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Abstract
Semi-infinite programs are a class of mathematical optimization problemswith a finite
number of decision variables and infinite constraints. As shown by Blankenship and
Falk (J Optim Theory Appl 19(2):261–281, 1976), a sequence of lower bounds which
converges to the optimal objective value may be obtained with specially constructed
finite approximations of the constraint set. In Mitsos (Optimization 60(10–11):1291–
1308, 2011), it is claimed that a modification of this lower bounding method involving
approximate solution of the lower-level program yields convergent lower bounds.
We show with a counterexample that this claim is false, and discuss what kind of
approximate solution of the lower-level program is sufficient for correct behavior.

Keywords Semi-infinite programming · Global optimization · Lower bounds

1 Introduction

This note discusses methods for the global solution of semi-infinite programs (SIP).
Specifically, the method from [4] is considered, and it is shown with a counterexample
that the lower bounds do not always converge. Throughout we use notation as close
as possible to that used in [4], embellishing it only as necessary with, for instance,
iteration counters.

Consider a SIP in the general form

f ∗ = inf
x

f (x) (SIP)

s.t. x ∈ X ,

g(x, y) ≤ 0, ∀y ∈ Y ,
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for subsets X , Y of finite dimensional real vector spaces and f : X → R, g : X×Y →
R. We may view Y as an index set, with potentially uncountably infinite cardinality.
Important to validating the feasibility of a point x is the lower-level program:

sup
y

{g(x, y) : y ∈ Y } . (LLP)

Global solution of (SIP) often involves the construction of convergent upper and
lower bounds. The approach in [4] to obtain a lower bound is a modification of the
constraint-generation/discretization method of [2]. The claim is that the lower-level
programmay be solved approximately; the exact nature of the approximation is impor-
tant to the convergence of the lower bounds and this is the subject of the present note.

2 Sketch of the lower bounding procedure and claim

The setting of the method is the following. The method is iterative and at iteration k,
for a given finite subset Y LBD,k ⊂ Y , a lower bound of f ∗ is obtained from the finite
program

f LBD,k = inf
x

f (x) (1)

s.t. x ∈ X ,

g(x, y) ≤ 0, ∀y ∈ Y LBD,k .

This is indeed a lower bound since fewer constraints are enforced, and thus (1) is
a relaxation of (SIP). Assume that the lower bounding problem (1) is feasible (oth-
erwise we can conclude that (SIP) is infeasible). Let x̄ k be a (global) minimizer of
the lower bounding problem (1). In [4], Lemma 2.2 supposes that we either ver-
ify supy

{
g(x̄ k, y) : y ∈ Y

} ≤ 0, or else find ȳk ∈ Y such that g(x̄ k, ȳk) > 0. If
supy

{
g(x̄ k, y) : y ∈ Y

} ≤ 0, then x̄ k is feasible in (SIP) and thus optimal (since it
also solves a relaxation). Otherwise, set Y LBD,k+1 = Y LBD,k ∪ {

ȳk
}
and we iterate.

In the case that we can find ȳk ∈ Y such that g(x̄ k, ȳk) > 0, the point x̄ k is infeasible
in (SIP), and ȳk yields a constraint violation that makes x̄ k infeasible in the following
iteration of (1). While it is proven in [4] that the sequence of g(x̄ k, ȳk) converges to
zero, it is not shown that supy

{
g(x̄ k, y) : y ∈ Y

}
converges to zero. This is critical as

supy {g(x, y) : y ∈ Y } ≤ 0 is the definition of a feasible point x . The counterexample
exploits this by constructing a sequence of solutions for which the sequence of con-
straint violations g(x̄ k, ȳk) converges to zerowhile supy

{
g(x̄ k, y) : y ∈ Y

}
converges

to a strictly positive value.
The precise statement of the claim is repeated here (again, with only minor embel-

lishments to the notation to help keep track of iterations).

Lemma 2.1 (Lemma 2.2 in [4]) Take any Y LBD,0 ⊂ Y . Assume that X and Y are
compact and that g is continuous on X × Y . Suppose that at each iteration of the
lower bounding procedure the lower-level program is solved approximately for the
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Fig. 1 Visualization of
counterexample (CEx). The box
represents [−1, 1] × [−1, 1].
The shaded grey area is the
subset of (x, y) such that
2x − y > 0. The dashed line
represents the approximate
minimizers used in the
counterexample

y

x

solution of the lower bounding problem x̄k either establishing maxy∈Y g(x̄ k, y) ≤ 0,
or furnishing a point ȳk such that g(x̄ k, ȳk) > 0. Then, the lower bounding procedure
converges to the optimal objective value, i.e. f LBD,k → f ∗.

3 Correction

3.1 Counterexample

We now present a counterexample to the claim in Lemma 2.1. Consider

inf
x

− x (CEx)

s.t. x ∈ [−1, 1],
2x − y ≤ 0, ∀y ∈ [−1, 1],

thus we define X = Y = [−1, 1], f : x 	→ −x , g : (x, y) 	→ 2x − y. The behavior
to note is this: We are trying to maximize x ; The feasible set is

{x ∈ [−1, 1] : x ≤ (1/2) y,∀y ∈ [−1, 1]} = [−1,−1/2] ;

The infimum, consequently, is 1/2. See Fig. 1.
Beginning with Y LBD,1 = ∅, the minimizer of the lower bounding problem is

x̄1 = 1. Now, assume that solving the resulting (LLP) approximately, we get ȳ1 = 1
which we note satisfies

2x̄1 − ȳ1 = 1 > 0

as required by Lemma 2.1.
The next iteration, with Y LBD,2 = {1}, adds the constraint 2x − 1 ≤ 0 to the lower

bounding problem; the feasible set is [−1, 1/2] so the minimizer is x̄2 = 1/2. Again,
assume that solving the lower-level program approximately yields ȳ2 = 1/2; again we
get

2x̄2 − ȳ2 = 1/2 > 0

as required by Lemma 2.1.
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The third iteration, with Y LBD,3 = {1, 1/2}, adds the constraint 2x − 1/2 ≤ 0 to
the lower bounding problem; the feasible set is [−1, 1/4] so the minimizer is x̄3 = 1/4.
Again, assume that solving the lower-level program approximately yields ȳ3 = 1/4;
again we get

2x̄3 − ȳ3 = 1/4 > 0

as required by Lemma 2.1.
Proceeding in this way, we construct x̄ k and ȳk so that g(x̄ k, ȳk) > 0 and the lower

bounds satisfy f LBD,k = −x̄ k = − 1
2k−1 , for all k. Consequently, they converge to 0,

which we note is strictly less than the infimum of 1/2.

3.2 Modified claim

We now present a modification of the claim in order to demonstrate what kind of
approximate solution of the lower-level program suffices to establish convergence of
the lower bounds. To state the result, let the optimal objective value of (LLP) as a
function of x be

g∗(x) = sup
y

{g(x, y) : y ∈ Y } .

The proof of the following result has a similar structure to the original proof of [4,
Lemma 2.2].

Lemma 3.1 Choose any finite Y LBD,0 ⊂ Y , and α ∈ (0, 1). Assume that X and Y
are compact and that f and g are continuous. Suppose that at each iteration k of the
lower bounding procedure (LLP) is solved approximately for the solution x̄k of the
lower bounding problem (1), either establishing that g∗(x̄ k) ≤ 0 or furnishing a point
ȳk such that

g(x̄ k, ȳk) ≥ αg∗(x̄ k) > 0.

Then, the lower bounding procedure converges to the optimal objective value, i.e.
f LBD,k → f ∗.
Proof First, if the lower bounding problem (1) is ever infeasible for some iteration k,
then (SIP) is infeasible and we can set f LBD,k = +∞ = f ∗. Otherwise, since X is
compact, Y LBD,k is finite, and f and g are continuous, for every iteration the lower
bounding problem has a solution by Weierstrass’ (extreme value) theorem. If at some
iteration k the lower bounding problem furnishes a point x̄ k for which g∗(x̄ k) ≤ 0, then
x̄ k is feasible for (SIP), and thus optimal. The corresponding lower bound f LBD,k ,
and all subsequent lower bounds, equal f ∗.

Otherwise, we have an infinite sequence of solutions to the lower bounding prob-
lems. Since X is compactwecanmove to a subsequence

(
x̄ k

)
k∈N ⊂ X which converges

to x∗ ∈ X . By construction of the lower bounding problem we have

g(x̄�, ȳk) ≤ 0, ∀�, k : � > k.
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By continuity and compactness of X × Y we have uniform continuity of g, and so for
any ε > 0, there exists a δ > 0 such that

g(x, ȳk) < ε, ∀x :
∥∥∥x − x̄�

∥∥∥ < δ, ∀�, k : � > k. (2)

Since the (sub)sequence
(
x̄ k

)
k∈N converges, there is an index K sufficiently large that

∥∥∥x̄� − x̄ k
∥∥∥ < δ, ∀�, k : � > k ≥ K . (3)

Using (3), we can substitute x = x̄ k in (2) to get that for any ε > 0, there exists K
such that

g(x̄ k, ȳk) < ε, ∀k ≥ K .

By assumption g(x̄ k, ȳk) > 0 for all k, and so combined with the above we have that
g(x̄ k, ȳk) → 0.

Combining g(x̄ k, ȳk) → 0 with g(x̄ k, ȳk) ≥ αg∗(x̄ k) > 0, for all k, we see
g∗(x̄ k) → 0. Meanwhile g∗ : X → R is a continuous function, by classic parametric
optimization results like [1, Theorem 1.4.16] (using continuity of g and compactness
of Y ) 1. Thus

g∗(x∗) = lim
k→∞ g∗(x̄ k) = 0.

Thus x∗ is feasible in (SIP) and so f ∗ ≤ f (x∗). But since the lower bounding problem
is a relaxation, f LBD,k = f (x̄ k) ≤ f ∗ for all k, and so by continuity of f , f (x∗) ≤
f ∗. Combining these inequalities we see f LBD,k → f (x∗) = f ∗. Since the entire
sequence of lower bounds is a nondecreasing sequence, we see that the entire sequence
converges to f ∗ (without moving to a subsequence). 
�

4 Remarks

The main contribution of [4] is a novel upper bounding procedure, which still stands,
and combined with the modified lower bounding procedure from Lemma 3.1 or the
original procedure from [2], the overall global solution method for (SIP) is still effec-
tive. Furthermore, the corrections made here likely do not influence how methods for
(SIP) are followed in practice; a relative optimality tolerance akin to the condition
required in Lemma 3.1 is typically used anyway.

The counterexample that has been presented may seem contrived. However, as
the lower bounding method for SIP from [4] is adapted to give a lower bounding

1 It is at this point that the present proof and the original proof of [4, Lemma 2.2] differ; the original proof
does not relate g(x̄k , ȳk ) to the optimal value g∗(x̄k ) strongly enough to assert that g∗(x̄k ) goes to zero.
Furthermore, the continuity of g∗ is critical to the result, but it is not stated explicitly in the original proof
either.
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method for generalized semi-infinite programs (GSIP) in [5], a modification of the
counterexample reveals that similar behavior may occur (and in a more natural way)
when constructing the lower bounds for a GSIP. Consequently, the lower bounds fail
to converge to the infimum. See [3].
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