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Abstract
Weconsider the online scheduling on an unbounded (drop-line) parallel batchmachine
tominimize the time bywhich all jobs have been delivered. In this paper, all jobs arrive
over time and the running batches are allowed limited restart. Here limited restart
means that a running batch which contains restarted jobs cannot be restarted again. A
drop-line parallel batch machine can process several jobs simultaneously as a batch,
and all jobs in a batch start at the same time, and the completion time of a job equals
the sum of its starting time and its processing time. Here we consider the restricted
model: all jobs have agreeable processing times and delivery times. We provide a
best possible online algorithm H with a competitive ratio of 3

2 for the problem on an
unbounded parallel batch machine and the corresponding problem on an unbounded
drop-line parallel batch machine, respectively.

Keywords Online scheduling · Parallel batch · Drop-line · Limited restart · Delivery
time

1 Introduction

In the last decade, online scheduling and parallel batch scheduling have been
extensively studied. In this paper, online means that jobs arrive over time and the
characteristics of a job become known until its arrival time. The quality of an online
algorithm is usually assessed by its competitive ratio. An online algorithm is said to be
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ρ-competitive if for any instance, it always returns a schedule whose objective value
is not worse than ρ times the objective value of an optimal off-line schedule.

Parallel batch scheduling is largely motivated by burn-in operations in semiconduc-
tor manufacturing [7,13,14]. A parallel batch machine is a machine that can process
up to b jobs simultaneously as a batch. All jobs in a batch start at the same time and
complete at the same time. The processing time of a batch equals the longest process-
ing time of jobs in the batch. There are two models depending on the characteristic
of the batch capacity b. One is an unbounded model that means the batch capacity is
sufficiently large, i.e., b = ∞. The other is a bounded model that means the batch
capacity is finite, i.e., b < ∞. Here we study the unbounded model. For the online
parallel batch scheduling problems to minimize the time by which all jobs have been
delivered, there have been some results. Let p j and q j denote the processing time and
the delivery time of the job J j , respectively. Yuan et al. [17] studied two restricted
models on an unbounded parallel batch machine. One is the model with small delivery
times which means that the delivery time of each job is no more than its processing
time, i.e., q j ≤ p j holds for all jobs. The other is the agreeable model which means
that for any two jobs Ji and J j , if pi > p j , then qi ≥ q j . They provided a best
possible online algorithm with a competitive ratio of (

√
5+1)/2 for the two restricted

models. Tian et al. [10] considered the general case on an unbounded parallel batch
machine and gave an online algorithm whose competitive ratio is 2

√
2 − 1. For the

online scheduling problem on m unbounded batch machines, Liu and Lu [8] gave a
(1 + αm)-competitive best possible online algorithm for the agreeable model, where
αm is the positive solution of the equation α2

m + mαm − 1 = 0. A survey of recent
researches on parallel batch scheduling can see Tian et al. [11].

Restart (see Hoogeveen et al. [5]) means that we can interrupt a running task and
losing all the work done on it. The jobs in the interrupted task, which are called
restarted jobs, are then released and become independently unscheduled jobs that
need to be scheduled anew later. Allowing restarts means that we have a chance
to change our mind and make better decisions according to information on newly
arrived jobs. So we can obtain better online algorithms by using restarts. For the online
scheduling problem of minimizing the time by which all jobs have been delivered on
a single machine, Hoogeveen and Vestjens [6] presented a best possible algorithm

whose competitive ratio is 1+√
5

2 without restart and Akker et al. [1] presented a best
possible algorithm whose competitive ratio is 3

2 when restarts are allowed. We can
find more online scheduling researches with restarts in Epstein and Van Stee [2],
Van Stee and Poutré [15], and Yuan et al. [18]. Fu et al. [3] first introduced limited
restarts. Limited restarts mean that a running batch containing restarted jobs cannot
be interrupted again. Limited restarts imply that a job can be restarted at most once.
Limited restarts are of practice value as too many restarts of a job may cause a waste
of cost and increase the possibility of spoiling a product.

For the online scheduling problem of minimizing makespan on an unbounded
parallel batch machine with restarts, Yuan et al. [18] gave a best possible (5−√

5)/2-
competitive online algorithm. Fu et al. [3] studied the online scheduling of minimizing
makespan on an unbounded parallel batch machine with limited restarts. They gave a
lower bound 3/2 and a best possible 3/2-competitive online algorithm. For the corre-
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sponding problem on two unbounded parallel batch machines with limited restarts, Fu
et al. [4] gave a best possible online algorithm whose competitive ratio is (

√
3+ 1)/2

under the second-restart assumption. For minimizing makespan of equal length jobs
on m unbounded parallel batch machines with limited restarts, Liu et al. [9] provided
a best possible online algorithm.

However, in some practical applications, the above assumption of a parallel batch
machine is not suitable, especially the condition of all jobs in a batch having the
same completion time. In fact, when the batches are open for finished jobs, a job
with a shorter processing time should be completed earlier than a job with a longer
processing time in a common batch. Wei [16] first introduced the drop-line parallel
batchmachine.Adrop-line parallel batchmachine is amachine that can process several
jobs simultaneously as a batch. Jobs in a batch start at the same time and the completion
time of a job equals the sum of its starting time and its processing time. A drop-line
parallel batch machine means that in a batch, jobs with shorter processing times will
be completed earlier than jobs with longer processing times in the batch. Tian et al.
[12] studied the online scheduling problem on m unbounded drop-line parallel batch
machines to minimize the time by which all jobs have been delivered and gave a best
possible (1 + αm)-competitive online algorithm, where αm is the positive solution of
the equation a2m + mαm − 1 = 0. In this paper, they also gave two examples of drop-
line parallel batch scheduling on commodity delivery problems and optimization of
network information. In the delivery problem, a truck is used to deliver several products
to different destinations. At each destination, the corresponding products are unloaded
from the truck. Here a truck is a drop-line parallel batchmachine and a product arriving
at its destination earlier will be unloaded earlier.

The problem studied in this paper can be described as follows. There is an
unbounded parallel batch machine(or an unbounded drop-line parallel batch machine)
and sufficiently many vehicles. Jobs arrive over time and all characteristics of a job are
unknown until it arrives. Let r j , p j and q j denote the release time, the processing time
and the delivery time of the job J j , respectively. Here we consider the restricted model
that all jobs have agreeable processing times and delivery times, which means that for
any two jobs Ji and J j , if pi > p j , then qi ≥ q j . Jobs will be first processed on the
batchmachine.Once a job is completed, it is immediately delivered to its destination by
a vehicle. The running batches on the batch machine are allowed limited restarts, i.e.,
a running batch containing restarted jobs cannot be interrupted again. The objective is
to minimize the time by which all jobs have been delivered. Let C j and L j denote the
completion time of J j on the batch machine and the time by which J j has been deliv-
ered, respectively. Then L j = C j +q j and the objective function is Lmax = max

j
{L j }.

The corresponding problem on an unbounded parallel batch machine can be denoted
by 1|online, r j , agreeable, p-batch, b = ∞, L-restart|Lmax. The correspond-
ing problem on an unbounded drop-line parallel batch machine can be denoted by
1|online, r j , agreeable, drop-line p-batch, b = ∞, L-restart|Lmax. In this paper,
a restricted batch means that the batch contains restarted jobs when the batch starts
processing. A free batch means that the batch contains no restarted jobs when the
batch starts processing.
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The problems considered in this paper are the integration of production and delivery,
which are motivated by practical problems. Now we show an example of the drop-line
parallel batch scheduling in commodity delivery problems. Suppose that a number
of containers are delivered from port O(origin) to different ports (transit points) by a
vessel. At each transit point, the containers that are unloaded are individually sent to
their destinations by a huge quantity of vehicles. At port O, containers from various
merchants arrive and the vessel accommodates them until its capacity is reached.
Here each container arrives over time and its characteristics become known until it
arrives. The objective of the vessel’s company is to determine the container delivery
schedule in order to minimize the time by which all containers have been delivered to
their destinations. This is just a drop-line parallel batch scheduling problem with jobs
arriving online, where a vessel is a drop-line parallel batch processing machine and a
container is a job.

This paper is organized as follows. In Sect. 2, we prove that there is no online
algorithmwith a competitive ratio less than 3

2 for the problem 1|online, r j , agreeable,
p-batch, b = ∞, L-restart|Lmax and give a best possible online algorithm H with
a competitive ratio of 3

2 . In Sect. 3, we prove that there is no online algorithm with
a competitive ratio less than 3

2 for the problem 1|online, r j , agreeable, drop-line
p-batch, b = ∞, L-restart|Lmax and prove that Algorithm H is also a best possible
online algorithm with a competitive ratio of 3

2 .

2 The problem on an unbounded parallel batchmachine

In this section, we study the problem on an unbounded parallel batch machine, i.e.,
1|online, r j , agreeable, p-batch, b = ∞, L-restart|Lmax.

Theorem 2.1 For the problem 1|online, r j , agreeable, p-batch, b = ∞, L-restart|
Lmax, there is no online algorithm with a competitive ratio less than 3

2 .

Proof For the problem 1|online, r j , p-batch, b = ∞, L-restart|Cmax, Theorem
2.1 in Fu et al. [3] shows that there does not exist any online algorithm with a
competitive ratio less than 3

2 . Note that the problem 1|online, r j , p-batch, b =
∞, L-restart|Cmax is a special case of the problem 1|online, r j , agreeable, p-batch,
b = ∞, L-restart|Lmax (by setting q j = 0 for all jobs). So any online algorithm
has a competitive ratio at least 3

2 for the problem 1|online, r j , agreeable, p-batch,
b = ∞, L-restart|Lmax. The result follows. ��

Now we give some notations used in the following algorithm. Let p(B) be the
longest processing time of jobs in a job set B. Let Bi denote the i-th starting batch
in the schedule generated by the algorithm and Si denote the starting time of Bi . Let
r(Bi ) be the earliest arrival time of jobs in Bi . Let p(Bi ) and q(Bi ) denote the longest
processing time of jobs in the batch Bi and the largest delivery time of jobs in the
batch Bi , respectively. Among the jobs with a processing time p(Bi ) in Bi , select one
which arrives latest as the job J p

i . Let q
p
i be the delivery time of the job J p

i and r pi
be the arrival time of the job J p

i . Among the jobs with a delivery time q(Bi ) in Bi ,
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(b)(a)

Fig. 1 restarts on a parallel batch machine and on a drop-line parallel batch machine

select one which arrives latest as the job Jqi . Let p
q
i be the processing time of the job

Jqi . We use U (t) to denote the set of unscheduled jobs available at time t .
We can use the following sub-procedure Restart(k, t) when we restart the batch Bk

at the time t .
Restart(k, t): Interrupt Bk at time t and schedule all jobs (or all uncompleted jobs

for the drop-line version) in Bk and all jobs inU (t) as a batch Bk+1 starting at time t .
Set k = k + 1. �

Now we show examples of restarts on an unbounded parallel batch machine and
on an unbounded drop-line parallel batch machine. See Fig. 1. B1 = {J1, J2} is a free
batch with a starting time 0. B1 has a processing time p(B1) = max{p1, p2} = 1. At
the time 0.6, a new job J3 arrives with a processing time p3 = 1.1 and a delivery time
q3 = 1.1. Assume that we interrupt B1 and start a restricted batch B2 at the time 0.6.
Firstwe see restarts on anunboundedparallel batchmachine (seeFig. 1a). Since all jobs
in B1 will complete at the same time, all jobs in B1 are released when B1 is interrupted
and the restricted batch B2 consists of all jobs in B1 and the newly arrived jobs J3.
Thus B2 = {J1, J2, J3}. B2 has a processing time p(B2) = max{p1, p2, p3} = 1.1.
Now we see restarts on an unbounded drop-line parallel batch machine (see Fig. 1b).
Since the completion time of a job is equal to its starting time plus its processing time,
the job J2 has been completed at the time 0.5. Only the job J1 is released when B1
is interrupted at the time 0.6 and the restricted batch B2 consists of all uncompleted
jobs in B1 at the time 0.6 and the newly arrived jobs J3. Thus B2 = {J1, J3}. B2 has
a processing time p(B2) = max{p1, p3} = 1.1.

In the following algorithm, we use ρ = 0 to show that the current batch is a free
batch and use ρ = 1 to show that the current batch is a restricted batch. The symbol
“s′′ means the starting time of the current batch.

Algorithm H
Step 0: Set t = 0, s = 0, ρ = 0, k = 0.
Step 1: IfU (t) = ∅, wait until new jobs arrive or stop without new jobs arriving.
Otherwise determine p(U (t)).
Step 2: If t ≥ 1

2 p(U (t)), then schedule all jobs in U (t) as a single batch Bk+1

starting at time t , and set k = k + 1 and s = t . If t < 1
2 p(U (t)), wait until

1
2 p(U (t)) or the next arrival time and go to Step 1.
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Step 3: If no new jobs arrive in the time interval (s, s + p(Bk)) or ρ = 1, then
complete the batch Bk , and set t = s + p(Bk), ρ = 0, and go to Step 1. If ρ = 0
and some new jobs(or job) arrive at sometime t ′ in the time interval (s, s+ p(Bk)),
then find the job Jh whose processing time is the longest among jobs arriving at
time t ′.
Step 4: If rh ≥ 5

4 p(Bk), then complete the batch Bk , set t = s + p(Bk) and go to
Step 1. Otherwise, do the following:

Step 4.1: If ph ≥ 3
2 p(Bk), then complete the batch Bk , set t = s + p(Bk)

and go to Step 1.
Step 4.2: If p(Bk) < ph < 3

2 p(Bk), do the following:
Step 4.2.1: If rh ≥ ph , then set t = rh , do Restart(k, t), set s = t , ρ = 1
and go to Step 3.
Step 4.2.2: If rh < ph , continue to process Bk in the time interval (rh, ph]
unless a new job Jh′ with ph′ ≥ ph arrives.
If at sometime t ′ in the time interval (rh, ph], a job set which contains
some new job Jh′ with ph′ ≥ ph arrives, then update Jh to be the job
whose processing time is the longest among jobs arriving at time t ′ and
go to Step 4.
Otherwise, set t = ph , do Restart(k, t), set s = t , ρ = 1 and go to Step 3.

Step 4.3: If 3
4 p(Bk) < ph ≤ p(Bk), do the following:

Step 4.3.1: If rh < 2p(Bk) − ph , continue to process Bk in the time
interval (rh, 2p(Bk) − ph] unless a new job Jh′ with ph′ ≥ ph arrives.
If at sometime t ′ in the time interval (rh, 2p(Bk) − ph], a job set which
contains some new job Jh′ with ph′ ≥ ph arrives, then update Jh to be
the job whose processing time is the longest among jobs arriving at time
t ′ and go to Step 4.
Otherwise, (a) if ph ≥ 3

4 p(Bk) + 1
4q(Bk), then set t = 2p(Bk) − ph , do

Restart(k, t), set s = t , ρ = 1 and go to Step 3; (b) if ph < 3
4 p(Bk) +

1
4q(Bk), go to Step 4.5.
Step 4.3.2: If rh ≥ 2p(Bk) − ph and ph ≥ 3

4 p(Bk) + 1
4q(Bk), then set

t = rh , do Restart(k, t), set s = t , ρ = 1 and go to Step 3.
Step 4.3.3: If rh ≥ 2p(Bk)− ph and ph < 3

4 p(Bk)+ 1
4q(Bk), go to Step

4.5.
Step 4.4: If ph ≤ 3

4 p(Bk), go to Step 4.5.
Step 4.5: Continue to process Bk unless some new job Jh′ with ph′ ≥ ph
arrives before the time 5

4 p(Bk).
If at sometime t ′ before time 5

4 p(Bk), a job set which contains some new job
Jh′ with ph′ ≥ ph arrives, then update Jh to be the job whose processing time
is the longest among jobs arriving at time t ′ and go to Step 4.1.
If there is no new job Jh′ with ph′ ≥ ph arriving before the time 5

4 p(Bk), then
complete the batch Bk , set t = s + p(Bk) and go to Step 1. ��

Let I be an instance. Let σ and π be the schedule produced by Algorithm H for
the instance I and the off-line optimal schedule of the instance I , respectively. Let
Lon(I ) be the objective value of the schedule σ and Lopt(I ) be the objective value of
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the schedule π . For simplicity, we write Lon(I ) as Lon and write Lopt(I ) as Lopt.
Let Bn be the first batch in σ satisfying Lon = Sn + p(Bn)+q(Bn). For the schedule
σ generated by Algorithm H , we have the following properties.

Observation 2.1 For a free batch Bi , we have the following conclusions.

(1) Si ≥ max{r(Bi ), 1
2 p(Bi )};

(2) S1 = max{r(B1),
1
2 p(B1)};

(3) If Si > Si−1 + p(Bi−1) (i ≥ 2), then Si = max{r(Bi ), 1
2 p(Bi )}. ��

If a restricted batch Bi is got by Step 4.2 of Algorithm H , noting that p(Bi−1) <

ph < 3
2 p(Bi−1), then we have p(Bi ) = max{ph, p(Bi−1)} = ph and Si ≥ ph =

p(Bi ). If a restricted batch Bi is got by Step 4.3 of Algorithm H , noting that
3
4 p(Bi−1) < ph ≤ p(Bi−1), we have p(Bi ) = max{ph, p(Bi−1)} = p(Bi−1) and
Si ≥ 2p(Bi−1) − ph ≥ p(Bi−1) = p(Bi ). Then the following property holds.

Observation 2.2 For a restricted batch Bi , we have Si ≥ p(Bi ). ��
From Observations 2.1 and 2.2, we can easily get the following property.

Observation 2.3 Si ≥ 1
2 p(Bi ) (1 ≤ i ≤ n). ��

Lemma 2.1 Let jobs J ′ and J ′′ have processing times p′, p′′ and delivery times q ′, q ′′
with p′ ≥ p′′ and q ′′ ≥ q ′. We can obtain the following conclusions.

(1) One of J ′ and J ′′ has the processing time p′ and the delivery time q ′′.
(2) If both J ′ and J ′′ start not earlier than time s in the optimal off-line schedule π ,

then Lopt ≥ s + p′ + q ′′.

Proof (1) Note that p′ ≥ p′′. If p′ = p′′, then the processing time of J ′′ is p′. Now
the processing time of J ′′ is p′ and the delivery time of J ′′ is q ′′. If p′ > p′′,
considering that processing times are agreeable with delivery times, we have
q ′ ≥ q ′′. Also considering that q ′′ ≥ q ′, then q ′ = q ′′. Now the delivery time of
J ′ is q ′′ and the processing time of J ′ is p′.

(2) Considering that both J ′ and J ′′ start not earlier than time s in the optimal off-line
schedule π and (1), then Lopt ≥ s + p′ + q ′′. The result follows. ��

Lemma 2.2 (1) For each batch Bi (1 ≤ i ≤ n), at least one of the jobs J p
i and Jqi

has the processing time of p(Bi ) and the delivery time of q(Bi ).
(2) Lopt ≥ r(Bi ) + p(Bi ) + q(Bi ) (1 ≤ i ≤ n).

Proof (1) By the definitions of J p
i and Jqi , J p

i and Jqi satisfy the condition of
Lemma 2.1. Note that the processing time of J p

i is p(Bi ) and the delivery time
of Jqi is q(Bi ). So by Lemma 2.1(1), one of J p

i and Jqi has the processing time
p(Bi ) and the delivery time q(Bi ).

(2) By (1), we can easily get that Lopt ≥ r(Bi ) + p(Bi ) + q(Bi ) (1 ≤ i ≤ n). The
result follows. ��

Lemma 2.3 (1) If n = 1, then Lon/Lopt ≤ 3
2 .

(2) If Sn > Sn−1 + p(Bn−1) (n ≥ 2), then Lon/Lopt ≤ 3
2 .
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Fig. 2 A case with restarts

Proof By Observation 2.1, Sn = max{ 12 p(Bn), r(Bn)} if n = 1 or Sn > Sn−1 +
p(Bn−1) (n ≥ 2). Then Lon = Sn + p(Bn) + q(Bn) = max{ 12 p(Bn), r(Bn)} +
p(Bn) + q(Bn). By Lemma 2.2, we have Lopt ≥ r(Bn) + p(Bn) + q(Bn). Then

Lon/Lopt ≤ max{ 12 p(Bn),r(Bn)}+p(Bn)+q(Bn)
r(Bn)+p(Bn)+q(Bn)

≤ 3/2. The result follows. ��

If n = 1 or Sn > Sn−1 + p(Bn−1) (n ≥ 2), by Lemma 2.3, then Lon/Lopt ≤ 3
2 .

So we only consider that n ≥ 2 and Sn ≤ Sn−1 + p(Bn−1). Now we distinguish three
cases and use three Lemmas to prove that Lon/Lopt ≤ 3

2 . To improve the readability
and reduce the length of the paper, considering that the proofs of the following three
Lemmas are foundational, wemove the detailed proofs of the following three Lemmas
to Appendix.

Lemma 2.4 If Sn < Sn−1 + p(Bn−1), then Lon/Lopt ≤ 3
2 . ��

Lemma 2.5 If Sn = Sn−1+ p(Bn−1) and Bn−1 is a restricted batch, then Lon/Lopt ≤
3
2 . ��
Lemma 2.6 If Sn = Sn−1 + p(Bn−1) and Bn−1 is a free batch, then Lon/Lopt ≤ 3

2 .��
From Theorem 2.1 and Lemma 2.3–2.6, we conclude one of main results in this

paper as follows.

Theorem 2.2 Algorithm H is a best possible online algorithm for the problem
1|online, r j , agreeable, p-batch, b = ∞, L-restart|Lmax. ��

Nowwe showacasewith restarts for better understandingof the considered problem
and Algorithm H . See Fig. 2.

At the time 0, a job J1 arrives with a processing time p1 = 1 and a delivery time
q1 (q1 < 1). By Step 2 of Algorithm H , we start a free batch B1 = {J1} on the
batch machine with a starting time S1 = 1

2 p1 = 1
2 . Now p(B1) = p1 = 1 and

q(B1) = q1. Later a new job J2 with a processing time p2 (p1 > p2 > 3
4 + 1

4q1)
and a delivery time q2 (q2 ≤ q1) arrives at the time r2 = 3

4 . Thus r2 < 2p(B1) − p2
as p1 > p2. Since 3

4 p(B1) + 1
4q(B1) < p2 < p(B1), r2 < 5

4 p(B1) and r2 <

2p(B1) − p2, by Step 4.3.1 of Algorithm H , we interrupt the free batch B1 and start
a restricted batch B2 = {J1, J2} with a starting time S2 = 2p(B1) − p2 = 2 − p2.
Now p(B2) = max{p1, p2} = 1 and q(B2) = max{q1, q2} = q1. Later, a new job
J3 with a processing time p3 and a delivery time q3 arrives at the time r3, where
S2 < r3 < S2 + p(B2) and q1 < p3 + q3 ≤ 4. No new jobs arrive later. Since B2
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is a restricted batch and cannot be restarted, by Step 2 of Algorithm H , we start a
free batch B3 = {J3} at the time S3 = max{S2 + p(B2),

1
2 p3}. Note that 1

2 p3 ≤ 2
as p3 + q3 ≤ 4. Also considering that S2 + p(B2) = 3 − p2 > 2, we have S3 =
max{S2 + p(B2),

1
2 p3} = S2 + p(B2) = 3− p2. Considering that q1 < p3 + q3 and

q(B2) = max{q1, q2} = q1, we have Lon = S2 + p(B2) + max{q(B2), p3 + q3} =
3− p2 + p3 + q3. If J1 or J2 starts not earlier than the time S2 in the off-line optimal
schedule, we have Lopt ≥ S2 + min{p1, p2} = 2 − p2 + p2 = 2. Also considering
that Lopt ≥ r3 + p3 +q3 > S2 + p3 +q3 = 2− p2 + p3 +q3 and Lopt ≥ 2, we have

Lon− Lopt ≤ 1 and
Lon−Lopt

Lopt
≤ 1

2 . If both J1 and J2 start earlier than the time S2 in

the off-line optimal schedule, considering that J3 arrives after the time S2, then both J1
and J2 start before J3 in the off-line optimal schedule. Note that the later completion
time of J1 and J2 is not earlier than the time min{p1 + p2, S1 + p1} = 3

2 whether J1
and J2 are in a common batch or not in the off-line optimal schedule. Thus J3 starts not
earlier than the time 3

2 in the off-line optimal schedule and Lopt ≥ 3
2 + p3 +q3. Then

Lon
Lopt

≤ 3−p2+p3+q3
3
2+p3+q3

≤ 9
4− 1

4 q1+p3+q3
3
2+p3+q3

≤ 3
2 . Here the last but one inequality holds as

p2 > 3
4 + 1

4q1. Thus we have
Lon
Lopt

≤ 3
2 for the considered case.

3 The problem on an unbounded drop-line parallel batchmachine

In this section, we study the problem on an unbounded drop-line parallel batch
machine, i.e., 1|online, r j , agreeable, drop-line p-batch, b = ∞, L-restart| Lmax.

Theorem 3.1 For the problem 1|online, r j , agreeable, drop-line p-batch, b =
∞, L-restart| Lmax, there is no online algorithm with a competitive ratio less than 3

2 .

Proof Similar to the method of proof in Fu et al. [3], we can prove that there
is no online algorithm with a competitive ratio less than 3

2 for the problem
1|online, r j , drop-line p-batch, b = ∞, L-restart|Cmax. The problem 1|online, r j ,
drop-line p-batch, b = ∞, L-restart|Cmax is a special case of the problem
1|online, r j , agreeable, drop-line p-batch, b = ∞, L-restart|Lmax (by settingq j =
0 for all jobs). Therefore there is no online algorithmwith a competitive ratio less than 3

2
for the problem1|online, r j , agreeable, drop-line p-batch, b = ∞, L-restart|Lmax.
The result follows. ��

Now we will prove that Algorithm H is also a best possible online algorithm
for the problem 1|online, r j , agreeable, drop-line p-batch, b = ∞, L-restart|
Lmax. For simplicity, we call the problem 1|online, r j , agreeable, p-batch, b =
∞, L-restart|Lmax as the problem P1 and call the problem 1|online, r j , agreeable,
drop-line p-batch, b = ∞, L-restart| Lmax as the problem P2.

Let σ1 and σ2 be the schedules of an instance I generated by Algorithm H for the
problems P1 and P2, respectively. Let σ ∗

1 and σ ∗
2 be the optimal off-line schedules of

the instance I for the problems P1 and P2, respectively. Note that we may assume that
there exist no interrupted batches in σ ∗

1 and σ ∗
2 since restarted jobs in σ ∗

1 and σ ∗
2 can

be removed from the corresponding free batches.
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For the schedules σi (i = 1, 2), we use the following notations.

• ni (i = 1, 2) is the total number of batches in the schedule σi .
• Bk,i (i = 1, 2; 1 ≤ k ≤ ni ) is the k-th starting batch in the schedule σi .
• Sk,i (i = 1, 2; 1 ≤ k ≤ ni ) is the starting time of Bk,i .
• p(Bk,i )(i = 1, 2; 1 ≤ k ≤ ni ) is the longest processing time of jobs in the batch

Bk,i .
• q(Bk,i ) (i = 1, 2; 1 ≤ k ≤ ni ) is the largest delivery time of jobs in the batch Bk,i .
• J p

k,i (i = 1, 2; 1 ≤ k ≤ ni ) is got by selecting the latest arriving one from jobs
with the processing time p(Bk,i ) in Bk,i .

• Jqk,i (i = 1, 2; 1 ≤ k ≤ ni ) is got by selecting the latest arriving one from jobs
with the delivery time q(Bk,i ) in Bk,i .

Theorem 3.2 Algorithm H is a best possible online algorithm for the problem
1|online, r j , agreeable, drop-line p-batch, b = ∞, L-restart| Lmax.

Proof By Theorem 3.1, we just need to prove that for an instance I , the objective value
of the schedule σ2 is no more than 3

2 times the objective value of the schedule σ ∗
2 .

Similar to the proof of Lemma 2.2, we have the following Claim.

Claim 1 For each batch Bk,i (i = 1, 2; 1 ≤ k ≤ ni ), at least one job of J p
k,i and Jqk,i

has the processing time of p(Bk,i ) and the delivery time of q(Bk,i ).

For the number of batches and characteristics of batches in the schedules σi (i =
1, 2), we have the following property.

Claim 2 (1) n1 = n2;
(2) For 1 ≤ i ≤ n1, one of the following two conclusions holds:

(a) Bi,2 and Bi,1 are both free batches. They have the same jobs and the same
starting time.

(b) Bi,2 and Bi,1 are both restricted batches. They have the same starting time,
the same longest processing time, the same largest delivery time and the same
unrestarted jobs.

Clearly, B1,1 and B1,2 are both free batches, and they have the same starting time
and the same jobs.

Suppose that Bk,1 and Bk,2 are both free batches, and have the same jobs and the
same starting time. By Algorithm H , a new batch Bk+1,2(or Bk+1,1) starts depending
on the information on newly arrived jobs, the longest processing time of Bk,2(or Bk,1)
and the largest delivery time of Bk,2(or Bk,1). So either Bk+1,2 and Bk+1,1 are both
free batches, and have the same starting time and the same jobs, or Bk+1,2 and Bk+1,1
are both restricted batches with the same starting time. If Bk+1,2 and Bk+1,1 are both
restricted batches, then Bk+1,1 consists of all jobs in Bk,1 and newly arrived jobs, and
Bk+1,2 consists of the jobs in Bk,2 which do not complete at time Sk+1,2 and newly
arrived jobs. As Bk+1,2 and Bk+1,1 have the same starting time, then they have the
same unrestarted jobs. Note that the jobs in Bk,2 which do not complete at time Sk+1,2
contain one of the jobs J p

k,2 and Jqk,2 which has the processing time of p(Bk,2) and the
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delivery time of q(Bk,2). Note that p(Bk,2) = p(Bk,1) and q(Bk,2) = q(Bk,1). So the
longest processing time of restarted jobs in Bk+1,1 is equal to the longest processing
time of restarted jobs in Bk+1,2, and the largest delivery time of restarted jobs in Bk+1,1
is equal to the largest delivery time of restarted jobs in Bk+1,2. Also considering that
Bk+1,2 and Bk+1,1 have the same unrestarted jobs, then the longest processing time of
jobs in Bk+1,1 is equal to the longest processing time of jobs in Bk+1,2, and the largest
delivery time of jobs in Bk+1,1 is equal to the largest delivery time of jobs in Bk+1,2.
So if Bk+1,2 and Bk+1,1 are both restricted batches, then Bk+1,2 and Bk+1,1 have the
same starting time, the same longest processing time, the same largest delivery time
and the same unrestarted jobs.

The above proof also shows that if Bm,2 and Bm,1 are the first restricted batches,
then Bm,2 and Bm,1 have the same starting time, the same longest processing time, the
same largest delivery time and the same unrestarted jobs.

Suppose that Bk,2 and Bk,1 are both restricted batches, and they have the same
starting time, the same longest processing time, the same largest delivery time and the
sameunrestarted jobs. Then Bk,2 and Bk,1 have the samecompletion timebyAlgorithm
H . Thus Bk,2 and Bk,1 have the same starting time and the same completion time. By
Algorithm H , Bk+1,2 and Bk+1,1 are both free batches and Bk+1,2( or Bk+1,1) starts
depending on the information on newly arrived jobs. So Bk+1,2 and Bk+1,1 are both
free batches, and they have the same starting time and the same jobs.

The above proof shows that n1 = n2 and for 1 ≤ i ≤ n1, either Bi,2 and Bi,1
are both free batches and have the same jobs and the same starting time, or Bi,2 and
Bi,1 are both restricted batches and have the same starting time, the same longest
processing time, the same largest delivery time and the same unrestarted jobs. Claim 2
follows.

By Claim 2, we may assume that n = n1 = n2.

Claim 3 The objective value of the schedule σ2 for the problem P2 is no more than
the objective value of the schedule σ1 for the problem P1.

For any job J j in the instance I , we distinguish the following cases.
If in the schedule σ2, J j is completed in a batch Bk,2 which is a free batch uninter-

rupted or is a restricted batch, by Claim 2, then J j is completed in the batch Bk,1 in
the schedule σ1. For the problem P1, the time by which J j has been delivered in the
schedule σ1 is Sk,1+ p(Bk,1)+q j . For the problem P2, the time by which J j has been
delivered in the schedule σ2 is Sk,2+ p j +q j . Note that p(Bk,1) ≥ p j and Sk,2 = Sk,1
by Claim 2, then Sk,1 + p(Bk,1)+ q j ≥ Sk,2 + p j + q j . So if in the schedule σ2, J j is
completed in a batch Bk,2 which is a free batch uninterrupted or is a restricted batch,
then the time by which J j has been delivered in the schedule σ2 for the problem P2
is not later than the time by which J j has been delivered in the schedule σ1 for the
problem P1.

If in the schedule σ2, J j is completed in a free batch Bk,2 which is interrupted, then
J j is completed in the restricted batch Bk+1,1 in the schedule σ1. For the problem P1,
the time by which J j has been delivered in the schedule σ1 is Sk+1,1+ p(Bk+1,1)+q j .
For the problem P2, the time by which J j has been delivered in the schedule σ2
is Sk,2 + p j + q j . Note that p(Bk+1,1) ≥ p j and Sk,2 = Sk,1 by Claim 2. Then
Sk+1,1 + p(Bk+1,1) + q j > Sk,2 + p j + q j . So if in the schedule σ2, J j is completed
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in a free batch Bk,2 which is interrupted, then the time by which J j has been delivered
in the schedule σ2 for the problem P2 is earlier than the time by which J j has been
delivered in the schedule σ1 for the problem P1.

Then for any job J j in the instance I , the time by which J j has been delivered in
the schedule σ2 for the problem P2 is not later than the time by which J j has been
delivered in the schedule σ1 for the problem P1. Then the objective value of σ2 for
the problem P2 is no more than the objective value of σ1 for the problem P1. Claim 3
follows.

Claim 4 The objective value of the schedule σ ∗
2 for the problem P2 is equal to the

objective value of the schedule σ ∗
1 for the problem P1.

In fact, considering that σ ∗
1 is the optimal off-line schedule of the instance I for the

problem P1 and σ ∗
2 is the optimal off-line schedule of the instance I for the problem

P2, obviously the objective value of the schedule σ ∗
2 for the problem P2 is no more

than the objective value of the schedule σ ∗
1 for the problem P1. Now we just need to

prove that the objective value of the schedule σ ∗
1 for the problem P1 is no more than

the objective value of the schedule σ ∗
2 for the problem P2.

Similar to the proof of Lemma 2.2, for each batch Bk in the schedule σ ∗
2 , there

exists one job Jl with the longest processing time p(Bk) and the largest delivery time
q(Bk).

If we consider the schedule σ ∗
2 for the problem P2, then for any job J j in the batch

Bk , the time by which J j has been delivered is Sk + p j + q j ≤ Sk + p(Bk) + q(Bk)

and the equality holds when j = l. If we consider the schedule σ ∗
2 for the problem P1,

the time by which all jobs in the batch Bk have been delivered is Sk + p(Bk)+ q(Bk).
So Sk + p(Bk) + q(Bk) is the time by which all jobs in Bk have been delivered
for the schedule σ ∗

2 for the problem P1 and for the optimal off-line schedule σ ∗
2 for

the problem P2. Thus the objective value of the schedule σ ∗
2 for the problem P2 is

equal to the objective value of the schedule σ ∗
2 for the problem P1. Because σ ∗

1 is the
optimal off-line schedule of the instance I for the problem P1, the objective value of
the schedule σ ∗

1 for the problem P1 is no more than the objective value of the schedule
σ ∗
2 for the problem P1. So the objective value of the schedule σ ∗

1 for the problem P1
is no more than the objective value of the schedule σ ∗

2 for the problem P2. Claim 4
follows.

By Claim 3 and 4, for the problem P2, the ratio of the objective value of σ2 and
the objective value of σ ∗

2 is no more than the ratio of the objective value of σ1 for the
problem P1 and the objective value of σ ∗

1 for the problem P1. By Theorem 2.1–2.2,
for the problem P1, the ratio of the objective value of σ1 and the objective value of σ ∗

1
is no more than 3

2 . Thus for the problem P2, the ratio of the objective value of σ2 and
the objective value of σ ∗

2 is no more than 3
2 .

By Theorem 3.1, Algorithm H is a best possible online algorithm for the problem
1|online, r j , agreeable, drop-line p-batch, b = ∞, L-restart| Lmax. The result
follows. �
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Conclusions

In this paper, we study the online scheduling problem on an unbounded parallel batch
machine (or on an unbounded drop-line parallel batch machine) to minimize the time
bywhich all jobs have been deliveredwith limited restarts. Here all jobs have agreeable
processing times and delivery times. We give an online algorithm H and prove that
the online algorithm H is a best possible online algorithm with a competitive ratio
of 3

2 for the two problems considered in this paper, respectively. Note that for the
corresponding online scheduling problem on an unbounded parallel batch machine
(or on an unbounded drop-line parallel batch machine) without restarts, we can prove

that there exists no online algorithm with a competitive ratio less than 1+√
5

2 ≈ 1.618
by using the proving method of Theorem 1 in Zhang et al. (2001). Thus by using
limited restarts, Algorithm H has better performance than the best possible online
algorithms of the corresponding problems without restarts.

For online scheduling problems, since we don’t know future arrival jobs’ informa-
tion beforehand, we usually use a strategy of moderate wait instead of processing a job
immediately when the machine is idle. For example, the condition of t ≥ 1

2 p(U (t))
in Step 2 of Algorithm H and the restart time t = 2p(Bk) − ph in Step 4.3.1 of
Algorithm H mean that the machine will have moderate wait before starting a free
batch or a restricted batch. Since our problems are online scheduling problems and
the design of our algorithm makes full use of the problems’ structure and properties,
we design a best possible online algorithm H . But it isn’t easy that popular determin-
istic optimization approaches such as relaxation algorithms of integer programming
get best possible online algorithms. Since jobs’ information are deterministic when
they arrive, our problems are different from stochastic optimization problems. Note
that stochastic optimization approaches’ ideas may be used to solve online scheduling
problems. In the future we may design a corresponding randomized algorithm which
may have better performance than best possible deterministic online algorithms.

Acknowledgements This work was supported by NSFC (11701148, 11871213, 11571321,11501279),
Henan University of Engineering (D2016017) and the Young Backbone Teachers of Henan Colleges
(2019GGJS202).

Appendix

Proof of Lemma 2.4 Because Sn < Sn−1 + p(Bn−1), Bn is a restricted batch. Let p′
be the longest processing time of jobs arriving in the time interval (Sn−1, Sn] and q ′′
be the largest delivery time of jobs arriving in the time interval (Sn−1, Sn]. Among the
jobs which arrive in the time interval (Sn−1, Sn] and have the processing time p′, select
one which arrives latest as the job J ′. Let r ′ and q ′ be the arrival time and the delivery
time of J ′, respectively. Among the jobs which arrive in the time interval (Sn−1, Sn]
and have the delivery time q ′′, select one which arrives latest as the job J ′′. Let r ′′ and
q ′′ be the arrival time and the delivery time of J ′′, respectively. Thus we have p′ ≥ p′′
and q ′ ≤ q ′′. Considering that both J ′ and J ′′ arrive after the time Sn−1, p′ ≥ p′′ and
q ′ ≤ q ′′, then by Lemma 2.1, we have Lopt ≥ Sn−1+ p′ +q ′′. Since Bn is a restricted
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batch, by Step 4.2 and 4.3 of Algorithm H , we have p(Bn−1) < p′ < 3
2 p(Bn−1) or

3
4 p(Bn−1) < p′ ≤ p(Bn−1). Note that r ′ > Sn−1 ≥ 1

2 p(Bn−1) by Observation 2.3.
Case 1. p(Bn−1) < p′ < 3

2 p(Bn−1).
By Step 4.2 of Algorithm H , we have p(Bn) = max{p(Bn−1), p′} = p′, Sn =

max{p′, r ′} and q(Bn) = max{q ′′, q(Bn−1)}.
As p(Bn−1) < p′, considering that all jobs have agreeable processing times and

delivery times, then the largest delivery time of jobs in Bn−1 is not more than q ′.
Thus q(Bn−1) ≤ q ′ ≤ q ′′ and q(Bn) = max{q ′′, q(Bn−1)} = q ′′. Now Lon =
Sn + p(Bn) + q(Bn) = Sn + p′ + q ′′. Now we distinguish the following cases.

If r ′ > p′, then Sn = r ′ and Lon = Sn + p(Bn)+q(Bn) = r ′ + p′ +q ′′. Note that
q ′ ≤ q ′′. If q ′ = q ′′, then Lopt ≥ r ′ + p′ + q ′ = r ′ + p′ + q ′′ = Lon, which implies
Lon = Lopt. If q

′ < q ′′, noting that all jobs have agreeable processing times and
delivery times, then p′ ≤ p′′. Also considering that p′ ≥ p′′, we have p′ = p′′. By the
definitions of J ′ and J ′′ and p′ = p′′, we have r ′ ≥ r ′′. Since Bn interrupts Bn−1 at
time Sn = r ′ and r ′ > p′, then by Step 4.2 of Algorithm H , we have r ′ < 5

4 p(Bn−1).
Then r ′′ ≤ r ′ < 5

4 p(Bn−1). If r ′′ < r ′ and r ′′ ≥ p′′, considering that p′ = p′′ and
r ′′ < 5

4 p(Bn−1), then by Step 4.2 of Algorithm H , Bn will interrupt Bn−1 at time r ′′,
a contradiction to Sn = r ′ and r ′′ < r ′. If r ′′ < r ′ and r ′′ < p′′, considering that
p′′ = p′, r ′ > p′ and p′ is the longest processing time of jobs arriving in the time
interval (Sn−1, Sn] = (Sn−1, r ′], then by Step 4.2 of Algorithm H , Bn will interrupt
Bn−1 at time p′′ = p′, a contradiction to the fact that Sn = r ′ and r ′ > p′. So the
assumption of r ′′ < r ′ is not right and we have r ′′ = r ′. So if q ′ < q ′′, we have
p′ = p′′ and r ′′ = r ′. Then Lopt ≥ r ′′ + p′′ + q ′′ = r ′ + p′ + q ′′ = Lon, which
implies Lon = Lopt.

If r ′ ≤ p′, then Sn = p′ and Lon = Sn + p(Bn) + q(Bn) = 2p′ + q ′′. Thus
Lon
Lopt

≤ 2p′+q ′′
Sn−1+p′+q ′′ ≤ 2p′+q ′′

1
2 p(Bn−1)+p′+q ′′ ≤ 2p′

1
2 p(Bn−1)+p′ ≤ 2× 3

2 p(Bn−1)
3
2 p(Bn−1)+ 1

2 p(Bn−1)
= 3

2 .

Case 2. 3
4 p(Bn−1) < p′ ≤ p(Bn−1).

By Step 4.3 of Algorithm H , we have p(Bn) = max{p′, p(Bn−1)} = p(Bn−1),
r ′ < 5

4 p(Bn−1) and Sn = max{2p(Bn−1) − p′, r ′}. Note that Sn < 5
4 p(Bn−1)

as 3
4 p(Bn−1) < p′ and r ′ < 5

4 p(Bn−1). Then Lon = Sn + p(Bn) + q(Bn) =
Sn + p(Bn−1) + q(Bn) < 9

4 p(Bn−1) + q(Bn).
Subcase 2.1 q ′′ > q(Bn−1).
Then q(Bn) = max{q(Bn−1), q ′′} = q ′′. Now Lon = Sn + p(Bn) + q(Bn) =

Sn + p(Bn−1) + q ′′ < 9
4 p(Bn−1) + q ′′.

Note that q p
n−1 is the delivery time of J p

n−1 and p(Bn−1) is the processing time of
J p
n−1. Considering that q ′′ > q(Bn−1) ≥ q p

n−1, we have p′′ ≥ p(Bn−1). Considering
that p′′ ≤ p′, p′ ≤ p(Bn−1) and p′′ ≥ p(Bn−1), we have p′′ = p′ = p(Bn−1).
Then Lopt ≥ Sn−1 + p′ + q ′′ ≥ 1

2 p(Bn−1) + p(Bn−1) + q ′′ = 3
2 p(Bn−1) + q ′′ by

Observation 2.3. Thus Lon
Lopt

≤ 9
4 p(Bn−1)+q ′′
3
2 p(Bn−1)+q ′′ ≤ 3

2 .

Subcase 2.2 q ′′ ≤ q(Bn−1).
Then q(Bn) = max{q(Bn−1), q ′′} = q(Bn−1). Now Lon = Sn+ p(Bn)+q(Bn) =

Sn + p(Bn−1) + q(Bn−1). Since Bn interrupts Bn−1, we have p′ ≥ 3
4 p(Bn−1) +
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1
4q(Bn−1) by Step 4.3 of Algorithm H . As p′ ≥ 3

4 p(Bn−1) + 1
4q(Bn−1) and p′ ≤

p(Bn−1), we have q(Bn−1) ≤ p(Bn−1).
By Lemma 2.2, for the batch Bn−1, at least one of the jobs J

p
n−1 and Jqn−1 has the

processing time p(Bn−1) and the delivery time q(Bn−1) and denote the job by J ∗
n−1.

If Sn = 2p(Bn−1) − p′, then Lon = Sn + p(Bn−1) + q(Bn−1) = 2p(Bn−1) −
p′ + p(Bn−1) + q(Bn−1) ≤ 2p(Bn−1) − ( 34 p(Bn−1) + 1

4q(Bn−1)) + p(Bn−1) +
q(Bn−1) = 9

4 p(Bn−1) + 3
4q(Bn−1). Note that J ′ arrives after time Sn−1, and the

processing time of J ∗
n−1 is p(Bn−1), and the delivery time of J ∗

n−1 is q(Bn−1).
Thus Lopt ≥ min{Sn−1 + p(Bn−1) + q(Bn−1), p(Bn−1) + p′} whether J ′ and
J ∗
n−1 are in a common batch in the optimal off-line schedule π or not. Then
Lopt ≥ min{Sn−1 + p(Bn−1) + q(Bn−1), p(Bn−1) + p′} ≥ min{ 12 p(Bn−1) +
p(Bn−1) + q(Bn−1), p(Bn−1) + 3

4 p(Bn−1) + 1
4q(Bn−1)} ≥ min{ 32 p(Bn−1) +

q(Bn−1), p(Bn−1)+ 2
4 p(Bn−1)+ 2

4q(Bn−1)} = 3
2 p(Bn−1)+ 1

2q(Bn−1). Here the last

but one inequality hods as p(Bn−1) ≥ q(Bn−1). Thus
Lon
Lopt

≤ 9
4 p(Bn−1)+ 3

4 q(Bn−1)
3
2 p(Bn−1)+ 1

2 q(Bn−1)
= 3

2 .

If Sn = r ′, then r ′ ≥ 2p(Bn−1) − p′ and Lopt ≥ r ′ + p′ ≥ 2p(Bn−1).
Now Lon = Sn + p(Bn−1) + q(Bn−1) = r ′ + p(Bn−1) + q(Bn−1). Con-
sidering that p′ ≥ 3

4 p(Bn−1) + 1
4q(Bn−1) and q(Bn−1) ≤ p(Bn−1), we have

Lon
Lopt

≤ r ′+p(Bn−1)+q(Bn−1)
r ′+p′ = 1 + p(Bn−1)+q(Bn−1)−p′

r ′+p′ ≤ 1 + 1
4 p(Bn−1)+ 3

4 q(Bn−1)

2p(Bn−1)
≤

1 + p(Bn−1)
2p(Bn−1)

= 3
2 . The result follows. ��

Proof of Lemma 2.5 As Sn = Sn−1 + p(Bn−1), then Bn is a free batch and all jobs
in Bn arrive after the time Sn−1. Now Lon = Sn + p(Bn) + q(Bn) = Sn−1 +
p(Bn−1) + p(Bn) + q(Bn). By Lemma 2.2, Lopt ≥ r(Bn) + p(Bn) + q(Bn) >

Sn−1 + p(Bn) + q(Bn). Thus

Lon − Lopt ≤ p(Bn−1). (1)

Let p′ be the longest processing time of jobs arriving in the time interval
(Sn−2, Sn−1]. Among the jobs which arrive in the time interval (Sn−2, Sn−1] and
have a processing time p′, select one which arrives latest as the job J ′. Let r ′ and q ′
be the arrival time and the delivery time of J ′, respectively. Considering that Bn−1
is a restricted batch, then by Algorithm H , we have p(Bn−2) < p′ < 3

2 p(Bn−2) or
3
4 p(Bn−2) < p′ ≤ p(Bn−2). By Lemma 2.2, at least one of the jobs J p

n and Jqn has
the processing time of p(Bn) and the delivery time of q(Bn). Let J ∗

n be one of J p
n and

Jqn whose processing time is p(Bn) and delivery time is q(Bn).
Case 1. p(Bn−2) < p′ < 3

2 p(Bn−2).
Then p(Bn−1) = max{p(Bn−2), p′} = p′. By Step 4.2 of Algorithm H , Sn−1 =

max{p′, r ′}.
If r ′ ≥ p′, we have Sn−1 = r ′ and Lopt ≥ r ′ + p′ ≥ 2p′ = 2p(Bn−1). Then by

the inequality (1), we have
Lon−Lopt

Lopt
≤ p(Bn−1)

2p(Bn−1)
= 1

2 .

If r ′ < p′, we have Sn−1 = p′ = p(Bn−1). If J ′ starts not before J ∗
n in the

optimal off-line schedule π , considering that J ∗
n arrives after the time Sn−1, then
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Lopt ≥ Sn−1 + p′ = 2p(Bn−1). Thus we have Lon − Lopt ≤ p(Bn−1) ≤ 1
2 Lopt.

If J ′ starts before J ∗
n in the schedule π , then Lopt ≥ r ′ + p′ + p(Bn) + q(Bn) >

Sn−2 + p(Bn−1) + p(Bn) + q(Bn). Considering that 1
3 p(Bn−1) = 1

3 p
′ < 1

2 p(Bn−2)

and Sn−2 ≥ 1
2 p(Bn−2), we have Sn−2 ≥ 1

3 p(Bn−1). Then Lopt > Sn−2 + p(Bn−1)+
p(Bn) + q(Bn) ≥ 1

3 p(Bn−1) + p(Bn−1) = 4
3 p(Bn−1) and Lon − Lopt ≤ Sn−1 +

p(Bn−1) + p(Bn) + q(Bn) − (Sn−2 + p(Bn−1) + p(Bn) + q(Bn)) = Sn−1 − Sn−2 ≤
p(Bn−1) − 1

3 p(Bn−1) = 2
3 p(Bn−1). Thus

Lon−Lopt
Lopt

≤ 2
3 p(Bn−1)
4
3 p(Bn−1)

= 1
2 .

Case 2. 3
4 p(Bn−2) < p′ ≤ p(Bn−2).

Then p(Bn−1) = max{p(Bn−2), p′} = p(Bn−2). By Step 4.3 of Algorithm H , we
have Sn−1 = max{2p(Bn−2) − p′, r ′}. Then Lon = Sn−1 + p(Bn−1) + p(Bn) +
q(Bn) = Sn−1 + p(Bn−2) + p(Bn) + q(Bn).

If r ′ ≥ 2p(Bn−2) − p′, then Lopt ≥ r ′ + p′ ≥ 2p(Bn−2) = 2p(Bn−1). Thus

Lon − Lopt ≤ p(Bn−1) ≤ 1
2 Lopt by the inequality (1).

If r ′ < 2p(Bn−2) − p′, then Sn−1 = 2p(Bn−2) − p′ < 5
4 p(Bn−2). Now we

distinguish the following cases. If J p
n−2 or J

′ starts not before J ∗
n in the scheduleπ , con-

sidering that J ∗
n arrives after the time Sn−1, then Lopt ≥ Sn−1 +min{p(Bn−2), p′} =

Sn−1 + p′ = 2p(Bn−2) = 2p(Bn−1). Thus Lon − Lopt ≤ p(Bn−1) ≤ 1
2 Lopt.

If both J p
n−2 and J ′ start before J ∗

n in the schedule π , then J ∗
n starts not earlier

than the time min{p(Bn−2) + p′, r ′ + p(Bn−2)} in the schedule π whether J p
n−2

and J ′ are in a common batch or not in the schedule π . Note that min{p(Bn−2) +
p′, r ′ + p(Bn−2)} ≥ min{p(Bn−2)+ 3

4 p(Bn−2), Sn−2+ p(Bn−2)} ≥ min{p(Bn−2)+
3
4 p(Bn−2),

1
2 p(Bn−2) + p(Bn−2)} = 3

2 p(Bn−2). Then J ∗
n starts not earlier than the

time 3
2 p(Bn−2) in the schedule π and Lopt ≥ 3

2 p(Bn−2) + p(Bn) + q(Bn). Thus
Lon
Lopt

≤ Sn−1+p(Bn−2)+p(Bn)+q(Bn)
3
2 p(Bn−2)+p(Bn)+q(Bn)

≤ 5
4 p(Bn−2)+p(Bn−2)+p(Bn)+q(Bn)

3
2 p(Bn−2)+p(Bn)+q(Bn)

≤ 3
2 . The result

follows. ��
Proof of Lemma 2.6 Since Sn = Sn−1+ p(Bn−1), then Bn is a free batch, and r(Bn) >

Sn−1, and Lon = Sn−1 + p(Bn−1) + p(Bn) + q(Bn). By Lemma 2.2, Lopt ≥
r(Bn) + p(Bn) + q(Bn) > Sn−1 + p(Bn) + q(Bn). Then

Lon − Lopt ≤ p(Bn−1). (2)

Case 1. p(Bn) ≥ 3
2 p(Bn−1).

Note that Lon − Lopt ≤ p(Bn−1) and Sn−1 ≥ 1
2 p(Bn−1) by Observation 2.3.

Then Lopt > Sn−1 + p(Bn) + q(Bn) ≥ 1
2 p(Bn−1) + 3

2 p(Bn−1) = 2p(Bn−1). Thus
Lon−Lopt

Lopt
≤ p(Bn−1)

2p(Bn−1)
= 1

2 .

Case 2. p(Bn−1) < p(Bn) < 3
2 p(Bn−1).

Note that the arrival time of J p
n is r pn and the processing time of J p

n is p(Bn). Nowwe
prove that r pn ≥ p(Bn−1). If r

p
n < p(Bn−1), noting that r

p
n < p(Bn−1) < p(Bn), then

Bn will interrupt Bn−1 at time p(Bn) by Step 4.2 of Algorithm H , a contradiction.
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So we have r pn ≥ p(Bn−1). Then Lopt ≥ r pn + p(Bn) ≥ 2p(Bn−1). Thus by the

inequality (2),
Lon−Lopt

Lopt
≤ p(Bn−1)

2p(Bn−1)
= 1

2 .

Case 3. p(Bn) ≤ p(Bn−1).
If r pn + p(Bn) ≥ 2p(Bn−1), we have Lopt ≥ r pn + p(Bn) ≥ 2p(Bn−1). Then

Lon−Lopt
Lopt

≤ p(Bn−1)
2p(Bn−1)

= 1
2 . Now we assume that r pn + p(Bn) < 2p(Bn−1), i.e.,

r pn < 2p(Bn−1) − p(Bn).
Subcase 3.1. p(Bn) = p(Bn−1).
If p(Bn−1) > q(Bn−1), then 3

4 p(Bn−1)+ 1
4q(Bn−1) < p(Bn−1) = p(Bn). Consid-

ering that r pn < 2p(Bn−1) − p(Bn) = p(Bn−1) = p(Bn) and p(Bn) > 3
4 p(Bn−1) +

1
4q(Bn−1), then Bn will interrupt Bn−1 at time 2p(Bn−1) − p(Bn) = p(Bn−1) by
Step 4.3 of Algorithm H , a contradiction. So we have p(Bn−1) ≤ q(Bn−1). By
Lemma 2.2, Lopt ≥ p(Bn−1) + q(Bn−1) ≥ 2p(Bn−1). Then by the inequality (2),

we have
Lon−Lopt

Lopt
≤ p(Bn−1)

2p(Bn−1)
= 1

2 .

Subcase 3.2. p(Bn) < p(Bn−1).
By Lemma 2.2, for the batch Bn−1, at least one of the jobs J

p
n−1 and Jqn−1 has the

processing time of p(Bn−1) and the delivery time of q(Bn−1). So let J ∗
n−1 be one of the

jobs J p
n−1 and Jqn−1 whose processing time is p(Bn−1) and delivery time is q(Bn−1).

Similarly, let J ∗
n be one of the jobs J p

n and Jqn whose processing time is p(Bn) and
delivery time is q(Bn).

If p(Bn−1) ≤ q(Bn−1), by Lemma 2.2, we have Lopt ≥ p(Bn−1) + q(Bn−1) ≥
2p(Bn−1). Then

Lon−Lopt
Lopt

≤ p(Bn−1)
2p(Bn−1)

= 1
2 . Now we assume that p(Bn−1) >

q(Bn−1).
If 3

4 p(Bn−1)+ 1
4q(Bn−1) < p(Bn) < p(Bn−1), considering that r

p
n < 2p(Bn−1)−

p(Bn) < 5
4 p(Bn−1), then Bn will interrupt Bn−1 by Step 4.3 of Algorithm H , a

contradiction. So we have p(Bn) ≤ 3
4 p(Bn−1) + 1

4q(Bn−1).
If J ∗

n−1 starts not earlier than the time Sn−1 in the schedule π , then Lopt ≥ Sn−1 +
p(Bn−1)+q(Bn−1). Note that the processing time of Jqn is pqn and the processing time
of J p

n−1 is p(Bn−1). Then pqn ≤ p(Bn) < p(Bn−1). Considering that p
q
n < p(Bn−1),

then the delivery time of Jqn is not more than the delivery time of J p
n−1, i.e., q(Bn) ≤

q p
n−1. Then q(Bn) ≤ q p

n−1 ≤ q(Bn−1). Thus Lon − Lopt ≤ Sn−1 + p(Bn−1) +
p(Bn) + q(Bn) − (Sn−1 + p(Bn−1) + q(Bn−1)) ≤ p(Bn) ≤ 3

4 p(Bn−1) + 1
4q(Bn−1).

Note that Lopt ≥ Sn−1 + p(Bn−1) + q(Bn−1) ≥ 1
2 p(Bn−1) + p(Bn−1) + q(Bn−1).

Then
Lon−Lopt

Lopt
≤ 1

2 .

Now we assume that J ∗
n−1 starts earlier than the time Sn−1 in the schedule π .

Considering that all jobs in Bn arrive after the time Sn−1, then J ∗
n−1 starts before J ∗

n
in the schedule π . Then Lopt ≥ r(Bn−1) + p(Bn−1) + p(Bn) + q(Bn).

As Bn−1 is a free batch, by Observation 2.1, we have Sn−1 = 1
2 p(Bn−1), or Sn−1 =

r(Bn−1), or Sn−1 = Sn−2 + p(Bn−2).
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If Sn−1 = r(Bn−1) or Sn−1 = 1
2 p(Bn−1), then Lon − Lopt ≤ Sn−1 + p(Bn−1) +

p(Bn) + q(Bn) − (r(Bn−1) + p(Bn−1) + p(Bn) + q(Bn)) = Sn−1 − r(Bn−1) ≤
1
2 p(Bn−1) and

Lon−Lopt
Lopt

≤ 1
2 .

Fromnowonweassume that Sn−1 = Sn−2+p(Bn−2). So Lon = Sn−2+p(Bn−2)+
p(Bn−1)+ p(Bn)+q(Bn). Since Bn−1 is a free batch, we have r(Bn−1) > Sn−2. Thus
Lopt ≥ r(Bn−1) + p(Bn−1) + p(Bn) + q(Bn) > Sn−2 + p(Bn−1) + p(Bn) + q(Bn)

and Lon − Lopt ≤ p(Bn−2). Noting that Lon − Lopt ≤ p(Bn−1), then

Lon − Lopt ≤ min{p(Bn−1), p(Bn−2)}. (3)

By Lemma 2.2, one job of the batch Bn−2 has the processing time of p(Bn−2) and
the delivery time of q(Bn−2). Let J ∗

n−2 be such a job in Bn−2 with the processing time
p(Bn−2) and the delivery time q(Bn−2).

If Bn−2 is a restricted batch, then we have Sn−2 ≥ p(Bn−2) by Observation 2.2.

Thus Lopt ≥ r(Bn) > Sn−1 = Sn−2 + p(Bn−2) ≥ 2p(Bn−2). Hence
Lon−Lopt

Lopt
≤

min{p(Bn−1),p(Bn−2)}
2p(Bn−2)

≤ 1
2 by the inequality (3).

If Bn−2 is a free batch, we distinguish the following cases. If p(Bn−1) ≥ 3
2 p(Bn−2),

we have Lopt ≥ r(Bn−1) + p(Bn−1) > Sn−2 + p(Bn−1) ≥ 1
2 p(Bn−2) +

3
2 p(Bn−2) = 2p(Bn−2). Thus

Lon−Lopt
Lopt

≤ min{p(Bn−1),p(Bn−2)}
2p(Bn−2)

≤ 1
2 . If p(Bn−2) <

p(Bn−1) < 3
2 p(Bn−2) or [ 34 p(Bn−2) < p(Bn−1) ≤ p(Bn−2) and p(Bn−1) ≥

3
4 p(Bn−2) + 1

4q(Bn−2)], noting that Bn−1 does not interrupt the free batch Bn−2,
then r pn−1 ≥ 5

4 p(Bn−2) by Step 4.2 and 4.3 of Algorithm H . Note that the
arrival time of J p

n−1 is r pn−1 and the processing time of J p
n−1 is p(Bn−1). Thus

Lopt ≥ r pn−1 + p(Bn−1) ≥ 5
4 p(Bn−2) + 3

4 p(Bn−2) ≥ 2min{p(Bn−1), p(Bn−2)}.
So

Lon−Lopt
Lopt

≤ min{p(Bn−1),p(Bn−2)}
2min{p(Bn−1),p(Bn−2)} ≤ 1

2 . If [
3
4 p(Bn−2) < p(Bn−1) ≤ p(Bn−2)

and p(Bn−1) < 3
4 p(Bn−2) + 1

4q(Bn−2)] or p(Bn−1) ≤ 3
4 p(Bn−2), we distin-

guish the following two cases. If J p
n−1 and J ∗

n−2 are not in a common batch in
the schedule π , Lopt ≥ p(Bn−1) + p(Bn−2) ≥ 2min{p(Bn−1), p(Bn−2)}. Thus
Lon−Lopt

Lopt
≤ min{p(Bn−1),p(Bn−2)}

2min{p(Bn−1),p(Bn−2)} = 1
2 . If J

p
n−1 and J ∗

n−2 are in a common batch in the

schedule π , then Lopt ≥ r pn−1+ p(Bn−2)+q(Bn−2) > Sn−2+ p(Bn−2)+q(Bn−2) ≥
1
2 p(Bn−2) + p(Bn−2) + q(Bn−2) = 3

2 p(Bn−2) + q(Bn−2). Thus
Lon−Lopt

Lopt
≤

p(Bn−1)
3
2 p(Bn−2)+q(Bn−2)

≤ 3
4 p(Bn−2)+ 1

4 q(Bn−2)
3
2 p(Bn−2)+q(Bn−2)

≤ 1
2 . The result follows. ��
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