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Abstract
This work presents efficient solution approaches for a new complex NP-hard com-
binatorial optimization problem, the Pollution Location Inventory Routing problem
(PLIRP), which considers both economic and environmental issues. A mixed-integer
linear programming model is proposed and first, small problem instances are solved
using theCPLEXsolver.Due to its computational complexity,GeneralVariableNeigh-
borhood Search-based metaheuristic algorithms are developed for the solution of
medium and large instances. The proposed approaches are tested on 30 new randomly
generated PLIRP instances. Parameter estimation has been performed for determin-
ing the most suitable perturbation strength. An extended numerical analysis illustrates
the effectiveness and efficiency of the underlying methods, leading to high-quality
solutions with limited computational effort. Furthermore, the impact of holding cost
variations to the total cost is studied.
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1 Introduction

The Location Inventory Routing Problem (LIRP) is a complex NP-hard combinatorial
optimization problem, which simultaneously tackles strategic (location/allocation),
tactical (inventory levels and replenishment rates) and operational (routing schedules)
decisions [20,30,39]. Themain goal of this problem is to determine anoptimal schedule
for achieving economic benefits, like total cost minimization [18]. However, due to
the fact that the supply chain activities emit pollutants, such as carbon dioxide (CO2),
the environmental impact of logistics should also be taken under consideration [7,25].
More specifically, CO2 emissions are considered as the main cause of the global
warming, one of the major environment challenges [7,8]

Freight transportation is mentioned as the main source of CO2 [27]. Especially,
road transportation generates more than 20% of the total CO2 emissions in European
Union [27] and 30% in the Organization for Economic Co-operation andDevelopment
(OECD) countries [31]. CO2 emissions are proportional to the amount of consumed
fuel and the fuel consumption depends on speed, acceleration, distance and totalweight
of the vehicle (curb and freight weight) [25].

The green logistics concept has been studied in many literature contributions. The
majority of them focus on routing problems, such as the Vehicle Routing Problem
[4,25,29,32]. However, the structure of a supply chain network can affect its func-
tional efficiency by leading to unnecessary delivery routes or redundant facilities [1].
A limited amount of works study the effect of environmental impact consideration
on the design of logistics optimization problems [11]. Koc et al. [26] investigated
the combined impact of depot location, fleet composition and routing decisions on
vehicle emissions especially in last mile deliveries. They developed an Adaptive
Large Neighborhood Search (ALNS) metaheuristic and applied it on several instances
with up to 100 customers. They, concluded that circuitous routes can lead to faster
speeds and lower costs and CO2 emissions. Toro et al. [36] proposed a bi-objective
mixed-integer-linear programming (MILP) model for the Green Capacitated Loca-
tion Routing Problem (G-CLRP). They observed that the use of more vehicles leads
to significant fuel economy in the long term. Cheng et al. [6] examined the impact
of four carbon emission regulation policies. They proposed mixed-integer-nonlinear
programming (MINLP) models and linearization methods along with a Genetic Algo-
rithm (GA) for solving various problem instances. Furthermore, several managerial
insights were reported by extensive sensitivity analyses. Cheng et al. [7] introduced
a Green Inventory Routing Problem (GIRP) with heterogeneous fleet of vehicles in
which environmental impacts were taken into consideration. An exact branch-and-cut
algorithm was developed for solving various problem instances and reporting man-
agerial insights.

Despite the significance of considering the environmental impact of logistic activi-
ties there is a lack of works on more complex and potentially realistic problems, such
as the Location Inventory Routing Problem (LIRP). Zhalechian et al. [38] proposed
a multi-objective MINLP model for the closed-loop LIRP. A stochastic–possibilistic
approach was used for handling the problem uncertainty. A hybrid self-adaptive GA
and a Variable Neighborhood Search (VNS) metaheuristic algorithm was developed
in order to solve large-sized instances. Karakostas et al. [22] introduced a Pollution
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VNS methods for the pollution LIRP 213

LIRP and proposed a Basic VNS (BVNS) metaheuristic algorithm for the solution of
medium-sized problem instances.

This work presents a Pollution LIRP, which considers both economic and environ-
mental impacts of the main logistic activities, such as facilities location, inventory
control and vehicle routing. The main contributions of this work are summarized as
follows:

– A new complex logistics optimization problemwith environmental considerations
is proposed.

– An MIP model is formulated by integrating and modifying two models from the
literature [7,39].

– Driving wages are taken under consideration.
– Three VNS-based algorithms have been developed.
– A new benchmark set with the current largest instances of the Pollution LIRP
(PLIRP) reported in the open literature have been generated and made publicly
available.

– The impact of the flexible replenishment policy on building better routing patterns
is illustrated.

– A sensitivity analysis is performed for testing how the variation on holding costs
can affect the objective values of the problem instances.

The current work is structured as follows. Sections 2 and 3 present the prob-
lem statement and the proposed solution algorithm, respectively. Section 4 provides
the computational analysis for evaluating the performance of the proposed method.
Finally, Sect. 5 draws up concluding remarks and some thoughts on potential future
extensions.

2 Problem description

The PLIRP is defined as a two-echelon supply chain network. Given:

– a set of time periods,
– a set of potential capacitated depots,
– a set of geographically distributed customers,
– a set of homogeneous capacitated fleet of vehicles,
– a single type of product,
– a period-variable demand of each customer

Determine:

– the number and location of depots to be established,
– the allocation of customers to the opened depots,
– the inventory levels at each customer,
– the replenishment quantities and rates for each customer,
– the routes of vehicles,
– the selection of a speed level for traveling each link of the scheduled network.

In order to: minimize an objective function representing the total cost.
The key model assumption are as follows:
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Table 1 Sets of the
mathematical model

Indices Explanation

V Set of nodes

J Set of candidate depots

I Set of customers

K Set of vehicles

H Set of discrete and finite planning horizon

R Set of speed levels

– each customer is serviced by one depot,
– each customer is serviced by at most one vehicle in each time period,
– a vehicle departs from and returns to the same depot after servicing one or more
customer(s),

– the total delivered quantity to each customer over the time horizon must be equal
to its total demand,

The problem is formulated as a mixed integer programming model, by integrating an
LIRPmodel [39] with a Green Inventory-Routing problem (G-IRP) model [7]. Its sets,
parameters and variables are provided in Tables 1, 2, 3, and 4.

The value of the parameter fc is calculated as the average of the petrol prices in
40 European countries taken from the website www.globalpetrolprices.com in 26th of
February in 2018. The value of parameters fe and fd are converted into Euro currency
(26th of February, 2018).

The objective of the problem is the minimization of total supply chain system cost,
including the following cost components:

– Location Cost:
∑

j∈J f j y j , which represents the cost of opening the needed num-
ber of depots.

– Inventory Cost
∑

i∈I hi
∑

t∈H
(
1
2dit + ∑

p∈H ,p<t wi tp (t − p) + ∑
p∈H ,p>t

wi tp (t − p + |H |)
)
. It consists of three cost components. The first component

represents the average inventory holding cost. The remaining terms impose penalty
costs for any early or late replenishment.

– Routing Cost:
∑

i∈V
∑

j∈V
∑

t∈H
∑

k∈K ci j xi jkt . It represents general routing
costs, such as vehicles’ maintenance and/or insurance costs.

– Fuel Consumption Cost:
∑

i∈V
∑

j∈V
∑

k∈K
∑

t∈H{

λ ( fc+( feσ))

(
∑

r∈R
(zzi jktr E FFk ESk EDk ci j)

sr
+
(

αγk
(
CWk xi jkt + ai jkt

)
ci j

)

+
(
βk γk

∑
r∈R

(
sr zzi jktr

)2
) )}

. The Comprehensive Modal Emission Model

(CMEM) is adopted [3]. Thus, the fuel consumption is affected by vehicle specific
characteristics, such as the weight of the load, the vehicle’s speed and obviously
the traveling distance. More specifically, the following formulas are utilized.

– λ = ε
HV DF∗ψ

– γk = 1
1000 V DT E η
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Table 2 Vehicles’ parameters

Parameter Explanation Value

ε Fuel-to-air mass ratio 1a

g Gravitational constant (m/sb) 9.81a

ρ Air density (kg/m3) 1.2041a

CR Coefficient of rolling resistance 0.01a

η Efficiency parameter for diesel engines 0.45a

fc Unit fuel cost (L) 1.3

fe Unit CO2 emission cost (kg) 0.2793a

fd Driver wage (s) 0.0025a

σ CO2 emitted by unit fuel consumption (kg/L) 2.669a

HVDF Heating value of a typical diesel fuel (kj/g) 44a

ψ Conversion factor (g/s to L/s) 737a

θ Road angle 0a

τ Acceleration (m/s2) 0a

CWk Curb weight (kg) 3500b

EFFk Engine friction factor (kj/rev/L) 0.25a

ESk Engine speed (rev/s) 39a

EDk Engine displacement (L) 2.77a

CADk Coefficient of aerodynamics drag 0.6a

FSAk Frontal surface area (m2) 9a

VDTEk Vehicle drive train efficiency 0.4a

a[7]
b[25]

Table 3 Rest PLIRP model
parameters

Notation Explanation

f j Fixed opening cost of depot j

C j Storage capacity of depot j

hi Unit inventory holding cost of customer i

Qk Loading capacity of vehicle k

dit Demand of customer i in period t

ci j Distance of locations pair (i, j)

sr The value of the speed level r

PW Weight of each product unit (1.5 kg)

M Classic big-M parameter (100,000)

– α = τ + g CR sin θ + g CR cos θ

– βk = 0.5 CAD ρ FSAk

Thefirst component is the fuel consumption based on the vehicles’ engine function,
while the second cost term represents the cost of consumed fuel because of the
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Table 4 PLIRP model variables

Notation Explanation

y j 1 if j is opened; 0 otherwise

zi j 1 if customer i is assigned to depot j ; 0 otherwise

xi jkt 1 if node j is visited after i in period t by vehicle k

qikt Product quantity delivered to customer i in period t by vehicle k

wi tp Quantity delivered to customer i in period p to satisfy its demand in period t

avikt Load weight by travelling from node v to the customer i with vehicle k in period t

zzv1v2ktr 1 if vehicle k travels from node v1 to v2 in period t with speed level r

total vehicles’ weight (curb weights plus load weights). The third one represents
the fuel consumption cost related to the vehicles’ speed levels.

– Driver Wages Cost:
∑

i∈V
∑

j∈V
∑

k∈K
∑

t∈H
∑

r∈R fd
(zzi jktr ci j)

sr
, which repre-

sents the cost of the drivers wages.

Thus, the total cost (TC) is calculated as: TC = Location Cost+ inventory Cost+
Routing Cost + Fuel Consumption Cost + Driver Wages Cost.

The mathematical formulation, of the problem under consideration, is as follows:

min TC (1)

Subject to

∑

r∈R

zzi jktr = 1 ∀i, j ∈ V ,∀k ∈ K , ∀t ∈ H (2)

∑

i∈V
ai jkt −

∑

i∈V
a jikt = q jkt PW ∀ j ∈ I ,∀k ∈ K , q ∀t ∈ H (3)

∑

j∈V
xi jkt −

∑

j∈V
x jikt = 0 ∀i ∈ V ,∀k ∈ K ,∀t ∈ H (4)

∑

j∈V

∑

k∈K
xi jkt ≤ 1 ∀t ∈ H , ∀i ∈ I (5)

∑

j∈V

∑

k∈K
x jikt ≤ 1 ∀t ∈ H , ∀i ∈ I (6)

∑

i∈I

∑

j∈J

xi jkt ≤ 1 ∀k ∈ K , ∀t ∈ H (7)

xi jkt = 0 ∀i, j ∈ J , ∀k ∈ K , ∀t ∈ H , i �= j (8)
∑

i∈I
qikt ≤ Qk ∀k ∈ K , ∀t ∈ H (9)

∑

j∈J

zi j = 1 ∀i ∈ I (10)

zi j ≤ y j ∀i ∈ I , ∀ j ∈ J (11)
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∑

i∈I

(

zi j
∑

t∈H
dit

)

≤ C j ∀ j ∈ J (12)

∑

u∈I
xu jkt+

∑

u∈V \{i}
xiukt ≤ 1+zi j ∀i ∈ I , ∀ j ∈ J , ∀k∈K, ∀t ∈H (13)

∑

i∈I

∑

k∈K

∑

t∈H
x jikt ≥ y j ∀ j ∈ J (14)

∑

i∈I
x jikt ≤ y j ∀ j ∈ J ,∀k ∈ K ,∀t ∈ H (15)

∑

p∈H
wi tp = dit ∀i ∈ I , ∀t ∈ H (16)

∑

t∈H
wi tp =

∑

k∈K
qikp ∀i ∈ I , ∀p ∈ H (17)

qikt ≤ M
∑

j∈V
xi jkt ∀i ∈ I , ∀t ∈ H , ∀k ∈ K (18)

∑

j∈V
xi jkt ≤ Mqikt ∀i ∈ I , ∀t ∈ H , ∀k ∈ K (19)

xi jkt ∈ {0, 1} ∀i ∈ I ,∀ j ∈ J , ∀t ∈ H , ∀k ∈ K (20)

y j ∈ {0, 1} ∀ j ∈ J (21)

zi j ∈ {0, 1} ∀i ∈ I , ∀ j ∈ J (22)

qikt ≤ min

⎧
⎨

⎩
Qk,

∑

p∈H
dip

⎫
⎬

⎭
∀i ∈ I , ∀ j ∈ J ,∀k ∈ K (23)

wi tp ≤ dip ∀i ∈ I , ∀t, p ∈ H (24)

Constraints (2) impose that a vehicle travels between nodes with a specific speed
level in each time period. Constraints (3) act as subtour elimination constraints, as they
declare that the difference between the total weight of the incoming flow of product
to a selected customer and the total weight of the outcoming product flow of that
customer equals the product weight delivered to that customer in the selected time
period with the selected vehicle. The equilibrium between the interior and exterior
flow of vehicles is guaranteed by Constraints (4). Constraints (5) and (6) ensure that
exactly one vehicle visits each customer at each time period. Constraints (7) guarantee
that a vehicle performs mostly one route at each time period. Constraints (8) forbid the
movement of a vehicle between depots. Constraints (9) ensure that, the total amount
of products sent by a vehicle at a specific period does not exceed the capacity of that
vehicle. Constraints (10) guarantee that a vehicle will be travelled from a depot to a
customer only if that customer is allocated to the depot. Constraints (11) impose that a
customer is assigned to a depot only if that depot is selected to be opened. Constraints
(12) respect the capacity of depots. A customer is connected to a depot, only if that
customer is assigned to that depot, according to Constraints (13). A vehicle departures
from a depot only if that depot is opened according to Constraints (14) and (15).
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The delivered amount of product to each customer at each time period satisfies the
demand of that customer, as guaranteed by Constraints (16). Constraints (17) ensure
the equilibrium between scheduled and actual deliveries. A customer is visited at a
specific period, only if a replenishment is scheduled for that period, according to
Constraints (18). The rest constraints of the model declare the nature of the decision
variables.

3 Solution approach

3.1 Construction heuristic

The scope of the constructive phase is the generation of a feasible initial solution. In
this work, a three-phased construction heuristic has been developed. In the first phase,
location and allocation decisions aremade. Inventory-routing decisions are determined
in the second phase, while the speed levels for traveling through the network nodes
are selected in the last phase.

Initially, for taking the location and allocation decisions, a ratio-based selection
criterion is applied for opening the required depots while a nearest customer allocation
strategy has been employed for the assignment step. For each one of the candidate
depots, the ratio f i xed_opening_cost

Capacity is computed and the depot with the minimum
ratio is chosen. If two or more depots have the same ratio, one of them is selected
arbitrarily (commonly the first found). According to the customers’ allocation process,
the nearest, to the opened depot, customer is chosen and in the case that its total demand
does not violate the remaining capacity of the depot, the customer is assigned to that
depot. This initial step of construction heuristic is completed when all customers have
been allocated to the opened depots.

In each time period the allocated, to the opened depots, customers are assigned
to vehicles, by considering both their demand and the capacity of vehicles. Then,
the route of each utilized vehicle is built in a selected time period by applying the
Random Insertion method [13]. According to the inventory decisions, the delivered
quantities are set equal to the corresponding demand for each customer at each time
period. Obviously, in this initial phase if a customer does not require any quantity of
the product in a selected period, he will not be included in any route over that period.
In the last phase, the selection of the speed levels for traveling through the nodes of
the structured network is randomly performed.

3.2 Neighborhood structures

In this work, five local search operators are used in the improvement phase of each
proposed solution method. These neighborhood structures are the following:

Inter-route relocate In this neighborhood structure a selected customer is removed
from its route and moved in the next position of an other selected customer, who is
assigned to a different route. Those two customers can be allocated to the same or
different depots. Both of the selected customers must be visited by vehicles in the

123



VNS methods for the pollution LIRP 219

2

1

3

4
5

2

1

3

4
5

Period 1 Period 2

Fig. 1 Routes from the same depot in each time period before the application of the inter-route relocate
move
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Fig. 2 Routes from the same depot in each time period after the application of the inter-route relocate move

same time periods, in order this move to be applicable. A replenishment shifting may
be applied if a vehicle capacity violation occurs. The following cases can be met by
applying this neighborhood:

– Case 1: The two selected customers are allocated to the same depot and no vehicle
capacity violations occur.

– Case2:The selected customers are assigned to the samedepot andvehicles capacity
violations occur.

– Case 3: The two selected customers are assigned to different depots and no vehicle
capacity violations occur.

– Case 4: The two selected customers are allocated to different depots and vehicles
capacity violations occur.

In the first case only routing decisions aremade. In the second case, both routing and
inventory decisions are taken, while routing and allocation decisions are considered in
the third case of this move. In the last case, routing, inventory and allocation decisions
are simultaneously made. Figures 1 and 2illustrate an example of this neighborhood,
applied on routes allocated to the same depot. The pairs of customers are (4, 1) in the
first time period and (3, 5) in the second time period.

Figures 3 and 4 illustrate an example of this neighborhood, applied on routes allo-
cated to different depots. The move is applied on the pair of customers (2, 5) in all
available time periods.

Inter-route exchange This neighborhood swaps two customers from different routes in
the time horizon. The exchanged customers can be allocated either to the same depot
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Fig. 3 Routes from different depots in each time period before the application of the inter-route relocate
move
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Fig. 4 Routes from different depots in each time period after the application of the inter-route relocate move

or different depots. If the customers are allocated to the same depot, the swapping may
not be applied in each time period. However, in the second case the exchanging must
be valid for all time periods, in order to be applicable. The special cases of this move
are summarized as follows:

– Case 1: Vehicle capacity violation does not occur.
– Case 2: The demand of a customer exceeds the capacity of the vehicle servicing
the other customer in one or more time periods.

The first case makes only routing decisions, while in the second case routing and
inventory decisions are taken. Changes on allocation decisions will take place only if
the swapped customers are allocated to different depots. Figures 5 and 6 present an
illustrative example of the inter-route exchange move applied on routes allocated to
the same depot for the case of customers (1, 5) in the first period and (2, 4) in the
second one.

Figures 7 and 8 depict an instance of the inter-route exchange move applied on
routes allocated to different depots for the pair of customers (2, 3).
Exchange opened–closed depots This neighborhood exchanges a closed depot with an
opened depot. For a selected closed depot, the cost change for swapping it with each
one of all opened depots, is calculated. Then, the pair of the opened–closed depots with
theminimumexchanging cost is selected. Subsequently, it is examined if the scheduled
swapping does not violate any capacity constraint. After the validation checking step,
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Fig. 5 Routes from the same depot in each time period before the application of the inter-route exchange
move
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Fig. 6 Routes from the same depot in each time period after the application of the inter-route exchange
move
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Fig. 7 Routes from different depots in each time period after the application of the inter-route exchange
move

the newly opened depot is inserted in the routes assigned to the currently opened
depot via a minimum insertion cost procedure. This insertion process may involve
customers re-ordering in the routes. Obviously, the move is applied only if the overall
cost decreases, which consists of location and routing costs. Figure 9 illustrates the an
example of this neighborhood.

Intra-route relocate In this move a selected customer is removed from its current
position in its route and moved in a different position in the same route. Figure 10
illustrates an example of the Intra-route Relocate neighborhood, applied on the pair
of customers (5, 4).
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Fig. 8 Routes from different depots in each time period after the application of the inter-route exchange
move
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Fig. 9 Example of the exchange opened–closed depots neighborhood
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Fig. 10 Example of the intra-route relocate neighborhood

2–2 replenishment exchange In this neighborhood structure, two time periods t1 and
t2 are randomly selected and the two most distant customers i and b, both serviced
in those two periods, are identified. The replenishment of customer i in period t1 is
moved to the period t2, and the replenishment of customer b is moved from period
t2 to period t1. Consequently, there is no need to visit customers i and b in periods
t1 and t2 respectively. If the total cost decreases and there are no violations on the
vehicles capacities, the move is applied. To clarify the function of this neighborhood,
an illustrative example is provided in Figs. 11 and 12. The most distant customers
are 3 and 7. The customer 3 is removed from its route in period 1 and his delivery is
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Fig. 11 Example of network structure before the application of 2–2Replenishment Exchange neighborhood
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Fig. 12 Example of network structure after the application of 2–2 Replenishment Exchange neighborhood

shifted in period 2, while the customer 7 is removed from his current route in period
2 and his delivered quantity is shifted in period 1.

In order to avoid potential violation of vehicles capacities, while applying the Inter-
route Relocate and the Inter-route Exchange moves, a shifting of surplus product
quantity may be applied.

3.3 Shaking procedure

For escaping local optimum solutions, a shaking procedure with three local search
operators is proposed, including the following structures:

– Inter-route Exchange.
– Exchange Opened–Closed Depots.
– Intra-Route Relocate.
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In each iteration of this diversification method, one of the proposed local search
operators is randomly selected and a predefined number of random jumps are applied.
Its pseudo-code is given in Algorithm 1.

Algorithm 1 Shaking Procedure
procedure Shake(S, k, lmax)
l = random_integer(1, lmax)
for i ← 1, k do

select case(l)
case(1)

S′ ← I nter − route_Exchange(S)
case(2)

S′ ← Exchange_OpenedClosed_Depots(S)
case(3)

S′ ← I ntra_Relocate(S)
end select

end for
Return S′

end procedure

The shaking procedure receives an incumbent solution S, the maximum number
of iterations kmax executed in the perturbation phase and the number of neighbor-
hood structures lmax as input. A new solution S′ is obtained by applying k (where
1 < k < kmax) times one randomly selected neighborhood of the above local search
operators.

3.4 Variable neighborhood search (VNS)

Variable Neighborhood Search (VNS) is a flexible framework for building heuris-
tics, which manages a single solution at each step time [15]. It systematically
changes predefined neighborhood structures during the search [9,14,33] and has
been successfully applied several times in location, inventory, and routing problems
[19,21,24,28].

The Basic VNS (BVNS), the Variable Neighborhood Descent (VND), and the
General Variable Neighborhood Search (GVNS) are three of the most well-known
variants of the VNS. The BVNS alternates a shaking procedure with a local search
operator, while the VND explores several local search operators without using a
diversification procedure [15,16,16,34]. According to the neighborhood change cri-
teria, different sequential VND schemes have been proposed. Two of the mostly
used VND schemes are the pipe VND (pVND) and the cyclic VND (cVND) [10].
In the pVND the search continues in the same neighborhood, while improvements
occurred. In the cVND, the neighborhood structures are alternated regardless the
achieved improvements. The GVNS extents the BVNS, by using a VND scheme
as its main improvement step [12,23]. In this work, a BVNS, two GVNS (GVNS
with cVND and GVNS with pVND) solution methods and their corresponding
adaptive variants, have been developed. The execution of the developed VNS-
based methods is bounded by a time stopping criterion denoted by the parameter
max_t ime. The proposed solution algorithms are provided in the following pseudo-
codes.
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Algorithm 2 Basic VNS
1: procedure BVNS(kmax,max_time, lmax)
2: S ← Construction_Heuristic
3: l ← 1
4: while time ≤ max_time do

5: for each neighborhood structure l do
6: for k ← 1, kmax do

7: S′ ← Shake(S, k, lmax)
8: S′′ ← Local_Search(S′, l)
9: if f (S′′) < f (S) then

10: S ← S′′
11: end if
12: l ← l + 1
13: if l > lmax then
14: l ← 1
15: end if
16: end for
17: end for
18: end while
19: return S
20: end procedure

Algorithm 3 GVNSpVND
1: procedure GVNS(S, kmax,max_time, lmax)
2: S ← Construction_Heuristic
3: while time ≤ max_time do
4: for k ← 1, kmax do

5: S∗ = Shake(S, k, lmax)

6: S′ = pVND(S∗)

7: if f (S′) < f (S) then

8: S ← S′
9: end if
10: end for
11: end while
12: return S
13: end procedure

The pseudo-code of theGV NScV ND algorithm is exactly the samewith the pseudo-
code of the GV NSpV ND algorithm with the only difference that it uses the cVND
instead of pVND. The adaptive variants of these methods uses an adaptive re-ordering
mechanism of the local search operators. This adaptive mechanism uses past expe-
rience, such the number of improvements achieved by each operator and proceeds
a different order. More specifically, the array “Improvements_Counter” stores in its
positions the improvements achieved by each operator and then a descending sorting
is performed on this array by the use of the function Descending_Order(). The
pseudo-code of this mechanism is summarized in Algorithm 4.

Algorithm 4 Adaptive_Order
1: procedure Adaptive_Order(N_Order , Improvements_Counter )
2: if no improvement is found in any neighborhood then

3: Keep the same order

4: end if
5: if an improvement is found then

6: New_N_Order ← Descending_Order(N_Order , Improvements_Counter)
7: N_Order ← New_N_Order
8: end if
9: return N_Order
10: end procedure
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An example of the adaptive schemes is provided in the following pseudo-code of
the Adaptive GV NSpV ND algorithm.

Algorithm 5 AGV NSpV ND

1: procedure AGV NSpV ND (S, kmax, lmax,max_time, N_Order , Improvements_Counter )

2: while time ≤ max_time do
3: S∗ = Shake(S, k)
4: N_Order ← Adaptive_Order(N_Order , Improvements_Counter)
5: S′ = pV ND(S∗, lmax)

6: if f (S′) < f (S) then

7: S ← S′
8: end if
9: end while
10: return S
11: end procedure

4 Computational analysis and results

4.1 Computing environment and parameter settings

The proposed methods have been implemented in Fortran (Intel Fortran compiler 18.0
with optimization option/O3) and ran on a desktopPC runningWindows 7Professional
64-bit with an Intel Core i7-4771 CPU at 3.5 GHz and 16 GB RAM. The execution
time limit for the proposed algorithms was set at 60 s. The PLIRP was also modeled
in GAMS (GAMS 24.9.1) [5] and its problem instances were solved using CPLEX
12.7.1.0 solver with the time limit of 2 h for the small-sized instances and 5 h for
medium and large-sized instances. It should be mentioned that CPLEX ran in the
same computing environment with Intel Fortran compiler.

4.2 Computational results on PLIRP instances

In this work 30 new PLIRP instances have been created by following the format of
instances proposed in a previous work [39]. They are reported in the form X–Y–Z,
where X represents the number of potential depots, Y the number of customers and Z
is the number of time periods. These instances are available in: http://pse.cheng.auth.
gr/index.php/publications/benchmarks. Table 5 provides the average values of total
costs of all the 30 problem instances and for each solution method, using different
kmax values. The first sub-column of the main columns 2–4 in Table 5 refers to the
average performance of algorithms, while the second one focuses on the best-found
solutions.

According to the reported solutions, the parameter value kmax = 5 produces in
average the best values for the proposed BVNS, ABVNS and GVNScVND algorithms.
The AGVNScVND algorithm performs better by using a shaking strength of kmax =
15, while the AGVNSpVND algorithm produces better solution using the parameter
value kmax = 20. The results achieved using the GVNSpVND with the parameter value
kmax = 10 were the best found solutions in average compared with either the same
scheme but with different kmax values or the other schemes (18.5% from BVNS, 7.5%
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Table 5 Shaking strength analysis on the performance of proposed methods

Method kmax = 5 kmax = 10 kmax = 12

Avg. TC Best TC Avg. TC Best TC Avg. TC Best TC

BVNS 41,542.67 40,643.76 41,630.07 40,397.15 41,547.22 40,483.04

ABVNS 37,684.82 36,062.44 37,896.45 35,926.57 38,092.11 36,339.28

GVNSpVND 35,304.38 34,455.14 35,055.97 34,295.98 35,403.77 34,559.92

AGVNSpVND 35,735.40 34,426.16 36,031.34 34,625.69 36,012.60 34,674.18

GVNScVND 37,261.36 36,487.80 37,395.34 36,570.37 37,281.85 36,348.84

AGVNScVND 37,687.23 36,361.82 37,715.74 36,416.86 37,570.39 36,375.08

Method kmax = 15 kmax = 18 kmax = 20

Avg. TC Best TC Avg. TC Best TC Avg. TC Best TC

BVNS 41,549.48 40,407.81 41,495.84 40,681.73 41,724.02 40,557.38

ABVNS 38,227.76 36,312.05 38,184.58 36,627.57 38,504.86 37,158.58

GVNSpVND 35,473.07 34,574.27 35,310.72 34,520.85 35,684.59 34,572.27

AGVNSpVND 35,783.10 34,608.32 35,814.60 34,565.73 35,735.4 34,563.19

GVNScVND 37,373.07 36,510.59 37,283.29 36,549.10 37,431.34 36,474.75

AGVNScVND 37,522.14 36,331.10 37,784.85 36,233.78 37,717.24 36,290.09

from ABVNS, and 6.3% from GVNScVND, 7% from GVNScVND and 1.94% from
AGVNSpVND).

From a problem size perspective, the AGVNSpVND algorithm produces better solu-
tions for small-sized instances (using kmax = 20) and medium-sized instances (using
kmax = 5) than other approaches, while the GVNSpVND algorithm using the shaking
strength kmax = 10 is more efficient than other methods for the solution of large
problem cases.

From this analysis it is noticed that classic GVNS-based methods provide better
solutions than their corresponding adaptive variants. An explanation of this conspicu-
ous observation is that using the adaptive re-ordering mechanism leads to further time
consumption. Thus, the number of iterations of the improvement phase is significantly
decreased for the case of large-sized instances.

TheGVNSpVND uses the Speed Selection Procedure after each local search operator.
Table 6 illustrates potential difference between this GVNS scheme and GVNSpVND
which applies the SSP once after the completion of a pVND iteration. The initial
scheme is called GVNSpVND_1 and the second one, GVNSpVND_2.

Despite the fact that, the GVNSpVND_2 scheme produces more best values than the
GVNSpVND_1, theGVNSpVND_1 is slightly better in terms of average solution quality.
The previous results demonstrate that a further improved solution method can be
proposed by adopting a hybrid scheme.More specifically, for the solution of small- and
medium-sized instances theAGVNSpVND methodwith a shaking strength of kmax = 20
will be applied, while the GVNSpVND using kmax = 10 will be selected for larger
problems. The overall process of the solution method is illustrated in Algorithm 6.
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Table 6 Results achieved by the two GVNSpVND schemes on the 30 PLIRP instances

Instance GVNSpVND_1_Avg GVNSpVND_1_Best GVNSpVND_2_Avg GVNSpVND_2_Best

4-9-3 25,336.12 25,131.71 25,142.51 24,932.36

4-10-3 20,776.21 20,649.12 20,780.24 20,709.14

4-10-5 17,503.66 17,481.13 17,491.73 17,445.33

4-12-5 27,127.71 27,069.97 27,133.89 26,958.58

4-15-3 16,174.14 16,116.6 16,182.92 16,070.26

5-12-3 25,571.71 25,514.4 25,619.41 25,437.45

5-15-3 16,430.51 16,389.54 16,501.02 16,418.06

5-15-5 20,186.32 20,058.49 20,348.43 20,164.08

5-18-3 22,202.75 22,109.4 22,216.44 22,041.49

5-20-3 20,023.01 19,845.57 20,078.84 19,989.58

6-40-5 24,561.19 24,116.99 24,575.04 24,341.58

7-52-5 21,218.05 20,950.23 21,270.73 21,159

7-55-7 26,922.81 26,574.72 26,677.95 26,287.57

8-60-5 31,514.82 31,076.11 31,428.91 30,732.43

8-65-7 48,265.4 47,764.15 48,251.36 47,599.15

9-70-5 30,936.66 30,665.22 31,419.68 30,691.73

9-75-7 29,260.28 28,588.11 30,856.81 29,836.59

9-85-5 28,994.05 26,784.22 30,735.91 26,815.18

9-88-7 32,165.91 31,768.12 32,015.68 31,844.08

10-90-7 27,532.91 26,879.52 27,924.18 27,274.21

15-100-7 15,320.21 15,080.38 15,211.79 14,990.04

15-100-10 39,134.05 38,666.61 39,425.27 38,661.29

15-120-10 38,945.91 37,473.08 41,930.15 40,152.04

20-150-10 41,981.88 40,608.95 41,535.43 40,381.66

20-180-12 74,109.8 73069.77 75,688.98 74,869.72

25-200-12 75,429.81 72,587.55 74,513.52 68,146.04

30-250-10 50,017.53 47,756.68 51,379.41 48,755.04

30-270-10 58,450.29 56,708.96 59,376.01 56,637.84

35-300-10 73,763.83 71,014.24 71,539.39 69,361.56

35-310-12 71,821.7 70,379.8 72,096.53 68,963.52

Average 35,055.97 34,295.98 35,311.61 34,255.55

The bold values indicate the best found solutions

Algorithm 6 Hybrid_GVNSpVND
procedure Hybrid algorithm(max_time, lmax)

S ← Construction_Heuristic
if small-sized instance then
kmax ← 20
S′ ← AGVNSpVND(S, kmax,max_time, lmax)

else if medium-sized instance then
kmax ← 5
S′ ← AGVNSpVND(S, kmax,max_time, lmax)

else
kmax ← 10
S′ ← GVNSpVND(S, kmax,max_time, lmax)

end if
return S′

end procedure
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The second column of Table 7 reports the results achieved by GAMS/CPLEX.
As it can be noticed, the CPLEX solver can solve only eight out of ten small-sized
instanceswithin a time limit of 2 h.No solution, usingCPLEX,was found for the rest of
the problem instances. In the third column, the average objective values achieved by
the Hybrid_GVNSpVND, while the fourth column contains the best results achieved
by the Hybrid_GVNSpVND algorithm. The last two columns provide the solution
gaps between CPLEX and Hybrid_GVNSpVND. According to the reported results,
the Hybrid_GVNSpVND provides 2.4% better results than CPLEX (approximately 3%
focused on the best found solutions of the Hybrid_GVNSpVND algorithm). Based on
the fact that, the CPLEX solver cannot provide any feasible solution for medium- and
large-sized instances even within a time limit of 5 h and its high computational time
for finding the reported solutions in the case of the small-sized instances it can be
concluded that, the proposed Hybrid_GVNSpVND algorithm is an efficient method for
solving large-scale PLIRP instances.

Table 8 reports the best known solutions of the 30 PLIRP instances.
Table 9 summarizes the number of the vehicles used for each problem instance

using the Hybrid_GVNSpVND algorithm. According to the number of opened depots,
all the proposed methods open exactly two depots in each problem instance. Based
on the total demand of customers, two depots are the minimum required for fulfilling
customers demands per instance. A replenishment policy highly impacts the produced
solutions. Furthermore, a flexible replenishment policy enables the building of cost
efficient routing patterns [37,39].

Figure 13 illustrates the effect of flexible replenishment policy on the routing and the
inventory costs. More specifically, the values of routing and inventory costs reported
in the successful iterations of the GVNSpVND_1 are depicted. Routing costs can be
decreased by allowing flexible reorder points and order quantities for the customers
due to the reduction of deliveries or the efficient clustering of customers into routes.
For instance, the deliveries to a distant customer can be reduced by replenishing it with
more product quantities in less time periods. Also, this shifting of product quantities
results on more available space in the vehicles, so more customers can be serviced by
the same vehicle. This can lead to cost efficient routing circuits. On the other hand,
the deferred deliveries leads to an increase in the inventory cost.
It should be mentioned that, the solutions obtained by the Hybrid_GVNSpVND algo-
rithm do not always follow the previous relation. In some cases, the algorithm splits
the routes in order to reduce the routing cost without increasing the inventory cost.
However, the splitting strategy leads to the usage of more vehicles.

4.3 Sensitivity analysis

To further consider the significance of the flexible replenishment policy, the effect of
holding costs on the total cost is studied through a parametric analysis. Holding costs
are crucial for the performance of logistics design and operation. In the literature,
several works studied the effect of holding cost variations on the overall performance
of logistic systems [2,17]. In this work, two testing scenarios are considered. In the
first one, a holding cost increase by 10% is examined, while in the second one the
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Table 8 Best known solutions
for the 30 PLIRP instances

Instance BKS Instance BKS

4-9-3 24,775.13 9-70-5 30,310.59

4-10-3 20,619.48 9-75-7 28,533.75

4-10-5 17,457.5 9-85-5 27,014.67

4-12-5 26,958.67 9-88-7 31,750.8

4-15-3 15,968.86 10-90-7 26,708.53

5-12-3 25,451.99 15-100-7 15,080.38

5-15-3 16,406.91 15-100-10 38,666.61

5-15-5 20,012.77 15-120-10 37,473.08

5-18-3 21,982.96 20-150-10 40,608.95

5-20-3 19,878.09 20-180-12 73,069.77

6-40-5 24,090.17 25-200-12 72,587.55

7-52-5 20,810.7 30-250-10 47,756.68

7-55-7 26,470.52 30-270-10 56,708.96

8-60-5 31,249.98 35-300-10 71,014.24

8-65-7 46,207.73 35-310-12 70,379.8

Table 9 Number of used vehicles per instance using Hybrid_GVNSpVND

Instance #Vehicles Instance #Vehicles Instance #Vehicles

4-9-3 4 6-40-5 7 15-100-7 4

4-10-3 5 7-52-5 4 15-100-10 4

4-10-5 3 7-55-7 3 15-120-10 4

4-12-5 3 8-60-5 13 20-150-10 5

4-15-3 3 8-65-7 28 20-180-12 9

5-12-3 6 9-70-5 8 25-200-12 8

5-15-3 4 9-75-7 3 30-250-10 4

5-15-5 10 9-85-5 5 30-270-10 5

5-18-3 8 9-88-7 4 35-300-10 11

5-20-3 5 10-90-7 3 35-310-12 4

holding cost is increased by 15%. The Hybrid_GVNSpVND algorithm, which marked
as the most efficient between the proposed solution methods, was used for solving
the problem instances in these two scenarios. Table 10 provides both the average and
best found results per scenario. To clarify, the terms OV_Avg_X% and OV_Best_X%
refer to the Objective Value in average or best case (respectively), under a holding cost
variation of X%.

The results indicate that, the second scenario produces 0.45% worse solutions in
average comparing to the first one. Moreover, the initial average solutions of the
instances are 1.98% and 2.44% better than those achieved in the first and the second
scenario respectively, which means that the objective value seems to be sensitive on
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Fig. 13 Effect of flexible replenishment policy on the relationship between routing and inventory costs

the changes of the holding costs. However, the adoption of a flexible replenishment
policy keeps the increase of the cost in relatively low levels.

Also, there are some instances inwhichbetter solutionswere producedby increasing
the holding costs. This is justified as, an increase in the holding costs, forces the usage
of more vehicles (max two more than the reported vehicles in Table 9) in order to form
better routing patterns, thus leading to further routing cost reduction.

5 Conclusions

This work presents a new green supply chain network optimization problem, which
considers both economic and environmental concerns. GVNS- and Adaptive GVNS-
based solution approaches have been developed for the efficient solution of medium-
and large-sized instances. A new set of 30 random generated instances is used in
extended numerical analyses.A computational kmax parameter analysis has beenmade.
This analysis indicates that, the GVNS schemewhich uses the pipe VND (GVNSpVND)
method in its improvement process is proved to be the most efficient method. In addi-
tion, the effect of executing the SpeedSelection Procedure either after each local search
operator or in the end of each VND iteration is tested. The GVNS scheme which uses
the Speed Selection Procedure after each local search operator proved as the most
efficient solution method. However, from a problem size perspective, a hybrid solu-
tion approach, which uses the Adaptive GVNS (AGVNSpVND) algorithmwith different
kmax values for the solution of small- and medium-sized instances and the GVNSpVND
for solving large problem cases. This hybrid solution scheme is compared with the
CPLEX solver in ten small-sized instances. The proposed solution method produces
approximately 3% better solutions than CPLEX. Finally, a sensitivity analysis is per-
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Table 10 The average and best found results in sensitivity analysis scenarios

Instance OV_Avg_10% OV_Best_10% OV_Avg_15% OV_Best_15%

4-9-3 25,181.77 25,041.14 25,188.46 25,031.23

4-10-3 20,863.64 20,781.04 20,848.53 20,793.92

4-10-5 17,520.59 17,432.05 17,525.54 17,475.08

4-12-5 27,082.38 26,984.32 27,107.96 27,029.25

4-15-3 16,126.86 16,044.12 16,119.94 15,980.26

5-12-3 25,598.02 25,485.53 25,519.32 25,485.46

5-15-3 16,435.71 16,399.19 16,435.47 16,419.09

5-15-5 20,285.74 19,992.44 20,357.95 20,184.11

5-18-3 22,096.39 22,014.08 22,096.62 21,975.62

5-20-3 20,033.03 19,932.21 20,021.84 19,940.18

6-40-5 25,032.92 24,918.66 24,720.14 24,404.99

7-52-5 21,321.34 21,167.21 21,383.7 21,154.03

7-55-7 27,103.04 26,566.88 26,828.2 26,664.36

8-60-5 31,558.35 30,769.91 31,495.14 31,157.83

8-65-7 48,084.16 47,074.4 48,907.25 48,480.28

9-70-5 31,429 30,582.42 31,426.12 30,949.3

9-75-7 29,717.7 29,010.54 30,748.95 29,495.22

9-85-5 29,476.81 27,049.91 29,153.98 27,418.47

9-88-7 32,205.27 31,682.29 32,245.75 32,156.69

10-90-7 28,073.3 27,728.77 28,111.57 27,222.74

15-100-7 15,949.38 15,378.73 15,627.67 15,129.28

15-100-10 40,619.23 39,295.37 39,715.32 38,962.52

15-120-10 40,926.89 39,351.76 42,157.16 40,537.22

20-150-10 42,974.34 41,330.91 45,801.18 41,101.49

20-180-12 75,943.7 73,496.76 75,164.3 73,597.62

25-200-12 77,760.61 73,258.41 78,961.45 73,650.02

30-250-10 53,034.67 50,785.36 52,581.2 50,516.56

30-270-10 60,394.23 56,942.57 59,424.19 57,147.17

35-300-10 77,476.23 73,685.28 77,152.02 71,780.28

35-310-12 72,246.86 69,485.7 74,525.83 69,823.05

Average 35,751.74 34,655.6 35,911.76 34,722.11

formed to study the effect of the variations of holding costs on the objective value.
The results illustrate that, any increase on the holding costs affects the objective value.
However, the use of the flexible replenishment policy keeps the increase of total cost
in relatively low levels. Some exceptions are noticed by using more vehicles.

Current work focuses on the investigation of an adaptivemechanism for re-ordering
the shaking operators in alternative shaking schemes, in order to further improve
the efficiency of the proposed methods. Also, other local search operators will be
investigated both in the improvement and shaking steps of the algorithm. Finally,
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the consideration of the average time-to-target may be a useful metric for further
performance evaluation of the developed methods.
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