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Abstract
It is well known that a quadratic programming minimization problem with one nega-
tive eigenvalue is NP-hard. However, in practice one may expect such problems being
not so difficult to solve. We suggest to make a single partition of the feasible set in a
concave variable only so that a convex approximation of the objective function upon
every partition set has an acceptable error. Minimizing convex approximations on par-
tition sets provides an approximate solution of the nonconvex quadratic program that
we consider. These minimization problems are to be solved concurrently by parallel
computing. An estimation of the number of partition sets is given. The study presents
a computational comparison with a standard branch-and-bound procedure.

Keywords Quadratic programming · Global optimization · Branch-and-bound
method · Parallel computing

1 Introduction

Quadratic nonconvex programming has a wide range of applications and is an inten-
sively studied field of global optimization. The number of publications devoted to
this topic is quite impressive, see, for example, [1–3] and references therein. The
main issue of the paper is connected to the result published in [4]. Namely, noncon-
vex quadratic programming problem with one negative eigenvalue in the objective
is NP-hard. Properties of a quadratic function with one negative eigenvalue and the
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corresponding theoretical results can be found in [5,6]. We get interested in how dif-
ficult on average the problem of global minimization of quadratic objective is with
exactly one negative eigenvalue. We assume that the eigenvalues and eigenvectors of
the matrix in the minimized function are known. Testing the problem from [4] showed
that NP-hardness follows from exponential growth of the size of the feasible set. If
the size is bounded then the problem can be solved in a reasonable time. The paper
investigates this topic in details.

2 Problem formulation

We consider a quadratic programming problem

f (x) = xTQx + xTc → min
x

, (1)

x ∈ X = {x ∈ R
n | Ax ≤ b} , (2)

where Q is an indefinite n × n matrix with exactly one negative eigenvalue, A is an
m × n matrix. The feasible set X is assumed to be nonempty and bounded. Here xT

denotes the transpose of vector x .
Let us represent the matrix Q such that

Q = WΛW T, Λ = diag{λ1, λ2, . . . , λn} , (3)

where λ1, λ2, . . . , λn are the eigenvalues of the matrix Q rearranged by increasing
order, i.e. λ1 ≤ . . . ≤ λn , λ1 < 0, λi ≥ 0, i = 2, . . . , n;W is a matrix, which columns
are the eigenvectors of Q sorted according to its eigenvalues. Λ is a diagonal matrix
with λ1, λ2, . . . , λn as the diagonal elements. It is well known [7] that W−1 = W T.
The linear transformation

y = W Tx (4)

reduces the problem (1), (2) to the separable form, thus we get the following problem
with the separable objective function:

g(y) =
n∑

i=1

λi y
2
i + yTd → min

y
, (5)

y ∈ Y = {y ∈ R
n | Dy ≤ b} , (6)

where d = W Tc and D = AW . The problems (1), (2), and (5), (6) are equivalent in
the sense that x∗ is a solution of (1), (2) iff y∗ = W Tx∗ solves (5), (6). Moreover
values of the objectives also coincide. The further discussion refers mainly to the latter
optimization statement since it is more convenient for analysis.
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3 Minimization procedure

The objective function (5) is concave in y1 and is convex in other variables. Therefore
the main idea of the minimization procedure for problem (5), (6) is a partition of the
feasible set Y in variable y1 only. Let

Ỹ = {y1 ∈ R
1 | α ≤ y1 ≤ β}

be a projection of the set Y onto the y1-axis. Divide the set Ỹ into p intervals:

Ỹ =
p⋃

i=1

{y1 ∈ R
1 | αi ≤ y1 ≤ βi } , (7)

where α ≤ αi < βi ≤ β, βi = αi+1 for i = 1, . . . , p− 1, and α1 = α, βp = β. Then
we define a partition {Y1,Y2, . . . , Yp} of Y as follows:

Y =
p⋃

i=1

Yi , Yi = {y ∈ Y | αi ≤ y1 ≤ βi } , i = 1, 2, . . . , p . (8)

For every partition set Yi we underestimate the concave part λ1y21 of the objective
by an affine function li such that λ1y21 and li intersect at points αi and βi :

λ1y
2
1 ≥ li (y1) = λ1(αi + βi )y1 − λ1αiβi , αi ≤ y1 ≤ βi . (9)

From (9) we obtain a convex approximation of g:

g(y) ≥ ϕi (y) = li (y1) +
n∑

i=2

λi y
2
i + yTd , y ∈ Yi , i = 1, 2, . . . , p .

This inequality can be presented in the following equivalent form:

g(y) ≥ ϕ(y) = min
1≤i≤p

li (y1) +
n∑

i=2

λi y
2
i + yTd , y ∈ Y .

It is known [8] that

g(y) − ϕi (y) ≤ −1

4
λ1(αi − βi )

2 , y ∈ Yi ,

which results in the following estimation of the approximation error upon the entire
feasible set:

g(y) − ϕ(y) ≤ −1

4
λ1 max

1≤i≤p

{
(αi − βi )

2
}

, y ∈ Y . (10)
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Theorem 1 For a given ε > 0, let the partition (7) satisfy

βi − αi ≤ 2
√

ε

|λ1| , i = 1, 2, . . . , p , (11)

and y∗ be a minimum point of ϕ upon Y . Then the following inequality holds:

g(y∗) ≤ g(y) + ε , y ∈ Y . (12)

Proof The inequalities (11) are equivalent to

ε ≥ −1

4
λ1 max

1≤i≤p

{
(αi − βi )

2
}

. (13)

As ϕ(y∗) ≤ ϕ(y) for every y ∈ Y , (12) directly follows from (10) and (13). ��
From (10) to (13) we have that for every given tolerance ε > 0 we may define a

partition of Y with sufficiently small widths of intervals in y1, so that

g(y) − ϕ(y) ≤ ε , y ∈ Y . (14)

Underestimation of g by ϕ in that manner allows us to perform the partition (8) only
once such that the inequality (14) holds. By Theorem 1, every minimizer of ϕ upon
Y is an approximate solution of (5), (6). In order to minimize ϕ, we solve p convex
quadratic programming problems

ϕi (y) → min , y ∈ Yi , i = 1, 2, . . . , p . (15)

Let y∗i be a solution of the i th problem in (15). Then

min ϕ(y) = min
1≤i≤p

ϕi (y
∗i ) ,

and a minimum point of ϕ is the corresponding vector among y∗1, . . . , y∗p . The
optimization problems (15) are suggested to solve concurrently by parallel computing,
since they are independent of each other.

As every partition set implies solving a convex quadratic program, the number of
partition intervals p has a significant impact on how fast the set of problems (15)
would be solved. For a particular problem (5), (6), one can compute the value of p
satisfying (11) by

p =
⌈
1

2
(β − α)

√ |λ1|
ε

⌉
, (16)

where 	a
 is the least integer greater than or equal to a number a. Additionally, an
upper estimation of p needed to meet (11) may be established. Since X is bounded,
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there exists a box constrained set X̂ = {
x ∈ R

n | xmin ≤ x ≤ xmax
}
such that X ⊆ X̂ .

It is better to choose X̂ so that it has the minimal diameter.

Theorem 2 For a given ε > 0, there exists a positive integer p satisfying

p ≤
⌈
1

2

√
n|λ1|

ε
max
1≤i≤n

{
xmax
i − xmin

i

} ⌉
(17)

such that the partition (7) meets (11).

Proof Inscribe X̂ in a ball B = {x ∈ R
n | ‖x − x0‖ ≤ r}, where x0 = 1

2 (x
min+xmax),

r = ‖xmax− x0‖, and ‖·‖ is the 2-norm. AsW TW = I , where I is the identity matrix,
the projection of B onto the y1-axis after the transformation (4) has the length equal
to the diameter 2r of B. Since X ⊂ B, there exist an integer p and bounds (αi , βi ),
i = 1, . . . , p, such that (11) holds and p ≤ 	2r/l
, where l = 2

√
ε/|λ1|. The latter

inequality directly implies (17). ��
It follows from Theorem 2 that, if X ⊆ X̂ and λ1, xmin, xmax do not depend on n,

then the number of intervals p(n) has growth rate
√
n. In the next section we consider

an example, where the first component of xmax grows rapidly as n increases.

4 Computational experiment

The proposed method with a single partition was computationally compared with a
standard branch-and-bound procedure [9]. Let denote the former method by SP and
the latter one by BB. In BB algorithm, partitioning is performed by bisection and,
additionally, partition sets that certainly do not admit a solution are excluded from the
consideration. More precisely, a partition set should be neglected if its lower bound
of the objective exceeds the best known objective value (the record). For a particular
partition set Yi in BB procedure, lower bound is a minimum of ϕi on Yi .

We consider three groups of test problems. For every group, the result of the com-
putation for both SP and BB algorithms is presented in a separate table. The names of
columns are as follows. n is the number of variables, m is the number of linear con-
straints in (2) excluding box constraints, SP Int. is the number of intervals p computed
by (16), SP Th.Int. is the theoretical estimation of p computed by (17), SP Time is the
time of SP algorithm in seconds, BB Int. is the number of convex problems solved in
BB algorithm, BB Time is the time of BB algorithm in seconds, Rel.Err. stands for an
actual relative error computed after the solution is obtained. In all tables, every row
corresponds to a single randomly generated problem. All random values were chosen
from specific intervals according to a uniform distribution. To compute the right hand
side of (17), we took box constraints of the problems’ definitions as the set X̂ .

The programwas implemented in AIMMS 4.66 modelling environment [10], prob-
lems (15) in both methods were solved by IBM ILOG CPLEX 12.9 solver [11]. In
the SP method, we solved problems (15) concurrently in parallel using AIMMS GMP
library facilities and, additionally, the number of threads used by one CPLEX session
was limited to 1. In BB, problems of type (15) were solved sequentially, however the
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number of threads used by one CPLEX session was not limited so that every convex
problem in BB was solved by multiple threads. We used default values for all other
CPLEX parameters. Computation was performed on a computer with AMD Ryzen 7
1700X @ 3.4GHz CPU (8 cores, 16 threads), 16 Gb RAM. Preliminary experiments
showed that the time of SP is minimal when the method uses 8 threads on this com-
puter. Hence, for the SP algorithm, the number of simultaneous solution of convex
problems was limited to 8.

Example 1 In problem (1), (2), set c = −(Q − λ1 I )x∗, x∗ = (1,−1, . . . , 1,−1)T,
X = {x ∈ R

n | −1 ≤ x ≤ 1}. Vector x∗ is a solution of (1), (2) [12]. Values
of λ1, λi , i = 2, . . . , n, and of elements of W were randomly chosen from inter-
vals [−11,−7], [0, 20], [−10, 10] respectively. Eigenvectors of Q were computed by
applying the Gram–Schmidt process to columns ofW . Then we defined Q by (3). For
these problems, we set ε = 10−2, because it provided an acceptable relative error in
a solution point. The computational results of SP and BB methods are in Table 1. We
did not apply the SP algorithm to problems with n > 500 due to considerable time of
computation, more than 10 minutes per one problem. In all instances both algorithms
found the solution x∗. As there are box constraints only, m = 0 for all problems. The
number of intervals turns out to be close to its theoretical estimation (17) and grows in
accordance with it as n increases. On the other hand, in the BB algorithm, the number
of convex problems solved by the method is small and is approximately constant for
all dimensions we considered. The “bottleneck” in this case is the time CPLEX spends
for solving one quadratic programming problem.

Table 1 Results of experiment for problems with known solution (Example 1)

n m SP Int. SP Th.Int. SP time BB Int. BB time Rel.Err.

50 0 192 226 0.710 17 0.610 0.000006

100 0 286 331 1.760 19 1.160 0.000003

150 0 341 398 5.460 17 1.490 0.000002

200 0 345 402 14.580 19 2.750 0.000002

250 0 440 505 40.410 19 4.390 0.000001

300 0 495 574 81.260 19 5.980 0.000001

350 0 452 522 129.420 19 8.320 0.000001

400 0 490 560 277.540 19 12.280 0.000001

500 0 547 627 737.040 17 18.830 0.000000

600 0 593 687 – 19 32.960 0.000000

700 0 662 759 – 19 53.760 0.000000

800 0 676 773 – 21 87.570 0.000000

900 0 837 966 – 21 120.500 0.000000

1000 0 756 873 – 21 157.350 0.000000

1250 0 995 1154 – 17 252.900 0.000000

1500 0 1062 1228 – 23 606.840 0.000000
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Example 2 In this case of (1), (2) all parameters of the objective function were gen-
erated randomly in the same way as in Example 1, except for vector c, the elements
of which were randomly chosen from [−30, 30]. Elements of A were generated from
[−15, 15]. Vector b was computed such that every constraint in (2) defined a tan-
gent hyperplane to a ball with the radius 4 and random center, the elements of which
were from [−5, 5]. In order to guarantee the boundedness, we added box constraints
−10 ≤ x ≤ 10. We set ε = 10−2. Table 2 contains the result of experiment. It shows
that the number of intervals in SP is significantly larger than in Example 1. The reason
for it is that variables have a larger bounds so that the length of projection Ỹ increases.
Inspite of the promising estimation (17), large number of intervals together with a
significant time of solving convex QP leads to considerable time of the SP method.
The number of convex problems solved in BB slightly exceeds that in Example 1, but
still is nearly constant as n increases. The number m of non-box linear constraints
increases the time CPLEX needs to solve a QP problem. One can observe this effect
if we compare the columns BB Int. and BB Time for problems with the same n. For
example, the problem with n = 1000, m = 1500 takes more than 1.5 times of com-

Table 2 Results of experiment for random problems (Example 2)

n m SP Int. SP Th.Int. SP time BB Int. BB time Rel.Err.

100 100 1802 2750 27.950 31 4.020 0.000001

100 200 1363 2836 33.620 27 4.570 0.000002

100 300 1151 2772 43.330 33 6.860 0.000002

200 200 2818 4133 288.700 31 10.400 0.000000

200 300 2726 4446 403.210 31 12.440 0.000000

200 400 2126 4238 436.570 23 10.810 0.000000

300 100 3748 4838 – 23 11.670 0.000000

300 200 3458 4804 – 25 16.360 0.000000

300 300 3260 4791 – 31 21.900 0.000000

300 600 2846 5280 – 29 32.110 0.000000

400 200 4588 5947 – 29 30.450 0.000000

400 400 4071 6116 – 25 33.790 0.000000

400 600 3623 6265 – 23 41.300 0.000000

500 300 4884 6634 – 31 59.660 0.000000

500 500 4066 6197 – 27 66.910 0.000000

500 800 3967 6683 – 25 94.390 0.000000

800 500 6090 8410 – 33 255.320 0.000000

800 800 5333 8075 – 29 302.040 0.000000

800 1000 5245 8362 – 35 400.130 0.000000

1000 800 6720 9535 – 31 525.550 0.000000

1000 1000 6203 9381 – 29 544.610 0.000000

1000 1500 5728 9742 – 29 853.340 0.000000
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Table 3 Results of experiment for the maximum clique problem (Example 3)

|V | |E | n m SP Int. SP Th.Int. BB Int. BB time Rel.Err.

3 3 8 5 4200 4200 31 0.040 0.000000

4 3 12 11 13,600 17,000 59 0.080 0.000029

5 4 17 18 54,600 68,200 69 0.100 0.000000

6 11 23 21 268,800 273,000 197 0.300 0.000016

7 12 30 32 1,027,200 1,092,200 313 0.520 0.000030

8 14 38 44 4,355,200 4,369,000 497 0.960 0.000000

9 23 47 51 16,588,800 17,476,200 639 1.220 0.000023

10 30 57 62 52,688,000 69,905,000 1361 3.020 0.000010

11 34 68 78 262,196,000 279,620,200 1227 2.900 0.000024

12 33 80 101 1,048,579,400 1,118,481,000 2291 5.720 0.000008

putation time compared with the problem with the same n and m = 800. For the SP
algorithm, the similar result takes place.

Example 3 As stated in [4], a specifically definedQP problemwith one negative eigen-
value is equivalent to the maximum clique problem. For the graph with the set of
vertices V = {1, . . . , v} and the set of edges E this QP is

−w2 + z − (x1 + · · · + xv) → min
(w,z,x,y)

, 0 ≤ x ≤ 1 , y ≥ 0 ,

w = bx1 + b2x2 + · · · + bvxv ,

z = b2x1 + b4x2 + · · · + b2vxv +
∑

1≤i< j≤v

2bi+ j yi j ,

yi j ≥ xi + x j − 1 , 1 ≤ i < j ≤ v , xi + x j ≤ 1 , (i, j) /∈ E , (18)

where b = 4. Without loss of generality, we add the constraint y ≤ 1 to provide the
boundedness. The key feature that makes this problem difficult to solve is that the
length of projection Ỹ onto w-axis (assuming y1 = w) rapidly grows as v increases.
Indeed, due to (18) this length may be estimated by b+ b2 + · · · + bv . Inspite of this,
we made some experiments to illustrate how behaviour of the methods differs from
the previous two examples. We assume ε = 10−4. The set E was generated randomly
in the form of a symmetric adjacency (0, 1)-matrix with zeros on its diagonal. We
did not apply the SP algorithm due to a very large number of partition intervals in
almost all problems we considered (see the column SP Int. in Table 3). This number
exceeds 10 000 even for the graph with 4 vertices. The number of convex problems
in the BB procedure also increases fast. It is easy to see that problems (15) are linear
for this statement, however large numbers in coefficients raise numerical issues with
increasing of v.
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5 Conclusion

We consider a quadratic programming problem with one negative eigenvalue. In gen-
eral, it is NP-hard. However, if input parameters such as the negative eigenvalue and
the feasible set do not depend on the number of variables, then a solution can be found
by solving an acceptable number of convex quadratic programming problems. The
experiment shows that, for the standard branch-and-bound procedure, the number of
these convex problems is nearly constant for different dimensions.
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