function x : [0,∞) → H is called locally absolutely continuous if x : [0,∞) →
H is absolutely continuous on every compact interval, which means that there exists
an integrable function y : [t0, T ) → H such that

x (t) = x (0) + ∫ t
t0
y (s) ds ∀t ∈ [t0, T ] .

For a locally absolutely continuous function, we would like to point out the following
property, which will be used in the following sections.
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Remark 2.1 Every locally absolutely continuous function x : [t0,+∞) → H is
differentiable almost everywhere and its derivative coincides with its distributional
derivative almost everywhere and one can recover the function from its derivative
ẋ = y by the integration formula above.

Before ending this section, we state some lemmas which will be used in our con-
vergence analysis.

Lemma 2.1 Suppose that F : [0,+∞) → R is locally absolutely continuous and
bounded below and that there exist G ∈ L1 ([0,+∞)) such that for almost every
t ∈ [0,+∞)

d

dt
F (t) ≤ G (t) .

Then there exists lim
t→∞ F (t) ∈ R.

Now, we will introduce an energy function we used in the paper, which is

W (t) = 1

2
‖ẋ (t)‖2 + β (t) (�t (x (t)) − min�) , (2.1)

where �t (x) = �(x) + ε(t)
2 ‖x‖2.

Next, we will give two important results, which play important roles in the analysis
of asymptotic behavior of system (1.4).

Lemma 2.2 Let W be defined by (2.1), we have

dW (t)

dt
≤ −α

t
‖ẋ (t)‖2 + β̇ (t) (�t (x (t)) − min�) .

Proof From the definition of �t (x(t)), we immediately have

∇�t (x (t)) = ∇�(x (t)) + ε (t) x (t) . (2.2)

On the other hand, by taking the derivative of the energy function (2.1) and using the
definition of �t (x) = �(x) + ε(t)

2 ‖x‖2, we have

Ẇ (t) = 〈ẋ (t) , ẍ (t)〉 + β̇ (t) (�t (x (t)) − min�)

+ β (t)

(

〈∇�(x (t)) , ẋ (t)〉 + ε̇ (t)
‖x (t)‖2

2
+ ε(t)〈x(t), ẋ(t)〉

)

= 〈ẋ (t) , ẍ (t)〉 + β̇ (t) (�t (x (t)) − min�)

+ β (t)

(

〈∇�(x (t)) + ε(t)x(t), ẋ (t)〉 + ε̇ (t)
‖x (t)‖2

2

)

.
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Combining (2.2) with the above relation, we obtain further that

Ẇ (t) = 〈ẋ (t) , ẍ (t)〉 + β̇ (t) (�t (x (t)) − min�)

+ β (t)

(

〈∇�t (x (t)) , ẋ (t)〉 + ε̇ (t)
‖x (t)‖2

2

)

.

By rearranging terms and using the fact that ε(t) is continuously differentiable and
nonincreasing, we have

Ẇ (t) = 〈ẋ (t) , ẍ (t)〉 + β (t) 〈∇�t (x (t)) , ẋ (t)〉 + β̇ (t) (�t (x (t)) − min�)

+ β(t)ε̇ (t)
‖x (t)‖2

2
= 〈ẋ (t) , ẍ (t) + β (t)∇�t (x (t))〉 + β̇ (t) (�t (x (t)) − min�)

+ β (t) ε̇ (t)
‖x (t)‖2

2
≤ 〈ẋ (t) , ẍ (t) + β (t)∇�t (x (t))〉 + β̇ (t) (�t (x (t)) − min�) ,

(2.3)
where the last inequality is from the fact that ε̇(t) ≤ 0 and β(t) ≥ 0. Moreover,
according to system (1.4), we have

ẍ (t) + β (t)∇�t (x (t)) = ẍ (t) + β (t) (∇�(x (t)) + ε (t) x (t)) = −α

t
ẋ (t).

(2.4)
Combining (2.3) and (2.4) together, we obtain that

Ẇ (t) ≤
〈
ẋ (t) ,−α

t
ẋ (t)

〉
+ β̇ (t) (�t (x (t)) − min�)

= −α

t
‖ẋ (t)‖2 + β̇ (t) (�t (x (t)) − min�) ,

which implies our desired conclusion immediately.

In the following, we introduce another auxiliary function

hz (t) = 1

2
‖x (t) − z‖2, (2.5)

where z ∈ argmin�, then we will give the following property of hz .

Lemma 2.3 Suppose hz (t) is defined as (2.5), then

(i) ḧz (t) + α
t ḣz (t) ≤ ‖ẋ (t)‖2 − β (t)

(
�t (x (t)) − min� − ε(t)

2 ‖z‖2 + ε(t)
2 ‖x (t)

−z‖2) .

(ii) sup
t≥t0

∣
∣ḣz(t)

∣
∣

t < +∞ if sup
t≥t0

‖ẋ (t)‖ < +∞.
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Proof (i): From the definition of hz(t), we immediately obtain that

ḣz (t) = 〈ẋ (t) , x (t) − z〉 , ḧz (t) = ‖ẋ (t)‖2 + 〈ẍ (t) , x (t) − z〉 . (2.6)

Hence

ḧz (t) + α

t
ḣz (t) = ‖ẋ (t)‖2 + 〈ẍ (t) , x (t) − z〉 + α

t
〈ẋ (t) , x (t) − z〉

= ‖ẋ (t)‖2 +
〈
ẍ (t) + α

t
ẋ (t) , x (t) − z

〉
.

(2.7)

According to (1.4), we have

ẍ (t) + α

t
ẋ (t) = −β (t) (∇�(x (t)) + ε (t) x (t)) = −β (t)∇�t (x (t)) .

Combining this relation with (2.7), we obtain further that

ḧz (t) + α

t
ḣz (t) = ‖ẋ (t)‖2 − β (t) 〈∇�t (x (t)) , x (t) − z〉 . (2.8)

On the other hand, recall � is convex function, from this with the definition �t ,
we see that �t is ε (t)-strongly convex function. Hence, we have

�t (z) − �t (x (t)) ≥ 〈∇�t (x (t)) , z − x (t)〉 + ε (t)

2
‖z − x (t)‖2,

which implies that

〈∇�t (x (t)) , x (t) − z〉 ≥ �t (x (t)) − �t (z) + ε (t)

2
‖x (t) − z‖2. (2.9)

Since z is a minimizer of�, by (2.9) and the definition of�t (z) = �(z)+ ε(t)
2 ‖z‖2 =

min� + ε(t)
2 ‖z‖2, we obtain further that

〈∇�t (x (t)) , x (t) − z〉 ≥ �t (x (t)) − min� − ε (t)

2
‖z‖2 + ε (t)

2
‖x (t) − z‖2.

Using this, the fact β(t) ≥ 0 from H1 and (2.8), we have

ḧz (t) + α

t
ḣz (t)

= ‖ẋ (t)‖2 − β (t) 〈∇�t (x (t)) , x (t) − z〉
≤ ‖ẋ (t)‖2 − β (t)

(

�t (x (t)) − min� − ε (t)

2
‖z‖2 + ε (t)

2
‖x (t) − z‖2

)

.

This completes the proof of (i).
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Now we prove (ii). By the definition of ḣz (t) in (2.6) , the assumption that
sup
t≥t0

‖ẋ (t)‖ < +∞ and Schwartz’s inequality, we obtain that

∣
∣ḣz (t)

∣
∣ ≤ ‖ẋ (t)‖ ‖x (t) − z‖ ≤ sup

s≥t0
‖ẋ (s)‖ ‖x (t) − z‖ . (2.10)

In addition,

‖x (t) − z‖ ≤ ‖x (t) − x (t0)‖ + ‖x (t0) − z‖ ≤ (t − t0) sup
s≥t0

‖ẋ (s)‖ + ‖x (t0) − z‖ .

Combining the above inequality, the assumption sup
t≥t0

‖ẋ (t)‖ < +∞ with (2.10), we

immediately deduce that

∣
∣ḣz (t)

∣
∣ ≤ sup

s≥t0
‖ẋ (s)‖

(

(t − t0) sup
s≥t0

‖ẋ (s)‖ + ‖x (t0) − z‖
)

≤ C̃ (1 + t) ,

where C̃ > 0 is a constant. Thus, supt≥t0

∣
∣ḣz(t)

∣
∣

t < +∞. This completes the proof.

3 Existence and uniqueness of the solution of (1.4)

In this section, we will prove the existence and uniqueness of a global solution of
dynamical system (1.4). We first give the definition of a strong global solution of
(1.4).

Definition 3.1 We say that x : [t0,+∞) → H is a strong global solution of (1.4), if
it satisfies the following properties:

(a) x, ẋ : [t0,+∞) → H are locally absolutely continuous, in other words, absolutely
continuous on each interval [t0, T ] for t0 < T < +∞;

(b) ẍ (t) + α
t ẋ (t) + β (t) (∇�(x (t)) + ε (t) x (t)) = 0 for almost every t ≥ t0;

(c) x (t0) = u0 and ẋ (t0) = v0.

We are now ready to prove the existence and uniqueness of system (1.4).Wemainly
use Cauchy-Lipschitz-Picard theorem for absolutely continuous trajectories (see, for
example [[22], proposition 6.2.1], [[27], Theorem 54]) to establish the result. The
proof is based on the idea that rewriting (1.4) as a particular first order dynamical
system in a suitably chosen product space (see also [8,17]).

Theorem 3.1 For any initial points u0, v0 ∈ H, there exists a unique C2-global solu-
tion of the dynamical system (1.4).

Proof Define X (t) = (x (t) , ẋ (t)), and F : [t0,+∞) × H × H → H × H as

F (t, u, v) =
(
v,−α

t
v − β (t) (∇�(u) + ε (t) u)

)
. (3.1)
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Hence, from (1.4), (3.1) and the definition of X(t), we see that (1.4) can be rewritten
as a first order dynamical system, which is

{
Ẋ (t) =F (t, X (t)) = F (t, x (t) , ẋ (t))

X (t0) = (u0, v0) .
(3.2)

We will first show that F (t, ·, ·) is L(t)-Lipschitz continuous for every t ≥ t0.
And the Lipschitz constant is a function of time with the property that L (·) ∈
L1
loc ([t0,+∞)). Concretely, for every (u, v) , (u, v) ∈ H × H, by (3.1), we have

‖F (t, u, v) − F (t, u, v)‖

=
√

‖v − v‖2 +
∥
∥
∥
α

t
(v − v) + β (t) (∇�(u) − ∇�(u) + ε (t) (u − u))

∥
∥
∥
2
.

Using the fact that (a + b)2 ≤ 2a2 + 2b2 and the above formula, we have

‖F (t, u, v) − F (t, u, v)‖

≤
√

‖v − v‖2 + 2
∥
∥
∥
α

t
(v − v)

∥
∥
∥
2 + 2β(t)2‖∇�(u) − ∇�(u) + ε (t) (u − u)‖2

≤
√(

1 + 2
α2

t2

)

‖v − v‖2 + 4β(t)2‖∇�(u) − ∇�(u)‖2 + 4β(t)2ε(t)2‖u − u‖2.

From this relation and the fact ∇� is L�-Lipschitz continuous in the assumption, we
obtain further that

‖F (t, u, v) − F (t, u, v)‖

≤
√(

1 + 2
α2

t2

)

‖v − v‖2 + (
4L2

�β(t)2 + 4β(t)2ε(t)2
) ‖u − u‖2

≤
√

1 + 2
α2

t2
+ 4L2

�β(t)2 + 4β(t)2ε(t)2
√

‖v − v‖2 + ‖u − u‖2

≤
(
1 + √

2
α

t
+ 2L�β (t) + 2β (t) ε (t)

)
‖(u, v) − (u, v)‖ ,

where the last inequality follows from the fact
√
a2 + b2 ≤ a + b if a ≥ 0, b ≥ 0,

and α > 0, β(t) ≥ 0, ε(t) ≥ 0. Define L(t) = 1 + √
2α
t + 2L�β (t) + 2β (t) ε (t),

then we have

‖F (t, u, v) − F (t, u, v)‖ ≤ L(t) ‖(u, v) − (u, v)‖ . (3.3)

Hence F (t, ·, ·) is L(t)-Lipschitz continuous for every t ≥ t0. Recall that α
t , β(t)

and ε(t) are continuous for any t ≥ t0. Thus we see that L(t) is integrable on [t0, T ],
consequently, L (·) ∈ L1

loc ([t0,+∞)).

123



2034 B. Xu, B. Wen

Next, we will show that F (·, u, v) ∈ L1
loc ([t0,+∞) ,H × H) for all u, v ∈ H.

Take any u, v ∈ H, by the definition of F , for t0 < T < +∞, we have

∫ T

t0
‖F (t, u, v)‖dt

=
∫ T

t0

√

‖v‖2 +
∥
∥
∥−α

t
v − β (t) (∇�(u) + ε (t) u)

∥
∥
∥
2
dt

≤
∫ T

t0

√(

1 + 2α2

t2

)

‖v‖2 + 4β(t)2‖∇�(u)‖2 + 4β(t)2ε(t)2‖u‖2dt

≤
√

‖v‖2 + ‖∇�(u)‖2 + ‖u‖2
∫ T

t0

√

1 + 2α2

t2
+ 4β(t)2 + 4β(t)2ε(t)2dt,

(3.4)
where the first inequality follows from the fact ‖a + b‖2 ≤ 2‖a‖2 + 2‖b‖2, the last
inequality follows from that the points u, v ∈ R

n are fixed.
Hence, by (3.4) and the fact α

t , β(t) and ε(t) are continuous for any t ≥ t0, we
immediately obtain that

F (·, u, v) ∈ L1
loc ([t0,+∞) ,H × H) .

Combining this relation with (3.3) and the result L (·) ∈ L1
loc ([t0,+∞)), and using

the Cauchy-Lipschitz-Picard theorem, we see that there exists a unique global solution
of system (3.2), which implies the existence of a unique C2-global solution of (1.4)
by the Lipschitz continuity of ∇� and the the continuities of β(t) and ε(t). This
completes the proof.

4 Convergence analysis of the trajectory of (1.4)

In this section, wewill establish the convergence and convergence rate of the trajectory
x(t) of (1.4). The proof of convergence will be casted into the following two cases.

Case 1:
∫ +∞
t0

tβ (t) ε (t) dt < +∞. In this case, we will show in Theorem 4.1 that
for any global solution trajectory of (1.4), the function �(x (t)) satisfies the fast
convergence property

�(x (t)) − min� = o

(
1

t2β (t)

)

.

Case 2:
∫ +∞
t0

ε(t)β(t)
t dt = +∞. In this case, we will show in Theorem 4.2 that for

any global solution trajectory of (1.4), the following ergodic convergence result holds

lim
t→∞

1
∫ t
t0

ε(τ )β(τ)
τ

dτ

∫ t

t0

ε (τ ) β (τ)

τ
‖x (τ ) − p‖2 dτ = 0,
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where p is the element of minimal norm of argmin�. Moreover, the strong global
convergence of x(t) will be established, which is

lim inf
t→∞ ‖x (t) − p‖ = 0.

Now we are ready to present the convergence results case by case.

4.1 Case
∫ +∞
t0

tˇ
(
t
)
"

(
t
)
dt < +∞

For simplicity, we set m = min�. Take any z ∈ argmin�, we will introduce another
auxiliary function for α 
= 1, which is

E (t) = t2

(α − 1)2
β (t) (�t (x (t)) − m) + 1

2

∥
∥
∥
∥x (t) − z + t

α − 1
ẋ (t)

∥
∥
∥
∥

2

, (4.1)

where �t is the same function as defined in (2.1). Let g (t) = t
α−1 , then by simply

computing, we immediately have

1 + ġ (t) = α

t
g (t) . (4.2)

From this relation and the definition of E (t) in (4.1), we can rewrite E (t) as the
following formula

E (t) = g(t)2β (t) (�t (x (t)) − m) + 1

2
‖x (t) − z + g (t) ẋ (t)‖2. (4.3)

Combining (4.3) with the definition of W (t) in (2.1) , hz in (2.5) and ḣz in (2.6), we
obtain that

E (t) = g(t)2W (t) + hz (t) + g (t) ḣz (t) . (4.4)

Next, we will prove that the global convergence rate of �(x (t)) is o
(

1
t2β(t)

)
.

Theorem 4.1 Let � : H → R be a convex continuously differentiable function such
that argmin� is nonempty. Assume that ε(t), β(t) satisfies condition (H1), α > 1,∫ +∞
t0

tβ (t) ε (t) dt < +∞ and there exist b > 0 such that t β̇ (t) ≤ (α − 3 − b) β (t).
Let x(·) be a classical global solution of (1.4), consider the energy function (4.4), then
(i) Ė (t) ≤ 1

2(α−1) tβ (t) ε (t) ‖z‖2.
(ii)

∫ +∞
t0

tβ (t) (�t (x (t)) − m) dt < + ∞.
(iii) The following fast convergence of �(x(t)) holds:

�(x (t)) − m = o

(
1

β (t) t2

)

.

123



2036 B. Xu, B. Wen

(iv) Moreover, the trajectory x (·) is bounded on [t0,+∞) and

∫ +∞

t0
tβ (t) ε (t) ‖x (t)‖2dt < + ∞.

Proof We first prove (i). From the definition of E(t) in (4.4), we immediately have

Ė (t) =g(t)2Ẇ (t) + 2g (t) ġ (t)W (t) + ḣz (t) + ġ (t) ḣz (t) + g (t) ḧz (t)

≤g(t)2
[
−α

t
‖ẋ (t)‖2 + β̇ (t) (�t (x (t)) − m)

]

+ 2g (t) ġ (t)

[
1

2
‖ẋ (t)‖2 + β (t) (�t (x (t)) − m)

]

+ ḣz (t) (1 + ġ (t)) + g (t) ḧz (t) ,

(4.5)

where the last inequality follows from the Lemma 2.2.
On the other hand, according to (4.2) and Lemma 2.3, we have

ḣz (t) (1 + ġ (t)) + g (t) ḧz (t) = g (t)
(
ḧz (t) + α

t
ḣz (t)

)

≤ g (t)

[

‖ẋ (t)‖2 − β (t)

(

�t (x (t)) − m − ε (t)

2
‖z‖2 + ε (t)

2
‖x (t) − z‖2

)]

.

(4.6)

Combining the (4.5) and (4.6), we obtain further that

Ė (t) ≤g(t)2
[
−α

t
‖ẋ (t)‖2 + β̇ (t) (�t (x (t)) − m)

]

+ 2g (t) ġ (t)

[
1

2
‖ẋ (t)‖2 + β (t) (�t (x (t)) − m)

]

+ g (t)

[

‖ẋ (t)‖2 − β (t)

(

�t (x (t)) − m − ε (t)

2
‖z‖2 + ε (t)

2
‖x (t) − z‖2

)]

.

By rearranging terms, we have

Ė (t) ≤g (t) ‖ẋ (t)‖2
(
1 + ġ (t) − α

t
g (t)

)
+ g (t) β (t)

ε (t)

2
‖z‖2

+ (�t (x (t)) − m) g (t)
(
g (t) β̇ (t) + 2ġ (t) β (t) − β (t)

) − g (t) β (t)

ε (t)

2
‖x (t) − z‖2

=g (t) β (t)
ε (t)

2
‖z‖2+(�t (x (t)) − m) g (t)

(
g (t) β̇ (t)+2ġ (t) β (t) − β (t)

)

− g (t) β (t)
ε (t)

2
‖x (t) − z‖2,

(4.7)
where the second equality follows from the fact g (t) = t

α−1 and 1 + ġ (t) = α
t g (t)

from (4.2).
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Recall that g (t) = t
α−1 and 1+ ġ (t) = α

t g (t) from (4.2), combining this with the
assumption t β̇ (t) ≤ (α − 3 − b) β (t) and α > 1, we obtain that

g (t) β̇ (t) + 2ġ (t) β (t) − β (t) = t

α − 1
β̇ (t) + 2

(α

t
g(t) − 1

)
β(t) − β(t)

= t

α − 1
β̇ (t) + 2

(
α

t
· t

α − 1
− 1

)

β(t) − β(t)

= t

α − 1
β̇ (t) + 3 − α

α − 1
β (t)

≤ −bβ(t)

≤ 0.

Thus, according to this relation, the fact that g(t) ≥ 0, β(t) ≥ 0, ε(t) ≥ 0,
�t (x (t)) − m ≥ 0 and (4.7), we obtain further that

Ė (t) ≤ 1

2
g (t) β (t) ε (t) ‖z‖2 − 1

2
g (t) β (t) ε (t) ‖x (t) − z‖2. (4.8)

Moreover, using the fact that g (t) , β (t) , ε (t) ≥ 0 and g (t) = t
α−1 , we finally have

Ė (t) ≤ 1

2
g (t) β (t) ε (t) ‖z‖2 = 1

2 (α − 1)
tβ (t) ε (t) ‖z‖2, (4.9)

which proves (i).

We now prove (ii). From the assumption
∫ +∞
t0

tβ (t) ε (t) dt < +∞ and (4.9), we

deduce that the positive part of Ė (t) belongs to L1 (t0,+∞). Using this and the fact
that E is bounded from below, we obtain that E(t) has a limit as t → +∞ due to
Lemma 2.1. Hence, there exists C1 > 0 such that |E(t)| ≤ C1.

In addition, according to (4.7), we have

Ė (t) + g (t)
(
β (t) − g (t) β̇ (t) − 2ġ (t) β (t)

)
(�t (x (t)) − m)

≤ 1

2
g (t) β (t) ε (t) ‖z‖2.

Recall the fact that g (t) = t
α−1 , β(t) ≥ 0 and the assumption that t β̇ (t) ≤

(α − 3 − b) β (t), α > 1, we obtain further that

Ė (t) + b

(α − 1)2
tβ (t) (�t (x (t)) − m) ≤ 1

2(α − 1)
tβ (t) ε (t) ‖z‖2.

Integrating this inequality, and using that
∫ +∞
t0

tβ (t) ε (t) dt < +∞ and the fact E (t)
is bounded from below, we have

∫ +∞

t0
tβ (t) (�t (x (t)) − m) dt < + ∞,
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which proves (ii).
We now prove (iii). According to Lemma 2.2, we have

t2

(α − 1)2
Ẇ (t) + t2

(α − 1)2
α

t
‖ẋ (t)‖2 ≤ t2

(α − 1)2
β̇ (t) (�t (x (t)) − m) .

After integration by parts on (t0, t), we obtain

t2

(α − 1)2
W (t) − t02

(α − 1)2
W (t0) − 2

(α − 1)2

∫ t

t0
sW (s) ds

+ α

(α − 1)2

∫ t

t0
s‖ẋ (s)‖2ds

≤ 1

(α − 1)2

∫ t

t0
s2β̇ (s) (�s (x (s)) − m) ds.

From the definition of W (t) in (2.1), we immediately have

t2

(α−1)2
W (t) + 1

α−1

∫ t
t0
s‖ẋ (s)‖2ds ≤ t02

(α−1)2
W (t0)

+ 1
(α−1)2

∫ t
t0
s
(
sβ̇ (s) + 2β (s)

)
(�s (x (s)) − m) ds.

From the assumption t β̇ (t) ≤ (α − 3 − b) β (t), we obtain further that

t2

(α−1)2
W (t) + 1

α−1

∫ t
t0
s‖ẋ (s)‖2ds ≤ t02

(α−1)2
W (t0)

+α−1−b
(α−1)2

∫ t
t0
sβ (s) (�s (x (s)) − m) ds.

According to (ii), there exists a constant C̃ such that α−1−b
(α−1)2

∫ +∞
t0

sβ (s) (�s (x (s))

−m) ds < C̃ . Then,

1

α − 1

∫ +∞

t0
s‖ẋ (s)‖2ds <

t02

(α − 1)2
W (t0) + C̃ .

From the definition of W (t) in (2.1), we have

1

α − 1

∫ +∞

t0
tW (t) dt

= 1

α − 1

∫ +∞

t0

1

2
t‖ẋ (t)‖2dt + 1

α − 1

∫ +∞

t0
tβ (t) (�t (x (t)) − m) dt

<
t02

2(α − 1)2
W (t0) + 1

2
C̃ + α − 1

α − 1 − b
C̃,
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which implies that
∫ +∞

t0
tW (t) dt < + ∞. (4.10)

In addition, according to the Lemma 2.2, we have

d

dt

(
t2

(α − 1)2
W (t)

)

= 2t

(α − 1)2
W (t) + t2

(α − 1)2
Ẇ (t)

≤ 2t

(α − 1)2

(
1

2
‖ẋ (t)‖2 + β (t) (�t (x (t)) − m)

)

+ t2

(α − 1)2

(
−α

t
‖ẋ (t)‖2 + β̇ (t) (�t (x (t)) − m)

)

= 1

(α − 1)2

(
t‖ẋ (t)‖2 + 2tβ (t) (�t (x (t)) − m) − αt‖ẋ (t)‖2

+t2β̇ (t) (�t (x (t)) − m)
)

= 1

(α − 1)2

(
(1 − α) t‖ẋ (t)‖2 + t

(
2β (t) + t β̇ (t)

)
(�t (x (t)) − m)

)

= 1

1 − α
t‖ẋ (t)‖2 + 1

(α − 1)2
t
(
2β (t) + t β̇ (t)

)
(�t (x (t)) − m)

≤ 1

(α − 1)2
t
(
2β (t) + t β̇ (t)

)
(�t (x (t)) − m) ,

which the last inequality is due to α > 1. Recall the assumption that t β̇ (t) ≤
(α − 3 − b) β (t), we immediately have

d

dt

(
t2

(α − 1)2
W (t)

)

≤ α − 1 − b

(α − 1)2
tβ (t) (�t (x (t)) − m) .

According to (ii), we see that the positive part of d
dt

(
t2

(α−1)2
W (t)

)
belongs to

L1 (t0,+∞). As a result,

lim
t→+∞

t2

(α − 1)2
W (t) exists,

which implies that

lim
t→+∞

t2

(α − 1)2
W (t) = 0.
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Otherwise, there would exist a constant C̄ > 0 such that t2

(α−1)2
W (t) ≥ C̄ for t

sufficiently large, i.e. t
(α−1)2

W (t) ≥ C̄
t . According to (4.10), we have

∫ +∞
t0

C̄
t dt <+

∞, which leads to a contradiction. According to the definition of W (t) in (2.1) again,
we have

lim
t→+∞

t2

(α − 1)2
β (t) (�t (x (t)) − m) = 0.

Recall that �t (x) = �(x(t)) + ε(t)
2 ‖x(t)‖2 and lim

t→+∞ ε (t) = 0. Combining these

facts with the above relation, we obtain further that

�(x (t)) − m = o

(
1

β (t) t2

)

,

which proves (iii).
Finally, we prove (iv). According to (4.8),we have

Ė (t) + g (t) β (t)
ε (t)

2
‖x (t) − z‖2 ≤ g (t) β (t)

ε (t)

2
‖z‖2. (4.11)

By integrating (4.11) from t0 to ∞, we obtain that

∫ +∞

t0
g (t) β (t)

ε (t)

2
‖x (t) − z‖2dt < + ∞, (4.12)

which follows from the fact g (t) = t
α−1 , the assumption

∫ +∞
t0

tβ (t) ε (t) dt < +∞,

and the positive part of Ė (t) belongs to L1 (t0,+∞). Using again the definition of
g(t) = t

α−1 , the assumption α > 1, and (4.12), we immediately have

∫ +∞

t0
tβ (t)

ε (t)

2
‖x (t) − z‖2dt < + ∞.

Combining this relation with the assumption that
∫ +∞
t0

tβ (t) ε (t) dt < +∞ and the

fact ‖x (t)‖2 ≤ 2 ‖x (t) − z‖2 + 2 ‖z‖2, t > 0, β(t) ≥ 0, ε(t) ≥ 0, we obtain further
that ∫ +∞

t0
tβ (t) ε (t) ‖x (t)‖2dt < + ∞. (4.13)

Next, we begin to establish the boundedness of the trajectory of (1.4). Recall the
definition of E(t) in (4.3) and the result E(t) is bounded from the discussion in the
proof of (ii), we see there exists C2 > 0 such that

1

2
‖x (t) − z + g (t) ẋ (t)‖2 ≤ C2. (4.14)
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Moreover, we have

‖x (t) − z‖2 + 2g (t) 〈x (t) − z, ẋ (t)〉 ≤ 2C2. (4.15)

After dividing (4.15) by p (t) =
(

t
t0

)α

, we obtain that

‖x (t) − z‖2
p(t)

+ 2g (t)

p(t)
〈x (t) − z, ẋ (t)〉 ≤ 2C2

p(t)
.

Combing this relation with the definition of hz (t) = 1
2‖x (t) − z‖2 in (2.5) and

ḣz (t) = 〈ẋ (t) , x (t) − z〉 from (2.6), we obtain further that

hz (t)

p (t)
+ q (t) ḣz (t) ≤ C2

p (t)
, (4.16)

where q(t) = g(t)
p(t) . Using the definition of g (t) = t

α−1 and p (t) =
(

t
t0

)α

, we can

easily compute q(t) as q(t) = g(t)
p(t) = t

α−1 · tα0tα = tα0 t
1−α

α−1 . Hence, we have q̇(t) = − 1
p(t)

and q(t) is bounded due to the fact α > 1 from the assumption. From these discussion,
we can rewrite (4.16) as

q (t) ḣz (t) − q̇ (t) (hz (t) − C2) ≤ 0,

dividing this equation by q(t)2, we have

q (t) ḣz (t) − q̇ (t) (hz (t) − C2)

q(t)2
≤ 0,

which is equivalent to

d

dt

(
hz (t) − C2

q (t)

)

≤ 0.

Hence, by integrating the above inequality from t0 to t , we see that there existsC3 > 0
such that

hz (t) ≤ C3 (1 + q (t)) .

Note that q(t) is bounded due to the fact α > 1 from the assumption, combining
this with the definition of hz(t) = 1

2‖x (t) − z‖2, we immediately obtain that x(t) is
bounded. This completes the proof.

Remark 4.1 From Theorem 4.1, we see that if β(t) = 1, then we have

�(x (t)) − m = o

(
1

t2

)

,
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which is just the result obtained by Attouch, Chbani, Riahi [4]. Furthermore, the
assumption t β̇ (t) ≤ (α − 3 − b) β (t) and the assumption

∫ +∞
t0

tβ (t) ε (t) dt < +∞
in Theorem 4.1 reduced to α > 3 and

∫ +∞
t0

tε (t) dt < +∞ in [4]. Hence our results
are more general.

Remark 4.2 From Theorem 4.1, we see that if β(t) = t , then we have

�(x (t)) − m = o

(
1

t3

)

.

Furthermore, the assumption t β̇ (t) ≤ (α − 3 − b) β (t) and the assumption∫ +∞
t0

tβ (t) ε (t) dt < +∞ in Theorem 4.1 reduced to α ≥ 4 + b and
∫ +∞
t0

t2ε (t) dt
< +∞, respectively. This also shows that the convergence rate of the function value

is faster than O
(

1
t2

)
if α > 3.

4.2 Case
∫ +∞
t0

"(t)ˇ(t)
t dt = +∞

For each ε > 0, we use xε to denote the unique solution of the strongly convex
minimization problem

xε = argmin
x∈H

{
�(x) + ε

2
‖x‖2

}
.

From the first order optimality condition, we immediately have

∇�(xε) + εxε = 0.

Let us recall the Tikhonov approximation curve, ε �→ xε, which satisfies the well-
known strong convergence property:

lim
ε→0

xε = p, (4.17)

where p is the element of minimal norm of the closed convex nonempty set argmin�.
Moreover, by the monotonicity property of ∇� , and ∇�(p) = 0, ∇�(xε) = −εxε,
we have

〈xε − p,−εxε〉 ≥ 0,

which, after dividing by ε > 0, and by Cauchy-Schwarz inequality gives

‖xε‖ ≤ ‖p‖ for all ε > 0. (4.18)

Theorem 4.2 Let � : H → R be a convex continuously differentiable function such
that argmin� is nonempty. Suppose that ε(t), β(t) satisfies condition (H1), β(t) is
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a nonincreasing function such that
∫ +∞
t0

ε(t)β(t)
t dt = +∞ and α > 1 hold. Let x(·)

be a classical global solution of (1.4). Then lim inf
t→∞ ‖x (t) − p‖ = 0, where p is the

element of minimal norm of argmin�. Moreover, the ergodic convergence property
holds, which is

lim
t→∞

1
∫ t
t0

ε(τ )β(τ)
τ

dτ

∫ t

t0

ε (τ ) β (τ)

τ
‖x (τ ) − p‖2dτ = 0.

Proof From Lemma 2.2, we have

dW (t)

dt
≤ −α

t
‖ẋ (t)‖2 + β̇ (t) (�t (x (t)) − m) .

According to the assumption that β(t) is a nonincreasing function, we have

dW (t)

dt
≤ −α

t
‖ẋ (t)‖2.

Hence,W (t) is nonincreasing, and lim
t→+∞ W (t) exists in R. Then, by the definition of

W (t) in (2.1), we obtain further that sup
t≥t0

‖ẋ (t)‖ < +∞ and that

∫ +∞

t0

‖ẋ (t)‖2
t

dt ≤ 1

α

(

W (t0) − lim
t→+∞ W (t)

)

< +∞. (4.19)

Now, we introduce an auxiliary function h p(t), which is defined by

h p (t) = 1

2
‖x (t) − p‖2, (4.20)

where p is the element of minimal norm of argmin�. By taking the derivative and
second derivative of the h p(t), we have

ḣ p(t) = 〈ẋ(t), x(t) − p〉, ḧ p(t) = ‖ẋ(t)‖2 + 〈ẍ(t), x(t) − p〉. (4.21)

Hence, we deduce that

ḧ p(t) + α

t
ḣ p(t) = ‖ẋ(t)‖2 +

〈
ẍ(t) + α

t
ẋ(t), x(t) − p

〉
. (4.22)

Moreover, recall the definition �t (x) = �(x) + ε(t)
2 ‖x‖2 in (2.1), from this and the

assumption ε(t) ≥ 0, we see that �t is strongly convex with modulus ε(t). Then we
have

�t (p) ≥ �t (x (t)) + 〈∇�t (x (t)) , p − x (t)〉 + ε (t)

2
‖p − x (t)‖2.
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Combining this relation with system (1.4), we obtain further that

�t (p) ≥ �t (x (t)) + 1

β (t)

〈
−ẍ (t) − α

t
ẋ (t) , p − x (t)

〉
+ ε (t)

2
‖p − x (t)‖2.

From this relation and the definition of h(p) in (4.20), we have

1

β (t)

〈
x (t) − p, ẍ (t) + α

t
ẋ (t)

〉
+ ε (t) h p (t) ≤ �t (p) − �t (x (t)) . (4.23)

By the definition of xε and �t , we immediately get

�t (xε (t)) = �(xε (t)) + ε (t)

2
‖xε (t)‖2 ≤ �(x (t)) + ε (t)

2
‖x (t)‖2 = �t (x (t)) .

Combining (4.23) with the above relation, we obtain further that

1

β (t)

〈
x (t) − p, ẍ (t) + α

t
ẋ (t)

〉
+ ε (t) h p (t) ≤ �t (p) − �t (xε (t)) . (4.24)

Since p is the element of minimal norm of argmin�, we have �(p) ≤ �(xε (t)).
Using this and the definition of �t , we obtain that

�t (p) − �t (xε (t)) = �(p) + ε (t)

2
‖p‖2 − �(xε (t)) − ε (t)

2
‖xε (t)‖2

≤ ε (t)

2

(
‖p‖2 − ‖xε (t)‖2

)
.

(4.25)

Combining (4.24) with (4.25) together, we obtain further that

1

β (t)

〈
x (t) − p, ẍ (t) + α

t
ẋ (t)

〉
+ ε (t) h p (t) ≤ ε (t)

2

(
‖p‖2 − ‖xε (t)‖2

)
.

Multiply both sides of the above formula by β(t), we have

〈
x (t) − p, ẍ (t) + α

t
ẋ (t)

〉
+ β (t) ε (t) h p (t) ≤ β (t) ε (t)

2

(
‖p‖2 − ‖xε (t)‖2

)
.

(4.26)

Combining (4.22) with (4.26) together, we obtain that

ḧ p (t) + α

t
ḣ p (t) + β (t) ε (t) h p (t) ≤ ‖ẋ (t)‖2 + β (t) ε (t)

2

(
‖p‖2 − ‖xε (t)‖2

)
.

(4.27)
On the other hand, by simply computing, we have

ḧ p (t) + α

t
ḣ p (t) = 1

tα
d

dt

(
tα ḣ p (t)

)
.
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Hence, from the above relation and (4.27), we obtain that

β (t) ε (t) h p (t) ≤ ‖ẋ (t)‖2 + β (t) ε (t)

2

(
‖p‖2 − ‖xε (t)‖2

)
− 1

tα
d

dt

(
tα ḣ p (t)

)
.

Dividing both sides of the above formula by t , we deduce that

β (t) ε (t) h p (t)

t
≤ ‖ẋ (t)‖2

t
+ β (t) ε (t)

2t

(
‖p‖2 − ‖xε (t)‖2

)
− 1

tα+1

d

dt

(
tα ḣ p (t)

)
.

Define δ (t) = 1
2

(‖p‖2 − ‖xε (t)‖2), from the assumption lim
t→∞ ε(t) = 0 and

(4.17),(4.18) we see that lim
t→∞ δ (t) = 0. Moreover,

β (t) ε (t) h p (t)

t
≤ ‖ẋ (t)‖2

t
+ β (t) ε (t) δ (t)

t
− 1

tα+1

d

dt

(
tα ḣ p (t)

)
.

By rearranging terms, we have

β (t) ε (t)

t

(
h p (t) − δ (t)

) ≤ ‖ẋ (t)‖2
t

− 1

tα+1

d

dt

(
tα ḣ p (t)

)
. (4.28)

By integrating (4.28) on [t0, t], there exists C4 > 0 such that

∫ t

t0

ε (s) β (s)

s

(
h p (s) − δ (s)

)
ds ≤ C4 −

∫ t

t0

1

sα+1

d

ds

(
sα ḣ p (s)

)
ds, (4.29)

which follows from (4.19).

Next,webegin to analyze the right terms in the above formula, i.e.,
∫ t
t0

1
sα+1

d
ds

(
sα ḣ p (s)

)

ds. According to the integration rule, we have

∫ t

t0

1

sα+1

d

ds

(
sα ḣ p (s)

)
ds

=
(
1

s
ḣ p (s)

)
∣
∣t
t0 + (α + 1)

∫ t

t0

1

s2
ḣ p (s) ds

= 1

t
ḣ p (t) − 1

t0
ḣ p (t0) + α + 1

t2
h p (t) − α + 1

t20
h p (t0) + 2 (α + 1)

∫ t

t0

1

s3
h p (s) ds

= C5 + 1

t
ḣ p (t) + α + 1

t2
h p (t) + 2 (α + 1)

∫ t

t0

1

s3
h p (s) ds,
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where C5 is other constant. Recall the definition of h p(t) in (4.20), we see that h p(t)
is nonnegative. From this with the fact α > 1, we have

∫ t

t0

1

sα+1

d

ds

(
sα ḣ p (s)

)
ds ≥ C5 + 1

t
ḣ p (t) .

Combining the above formula with (4.29), we have

∫ t

t0

ε (s) β (s)

s

(
h p (s) − δ (s)

)
ds ≤ C4 −C5 − 1

t
ḣ p (t) ≤ C6 + 1

t

∣
∣ḣ p (t)

∣
∣ , (4.30)

where C6 is other constant.

From the fact sup
t≥t0

‖ẋ (t)‖ < +∞ , similar to Lemma 2.3 (ii) , we have sup
t≥t0

∣
∣ḣ p(t)

∣
∣

t <

+∞. Using this result and (4.30), we obtain that there exists another constant C̄ > 0
such that ∫ t

t0

ε (s) β (s)

s

(
h p (s) − δ (s)

)
ds ≤ C̄ . (4.31)

Since
∫ +∞
t0

ε(t)β(t)
t dt = +∞ from the assumption, by (4.31), we obtain further that

lim inf
t→∞

(
h p (t) − δ (t)

) ≤ 0.

Note that lim
t→∞ δ (t) = 0, hence, lim inf

t→∞ h p (t) = 0, which implies that lim inf
t→∞‖x (t) − p‖ = 0. This proves the strong convergence of the trajectory x(t).

In the following, we will prove the trajectory x(t) is ergodicly convergent to the
solution with minimal norm of the solution of (1.4). Note that

∫ t

t0

ε (τ ) β (τ)

τ
h p (τ )dτ

=
∫ t

t0

ε (τ ) β (τ)

τ

(
h p (τ ) − δ (τ )

)
dτ +

∫ t

t0

ε (τ ) β (τ)

τ
δ (τ )dτ

≤ C̄ +
∫ t

t0

ε (τ ) β (τ)

τ
δ (τ )dτ,
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where the last inequality follows from (4.31). Dividing both sides of the above formula
by

∫ t
t0

ε(τ )β(τ)
τ

dτ , then we have

lim sup
t→∞

1
∫ t
t0

ε(τ )β(τ)
τ

dτ

∫ t

t0

ε (τ ) β (τ)

τ
h p (τ ) dτ

≤ lim sup
t→∞

(
C̄

∫ t
t0

ε(τ )β(τ)
τ

dτ
+

∫ t
t0

ε(τ )β(τ)
τ

δ (τ ) dτ
∫ t
t0

ε(τ )β(τ)
τ

dτ

)

≤ lim sup
t→∞

C̄
∫ t
t0

ε(τ )β(τ)
τ

dτ
+ lim sup

t→∞

∫ t
t0

ε(τ )β(τ)
τ

δ (τ ) dτ
∫ t
t0

ε(τ )β(τ)
τ

dτ

= 0,

where the first inequality follows from the fact ε(t) ≥ 0, β(t) ≥ 0, and the last
equality follows from the assumption that lim

t→∞
∫ t
t0

ε(τ )β(τ)
τ

dτ = +∞ and the fact that

lim
t→∞ δ (t) = 0. Then, by the definition of h p, we have

lim sup
t→∞

1
∫ t
t0

ε(τ )β(τ)
τ

dτ

∫ t

t0

ε (τ ) β (τ)

τ
‖x (τ ) − p‖2dτ ≤ 0. (4.32)

Since, all the terms in the left side of (4.32) are nonnegative, we obtain further that

lim
t→∞

1
∫ t
t0

ε(τ )β(τ)
τ

dτ

∫ t

t0

ε (τ ) β (τ)

τ
‖x (τ ) − p‖2dτ = 0. (4.33)

This completes the proof.

5 Numerical experiments

In this section, we perform numerical experiments to illustrate our theoretical results
of dynamical system (1.4). All the experiments are performed by Matlab 2014b on
a 64-bit Thinkpad laptop with an Intel(R) Core(TM) i7-6600U CPU (2.60GHz) and
12GB of RAM.

In our numerical tests, we consider three optimization problems: the first two exam-
ples are two dimensional strongly convex problem and convex problem respectively,
the third is a convex and twice continuously differentiable one-dimensional problem
and the minimizer is not unique, this example comes from reference [17]. We use
Runge Kutta 4-5 adaptive method to solve them.

The first two examples are mainly to emphasize the fast convergence rate of the
function value (Theorem 4.1), and the third example is to show the strong convergence
of the trajectory (Theorem 4.2). A detailed description is given below.
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Fig. 1 Error analysis with different parameters in dynamical system (1.4) for a strong convex objective
function �1. The red, green, black and blue line correspond to the three choices, α = 5, β(t) = t ,
ε(t) = 1/t4; α = 7, β(t) = t3, ε(t) = 1/t6; α = 9, β(t) = t5, ε(t) = 1/t8; α = 5, β(t) = 1, ε(t) = 1/t4,
respectively

In the next two subsections, we choose b ∈ (0, 1) and (α, β(t), ε(t)) =
(
5, t, 1

t4

)
,

(α, β(t), ε(t)) =
(
7, t3, 1

t6

)
, (α, β(t), ε(t)) =

(
9, t5, 1

t8

)
respectively. All the

choices of α, β(t), ε(t) satisfy the assumptions in Theorem 4.1. Hence, by Theorem
4.1, the function value along the trajectory is convergent fast.

5.1 Strongly convex function

In this subsection, we consider the strongly convex optimization problem:

min�1 (x1, x2) = 2x1
2 + 5x2

2 − 4x1 + 10x2 + 7.

By simply computing, we obtain that ∇�1 (x1, x2) = (4x1 − 4, 10x2 + 10)T and
x∗ = (1,−1)T is the unique minimizer of �1, hence the optimal value is �1

∗ =
�1 (1,−1) = 0.

To illustrate the fast convergence rate of �(x(t)), we plot in Fig. 1 the trajectory of
|�1 (x (t))−�1

∗| versus the time t , the horizontal axis represents t , the initial point is
chosen as u0 = v0 = (−5, 30)T . According to Fig. 1a, we see that�1(x(t)) converges
to �∗

1 fast for all the choices of α, β(t) and ε(t). Fig. 1b shows the performance of
|�1 (x (t)) − �1

∗| under the choice of α = 5, β(t) = t , ε(t) = 1/t4 and the case
α = 5, β(t) = 1, ε(t) = 1/t4, where the latter choice is from [4]. We see from Fig.
1b that the choice β(t) = t in (1.4) are comparable with β(t) = 1.

5.2 Convex function

In this subsection, we consider convex optimization problem:

min�2 (x1, x2) = x1
4 + 5x2

2 − 4x1 − 10x2 + 8.
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Fig. 2 Error analysis with different parameters in dynamical system (1.4) for a convex objective function
�2. The red, green, black and blue line correspond to the three choices, α = 5, β(t) = t , ε(t) = 1/t4;
α = 7, β(t) = t3, ε(t) = 1/t6; α = 9, β(t) = t5, ε(t) = 1/t8; α = 5, β(t) = 1, ε(t) = 1/t4, respectively

We can easily deduce that ∇�2 (x1, x2) = (
4x13 − 4, 10x2 − 10

)T
and x∗ = (1, 1)T

is the minimizer of �2, thus the optimal value is �2
∗ = �2 (1, 1) = 0.

The computational results are presented in Fig. 2.We plot |�1 (x (t))−�2
∗| versus

the time t in the following figures, the horizontal axis represents t , and the initial point
is chosen as u0 = v0 = (−1, 5)T . From Fig. 2a, we see that�2(x(t)) converges to�∗

2
fast for all the choices of α, β(t) and ε(t). Figure 2b shows the comparison between the
case α = 5, β(t) = t , ε(t) = 1/t4 and the case α = 5, β(t) = 1, ε(t) = 1/t4, where
the latter case is from [4]. From the numerical results, we see that the convergence
rate of �2(x(t)) are comparable under both choices of α, β(t), ε(t).

5.3 One-dimensional function

In this subsection, we conduct numerical experiments to illustrate the influence of
Tikhonov regularization on the strong convergence of the trajectory x(t). We con-

sider (α, β(t), ε(t)) =
(
3, 1√

1+ln t
, 1√

1+ln t

)
and (α, β(t), ε(t)) =

(
3, 1√

1+ln t
, 0

)

respectively, and the choice of (α, β(t), ε(t)) =
(
3, 1√

1+ln t
, 1√

1+ln t

)
satisfies the

assumptions in Theorem 4.2.
The optimization problem we consider in this part is as follows:

min� : R → R, �(x) =
⎧
⎨

⎩

−(x + 1)3, if x < −1
0, if − 1 ≤ x ≤ 1
(x − 1)3, if x > 1

By easily computing, we can deduce that argmin� = [−1, 1] and x∗ = 0 is its
minimum norm solution.

Our computational results are presented in Fig. 3. We plot the trajectory x(t)
generated by (1.4) versus the time t in the following figure, the horizontal axis
represents t . We see from the figure that x(t) generated by (1.4) with the choice
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Fig. 3 The red line shows the trajectories of the dynamical system with Tikhonov regularization ε(t) =
1√

1+ln t
are approaching the minimum norm solution x∗ = 0; the green line shows the trajectories of

the dynamical system without Tikhonov regularization are approaching the optimal solution, but not the
minimum norm solution

(α, β(t), ε(t)) =
(
3, 1√

1+ln t
, 1√

1+ln t

)
converges to the minimum norm solution

x∗ = 0, which conforms with our theory. However, the trajectory x(t) under the case

(α, β(t), ε(t)) =
(
3, 1√

1+ln t
, 0

)
(without the Tikhonov regularization) converges to

the optimal solution, but not the minimum norm solution.

6 Conclusion, perspective

In this paper, we mainly study the convergence behavior of a second order gradient
systemwith Tikhonov regularization (1.4).We first prove the existence and uniqueness
of the C2-global solution of (1.4). Next, under the assumption

∫ +∞
t0

tβ (t) ε (t) dt <

+∞, we establish the global convergence of �(x (t)) to the optimal value of �.
Moreover, we show that the convergence rate of �(x(t)) to min� is o(1/t2β(t)),
which can be faster than o(1/t2). In the case

∫ +∞
t0

ε(t)β(t)
t dt = +∞, by constructing

proper energy function, we show that the trajectory x(t) strongly converges to p, where
p is the element of minimal norm of argmin�. In addition, we also prove the ergodic
convergence of x(t). Finally, we conduct some numerical experiments to illustrate the
theoretical results.

At the end of this paper, we would like to list some possible directions of future
research related to the dynamical sytem (1.4):

(i) A natural direction is to propose some proper numerical algorithms via time dis-
cretization of (1.4). Furthermore, one can investigate their theoretical convergence
properties, and confirm them with numerical experiments;
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(ii) One can also consider (1.4) endowed with an additional Hessian driven damping,
see for example [8,17];

(iii) Another direction is to consider the non-smooth optimization problems, which
mean the objective functions are not differentiable, then we can not apply (1.4)
directly. One can use the monotone inclusion to solve it, see for example [8,12,21].
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