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Abstract
Let p ≥ 2 be an integer, M > 0 be a real number and

C(p, M) =
{
zn + an−pz

n−p + · · · + a1z + a0
∣∣∣

max
0≤ j≤n−p

|a j | = M, n = p, p + 1, . . .
}
,

where the coefficients a j ( j = 0, 1, . . . , n − p) are complex numbers. Guggen-
heimer (Am Math Mon 71:54–55, 1964) and Aziz and Zargar (Proc Indian Acad Sci
106:127–132, 1996) proved that if P ∈ C(p, M), then all zeros of P lie in the disk
|z| < δ(p, M), where δ(p, M) is the only positive solution of x p − x p−1 = M . We
show that δ(p, M) is the best possible value. Moreover, we present some monotonic-
ity/concavity/convexity properties and limit relations of δ(p, M).

Keywords Polynomials · Zeros · Optimal bound · Monotonic · Concave · Convex

1 Introduction

Finding bounds for the zeros of polynomials is a classical problem which attracted
(and still attracts) the attention of numerous mathematicians. A well-known result
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published by Cauchy in 1829 states that if

P(z) = zn + an−1z
n−1 + · · · + a1z + a0

is a complex polynomial of degree n, then all zeros of P lie in the disk

|z| ≤ 1 + max
0≤ j≤n−1

|a j |.

In the literature, various refinements of Cauchy’s theorem and many related results
on the location of the zeros of polynomials are given. For more information on this
subject we refer to Milovanović et al. [4, Chapter 3] and Rahman and Schmeisser [5,
Chapter 8], as well as the references cited therein.

Our work has been inspired by two interesting papers of Guggenheimer [2] and
Aziz and Zargar [1], who studied the following class of lacunary-type polynomials,

C(p, M) =
{
zn + an−pz

n−p + · · · + a1z + a0
∣∣∣

max
0≤ j≤n−p

|a j | = M, n = p, p + 1, . . .
}
.

Here, p ≥ 2 is an integer, M > 0 is a real number and a j ( j = 0, 1, . . . , n − p) are
complex numbers.

They proved the following result.

Proposition 1.1 Let P ∈ C(p, M). All zeros of P lie in disk

|z| < δ(p, M), (1.1)

where δ(p, M) is the only positive solution of

x p − x p−1 = M . (1.2)

Remark 1.2 All solutions of the algebraic equation (1.2) for p ≤ 4 can be obtained
in symbolic form using the well-known software packages Mathematica, Maple
or Matlab. In this paper all computations were performed in Mathematica, Ver.
12.1.1, on MacBook Pro (2017), OS Catalina Ver. 10.15.5 in both, symbolic and
numerical mode.

The corresponding command inMathematica for p = 2 is

TeXForm[x/.Solve[xˆ2-x-M == 0, x]]

and then we obtain the two solutions in TeXForm

{
1

2

(
1 − √

4M + 1
)

,
1

2

(√
4M + 1 + 1

)}
.

In order to get only one solution, e.g. for p = 3 there is only one real positive solution,
we use the following command
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TeXForm[x/.Solve[xˆ3-xˆ2-M == 0, x][[1]]]

and we get

1

3

(
3
√
3
√
3
√
27M2 + 4M + 27M + 2

3
√
2

+
3
√
2

3
√
3
√
3
√
27M2 + 4M + 27M + 2

+ 1

)
.

This expression, as well as one for p = 4, can be written in a simpler form.
Thus, using Mathematica we easily determine δ(p, M) for p = 2, 3, 4, in sym-

bolic form,

δ(2, M) = 1

2

(√
4M + 1 + 1

)
, δ(3, M) = 1

3

(
1 +U + 1

U

)
,

δ(4, M) = 1

4

(√
16M

V

(2
3

)1/3 − 2V
(2
3

)2/3 + 2

W
+ 2 + W + 1

)
,

where

U = U (M) = 3

√
1

2

(
3
√
3
√
27M2 + 4M + 27M + 2

)
,

V = V (M) = 3
√√

3
√
256M3 + 27M2 − 9M,

W = W (M) =
√
2V

(2
3

)2/3 − 16M

V

(2
3

)1/3 + 1.

The special case M = 1 leads to

δ(2, 1) = 1

2
(
√
5 + 1) = 1.61803398 . . . ,

δ(3, 1) = 1

3
+ 3

√
29

54
+ 1

18

√
93 + 3

√
29

54
− 1

18

√
93 = 1.46557123 . . . ,

δ(4, 1) = 1

4

(
1 + W (1) +

√
2 + 2

W (1)
− 2V (1)

(
2

3

)2/3

+ 16

V (1)

(
2

3

)1/3)

= 1.38027756 . . . ,

because of

V (1) = 3
√√

849 − 9 = 2.72062866 . . . ,

W (1) =
√
2

(
2

3

)2/3

V (1) − 16

V (1)
3

√
2

3
+ 1 = 0.12221011 . . . .

For p ≥ 5 we must use a numerical version of the command for solving equa-
tions NSolve, with an optional parameter WorkingPrecision (WP) that specifies
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how many digits of precision should be maintained in internal computations. Setting
WorkingPrecision->MachinePrecision causes all internal computations
to be done with machine numbers. In this case, this optional parameter can be omit-
ted. Using

delta[p_,M_,WP_]:=
x/.NSolve[xˆp-xˆ(p-1)==M,x,WorkingPrecision->WP][[p]]

we obtain δ(p, M), with a given WP. For example, delta[7,10,20] gives
1.5987802009531565756.

It is natural to ask whether the bound δ(p, M) given in (1.1) can be replaced by a
smaller value. We show that the answer to this question is “no”. This means that the
only positive solution of (1.2) is the optimal bound for the zeros of the polynomials
given in C(p, M).

Theorem 1.3 Let p ≥ 2 and M > 0 be fixed numbers. The value δ(p, M) given in
Proposition 1.1 is best possible.

In the next section, we offer a proof of Theorem 1.3 and in Sect. 3, we present
several properties of δ(p, M).

2 Proof of themain result

Proof of Theorem 1.3 We assume (for a contradiction) that in (1.1) the value δ =
δ(p, M) can be replaced by a smaller expression, say δ∗ = δ∗(p, M). We define

F(z) = Fn(z) = zn − M(zn−p + · · · + z + 1) (n ≥ p).

Then, F ∈ C(p, M). Let

f (x) = x p − x p−1 − M .

We have f (1) = −M < 0 and f (δ) = 0 which implies that δ > 1. In what follows,
let n ≥ [p + 1/M]. (As usual, [x] denotes the greatest integer not greater than x .)
Since F(0) = −M and limz→∞ F(z) = ∞, we conclude that F has precisely one
positive zero, r = rn(p, M). We have F(1) = 1 − (n + 1 − p)M < 0 and F(δ) =
M/(δ − 1) > 0. This gives

1 < rn(p, M) < δ.

The function

G(z) = Gn(z) = (z − 1)F(z) = zn+1 − zn − Mzn+1−p + M

has precisely two positive zeros, 1 and r . Using

p + 1

M
<

[
p + 1

M

]
+ 1 ≤ n + 1
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On the zeros of lacunary-type polynomials 131

gives

G ′(1) = 1 − M(n + 1 − p) < 0.

This implies that there exists a number ε = ε(p, M) > 0 such that G is negative on
(1, 1 + ε). Let x∗ ∈ (1, 1 + ε). Since

G(x∗) < 0 and lim
z→∞G(z) = ∞,

G has a zero on (x∗,∞). It follows that x∗ < r . Otherwise, G has three positive zeros
which is not true. Thus,

1 < x∗ < rn(p, M) < δ.

Since the sequence (rn) is bounded, there exists a convergent subsequence (r jn ). Let

lim
n→∞ r jn = s.

Then, we have s ≥ x∗ > 1. This implies that

lim
n→∞(r jn )

jn+p−1 = ∞.

We have

(r jn )
p − (r jn )

p−1 − M + M

(r jn )
jn+1−p

= (r jn − 1)Fjn (r jn )

(r jn )
jn+1−p

= 0.

Next, we let n → ∞ and obtain

s p − s p−1 − M = 0.

Hence, s = δ.
By assumption, we have

rn = |rn| < δ∗ < δ.

Thus,

r jn < δ∗ < δ.

We let n → ∞. Then,

δ = s ≤ δ∗ < δ.

A contradiction. It follows that in (1.1) the value δ = δ(p, M) is best possible. 
�
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3 Properties of ı(p,M)

First, we present two limit relations.

Theorem 3.1 Let p ≥ 2. Then,

lim
M→∞

δ(p, M)

M1/p = 1 (3.1)

and

lim
M→∞

(
δ(p, M) − M1/p) = 1

p
.

Proof Let δ = δ(p, M). Since

M1/p = δ
(
1 − 1

δ

)1/p
< δ,

we conclude that if M → ∞, then δ → ∞. Thus,

lim
M→∞

δ

M1/p = lim
M→∞

(
1 − 1

δ

)−1/p = 1.

We have

δ − M1/p = 1 − t1/p

1 − t

with t = 1 − 1/δ. Thus, if M → ∞, then t → 1 and

1 − t1/p

1 − t
→ 1

p
.


�
We conclude the paper with somemonotonicity and concavity/convexity properties

of δ(p, M). The following preliminaries are helpful. We make use of the notations

hx = ∂

∂x
h(x, y), hy = ∂

∂ y
h(x, y),

hxx = ∂2

∂x2
h(x, y), hx (r , s) = ∂

∂x
h(x, y)

∣∣∣
(x,y)=(r ,s)

.

First, we show that M �→ δ(p, M) is differentiable on (0,∞). Let

H(x, M) = x p − x p−1 − M .
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Fig. 1 Graphics of M �→ δ(p, M) for p = 2, 3, 4, 10

The function δ is determined implicitly by H(δ, M) = 0. Since δ > 1, we obtain

pδ p−1 − (p − 1)δ p−2 > 0. (3.2)

According to the classical Implicit Function Theorem (see, for example, [3, p. 8,
Theorem 1.3.1]), a sufficient condition for δ to be well-defined as an implicit function
of M and for δ(p, M) to be differentiable (with respect to M) is

Hx (δ, M) = pδ p−1 − (p − 1)δ p−2 = 0,

which is implied by (3.2).
Instead of considering only integer values for p, we extend the definition of δ(p, M)

to real numbers p ≥ 1. Knowing that p �→ δ(p, M) is differentiable, we are allowed
to differentiate both sides of

δ(p, M)p − δ(p, M)p−1 = M (3.3)

with respect to p, leading to

δ p log(δ) + pδ p−1δp − δ p−1 log(δ) − (p − 1)δ p−2δp = 0. (3.4)

Now, the pair of equations H(δ, M) = 0 and (3.3) is a set of equations implicitly
defining the pair of functions (δ, δp) in terms of p. The Implicit Function Theorem can
be applied again to justify that (δ, δp) is well defined and differentiable, provided that
the corresponding Jacobian determinant is nonzero. The latter fact is straightforward
to verify and we omit the details.

We are now in a position to prove the following theorem.

Theorem 3.2 (a) Let M > 0. The sequence (δ(p, M))p≥2 is strictly decreasing and
strictly convex with lim p→∞ δ(p, M) = 1.
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Fig. 2 Graphics of the sequences (δ(p, M))2≤p≤10 for M = 0.1, 1, 4, 10

(b) Let p ≥ 2. The function M �→ δ(p, M) is strictly increasing and strictly concave
on (0,∞) with limM→∞ δ(p, M) = ∞.

Proof (a) (i) We have

δ(p, M)p − δ(p, M)p−1 = M = δ(p + 1, M)p+1 − δ(p + 1, M)p.

Since δ(p, M) > 1, we obtain

δ(p + 1, M)p
(
δ(p + 1, M) − 1

) = 1

δ(p, M)
δ(p, M)p

(
δ(p, M) − 1

)

< δ(p, M)p
(
δ(p, M) − 1

)
.

Thus,

�
(
p, δ(p + 1, M)

)
< �

(
p, δ(p, M)

)
,

with

�(p, x) = x p(x − 1).

The function x �→ �(p, x) is strictly increasing on [p/(p+1),∞), so that we obtain
δ(p + 1, M) < δ(p, M).

(ii) Let δ = δ(p, M). We claim that δpp > 0. The discrete version then follows as
a corollary.

From (3.4) we obtain

− δp = δ(δ − 1) log(δ)

pδ − (p − 1)
= u

v
, say. (3.5)
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Since

u p = (
(2δ − 1) log(δ) + δ − 1

)
δp and vp = pδp + δ − 1,

we get

v2δpp = −u pv + uvp

= −(
(2δ − 1) log(δ) + δ − 1

)(
pδ − (p − 1)

)
δp

+ δ(δ − 1) log(δ)
(
pδp + δ − 1

)
.

Using (3.5) gives

v2δpp =(
(2δ − 1) log(δ) + δ − 1

)(
δ(δ − 1) log(δ)

)

+ δ(δ − 1) log(δ)
(
− pδ(δ − 1) log(δ)

pδ − (p − 1)
+ δ − 1

)
.

It follows that

v2

δ(δ − 1) log(δ)
δpp = (2δ − 1) log(δ) + 2(δ − 1) − pδ(δ − 1)

pδ − (p − 1)
log(δ).

Since

p

pδ − (p − 1)
<

1

δ − 1
,

we obtain

v2

δ(δ − 1) log(δ)
δpp > (2δ − 1) log(δ) + 2(δ − 1) − δ log(δ)

= (δ − 1)
(
2 + log(δ)

)
> 0.

Thus, δpp > 0.
(iii) Let lim p→∞ δ(p, M) = a. Then, a ≥ 1. We assume that a > 1. Then,

limp→∞ δ(p, M)p = ∞, so that

M

δ(p, M)p
= 1 − 1

δ(p, M)
(3.6)

leads to 0 = 1 − 1/a > 0. This contradiction yields a = 1.
(b) (i) Let 0 < M1 < M2. Then,

δ(p, M1)
p − δ(p, M1)

p−1 = M1 < M2 = δ(p, M2)
p − δ(p, M2)

p−1.

123



136 H. Alzer et al.

This gives

�
(
p − 1, δ(p, M1)

)
< �

(
p − 1, δ(p, M2)

)
.

Since δ(p, M) > 1 and x �→ �(p − 1, x) is strictly increasing on (1,∞), we obtain
δ(p, M1) < δ(p, M2).

(ii) Let M > 0. From (3.3) we obtain by differentiation with respect to M ,

pδ p−1δM − (p − 1)δ p−2δM = 1.

This leads to

δM = δ2−p · (
pδ − (p − 1)

)−1
.

It follows that δM is the product of a decreasing function and a strictly decreasing
function. Since both factors are positive, we conclude that δM is strictly decreasing on
(0,∞). This means that M �→ δ(p, M) is strictly concave on (0,∞).

(iii) Applying (3.1) and (3.6) gives

lim
M→∞

1

δ(p, M)
= lim

M→∞

(
1 − M

δ(p, M)p

)
= 0.

Thus, if M → ∞, then δ(p, M) → ∞. 
�
Remark 3.3 In Figures 1 and 2, we illustrate properties of the function M �→ δ(p, M)

and the sequence (δ(p, M))p≥2, which are proved in Theorem 3.2.
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