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Abstract
Transportation auctions are increasingly made online and the bidding time intervals
are becoming much shorter. From the carriers’ perspective, bid determination prob-
lems need to be solved more quickly due to the increasing number of auctions in the
online transportation marketplace for their survivability. In this research, we study the
bid price determination problem of truckload (TL) carriers participating in multiple
independent first-price sealed-bid single-request TL transportation auctions simulta-
neously. The carriersmust win the right combination of auctions to ensure profitability.
The high level of competition, the uncertainty of the outcomes of the auctions, and
the independence of the auctions from each other constitute the main challenge in
this setting. In order to solve this problem, we develop an efficient heuristic which
identifies the auctions to participate and determines the carriers’ bids in the selected
auctions. We demonstrate the efficiency and the effectiveness of our proposed heuris-
tic by simulating a competitive auction-based transportation procurement marketplace
under various parameter settings. The simulations show that our proposed heuristic
performs close to an existing approach found in the literature with much less compu-
tational effort.
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1 Introduction

Transportation spot markets have become popular platforms where shippers and car-
riers meet and sign short-term transportation contracts in a quick and cost-efficient
manner. In these spot markets, shippers list their shipment requests, and carriers sub-
mit quotes on the requests they are interested in. This process is effectively a reverse
auction mechanism [7], where the carrier quotes are essentially bids on the shipment
requests. Spot procurement auctions pose significant challenges for the participating
carriers, who must make decisions intelligently to prosper in this dynamic and com-
petitive environment. Selecting the requests to bid on, and determining the bid prices
are two of the most important challenges for the carriers in such auctions. A carrier’s
bid on a request should be low enough to win but high enough for the carrier to be
profitable. The carrier may submit a very high bid if the request is not very attractive.

A carrier that actively pursues customers in spot procurement markets is likely to
participate in multiple auctions simultaneously. If the carrier is not careful, it may
end up with a set of requests which do not form a good combination. This situation
is known as the exposure problem in the auction theory literature (see Bykowsky et
al. [2]; Kwasnica et al. [8]). Although, combinatorial auctions (CAs) can alleviate
the exposure problem for carriers [13], they are not commonly used in transportation
spot markets as each shipper is most likely to list a single request at a time. Since the
outcome of each auction is uncertain, the carrier is faced with a pricing problem in a
highly competitive environment.

Kuyzu et al. [9] are the first to study the bid determination problem for multiple
independent simultaneous sealed-bid first-price single-request truckload (TL) trans-
portation auctions in spot procurement markets. They formulate a stochastic bid price
optimization model with the objective of maximizing total expected profit, and show
that the objective function is non-concave in general. They propose to use historical
data to predict the probability distribution of the winning bid. The formulation of the
model involves determining the cost of serving each subset of requests, which entails
solving an exponential number of NP-hard routing problems, even for just calculating
the objective value. They use a coordinate search heuristic to obtain good solutions
to the model efficiently. However, since the heuristic works on the formulated model,
which requires the cost of serving all possible subsets, applying the overall method
requires significant computational effort when a large number of auctions are involved.

The distinctive aspects and literature contributions of our study can be summarized
as follows:

• We develop a bidding heuristic for carriers participating in simultaneous indepen-
dent TL transportation auctions. The proposed heuristic uses synergy between a
carrier’s existing lanes and auction requests, estimated through a computationally
efficient procedure.

• Compared to previous studies the proposed heuristic requires neither the proba-
bility distribution of the winning bid (as in Kuyzu et al. [9]) nor the cost of serving
every possible subset of requests the carrier is competing for (as in Kuyzu et al.
[9] and Olcaytu and Kuyzu [12]).
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• Our computational experiments show that the approach performs comparable to
studies of Kuyzu et al. [9] and Olcaytu and Kuyzu [12] in terms of carrier prof-
itability with much less computational effort.

The rest of the paper is organized as follows. In Sect. 2, we review the related liter-
ature. In Sect. 3, we describe the proposed bidding heuristic. In Sect. 4, we present the
results of our computational experiments involving a simulated marketplace. Finally,
we present concluding remarks in Sect. 5.

2 Related literature

In this section, we will only discuss existing literature on bid determination methods
for TL carriers, which can be classified into threemain categories by the type of auction
environment involved: combinatorial bidding, sequential bidding, and simultaneous
bidding. The common goal is maximizing profit by submitting the most competitive
bids for the right auctions. It is critical for the carriers to utilize capacity efficiently. In
the case of TL carriers, this translates into minimizing empty repositioning distance
of vehicles.

In CAs, the aim of the carrier is to select the best bundles and the associated prices
to maximize its profit. There are studies in the literature that focus on various aspects
of CAs from the carriers’ perspective, such as identifying possible bundles, calculating
the cost of serving the bundles, and determining the bid prices on the bundles, with
the goal of minimizing empty repositioning and maximizing profitability. Song and
Regan [14], An et al. [1], Lee et al. [10], Chang [3], Mesa and Ukkusuri [11], and Triki
[15] present bundle synergy approaches to minimize deadhead mileage and maximize
carrier profitability.

Sequential auctions differ from CAs. A sequential auction is an auction where
various items are sold one after another. The implementation of sequential auction
is simpler and more widespread in practice. However, bidders should make strategic
decisions for subsequent auctions. Figliozzi et al. [5] study sequential auctions for TL
service procurement in spot markets. Figliozzi et al. [6] use a simulation framework
to evaluate opportunity costs in sequential TL transportation auctions.

When spot transportation procurement markets are examined, it is seen that they
commonly constitute a set of sealed-bid first-price single lane auctions that are run
simultaneously and independently. In the literature, there exist very few studies on TL
carriers’ bidding strategies in independent simultaneous transportation procurement
auctions. Kuyzu et al. [9] are the first to study the problem. They formulate a stochastic
bid price optimization model with the objective of maximizing a TL carrier’s expected
profit. The model requires the probability distribution of the winning bid for each
auction request, and the evaluation of the synergy of every possible subset of auction
request with each other and the pre-existing lanes of the carrier. They use a coordinate
search heuristic to obtain a good solution to the model. Since synergy evaluation for a
subset of auction requests entails solving an NP-Hard optimization problem on them,
even setting up themodel requires significant computational effort. Olcaytu andKuyzu
[12] propose a synergy-based method which calculates the per kilometer cost of every
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possible subset of auction requests, and use these values to calculate the carrier’s bid
prices without using any probability distribution. In both Kuyzu et al. [9] and Olcaytu
and Kuyzu [12], the proposedmethod determines bids for all auction requests, without
any preliminary filtering.

In this paper, we extend the works of Kuyzu et al. [9] and Olcaytu and Kuyzu [12]
by developing an efficient bidding heuristic, which identifies the auction requests to
be bid on and their bids by evaluating only a very small subset of the selected auction
requests. The efficiency of this heuristic makes it suitable for determining bids for a
high number of auctions in a short period of time.

3 Methodology

In this paper, we propose a heuristic for the bid price optimization problem for a
TL carrier participating in multiple independent simultaneous sealed-bid first-price
transportation procurement auctions for complementing its existing laneswith requests
from a logistics spot market. In the problem setting we consider, multiple single-
request auctions with common bidding deadlines are announced at the same time.
Each auction request is a single TL move, which must be transported by a single truck
directly between its origin and destination. The carrier and its competitors place bids
on the requests in their respective interests. Submitting bundle bids is not possible.
The carriers cannot change their bids, either. All of the auctions close at the same
time. Each request is awarded to the lowest bidding carrier, which receives a revenue
equal to its bid on the request. Each carrier routes its own or contracted vehicles to
determine the cost of serving the requests it won in the auctions.

Our bidding heuristic is based on the marginal contribution of each auctioned
request to a limited number of subsets. As in Kuyzu et al. [9], we assume that the
carrier must solve a lane constrained lane covering problem (LCLCP) to determine
the cost of serving any subset of requests and it can always find a feasible solution for
any combination of requests it may be awarded. The LCLCP is an NP-hard problem
where the lanes of a carrier must be covered by cycles such that the length of each
cycle used in the cover cannot exceed a predefined upper bound [4]. We apply the
greedy merge heuristic proposed in Ergun et al. [4] to estimate the costs of serving
subsets of requests and the marginal costs of requests. In the rest of the paper, we will
refer to the auction requests as auction lane for ease of writing.

The notation we use in this study is as follows:

L : Set of lanes being auctioned.
L0 : Carrier’s existing lanes.
bl : Bid price of auction lane l (∀l ∈ L).
dl : Length of auction lane l (∀l ∈ L).
MCS : Marginal cost of auction lane set S (S ⊆ L).

The steps of our proposed bidding approach are presented in Algorithm 1. The
algorithm uses marginal cost comparisons to determine the carrier’s bid prices. In
order to avoid unnecessary calculations, the algorithm makes the comparison order
wisely.
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Between lines 2 through 8, the algorithm computes themarginal cost of each auction
lane by adding the auction lane to the carrier’s existing lanes. The function F(S)
calculates the cost of the LCLCP solution using the greedy merge heuristic on the lane
set S. If the marginal cost of lane l, i.e. MC{l}, is greater than twice the length of lane
l, then the carrier’s bid price for that lane is set to twice the length of the lane, i.e.
2dl . Such auction lanes are removed from set S. In other words, the cost of adding
the auction lane to the carrier’s existing network is greater than that of creating a new
cycle to serve only that lane.

Between lines 12 through 16, themarginal cost of each pair of auction lanes remain-
ing in S is calculated, and the bid price for each lane in S is set to themaximummarginal
cost among the pairs including that lane. The algorithm avoids redundant marginal
cost calculations.

Algorithm 1 Carrier’s bidding heuristic.
Input : Set of auction lanes (L), carrier’s set of existing lanes (L0).
Output : Carrier bids (bl ,∀l ∈ L).
1: S ← L
2: For Each (l ∈ L)
3: MC{l} ← [F(L0 ∪ l) − F(L0)]
4: If(MC{l} ≥ 2dl )
5: bl ← 2dl
6: S − {l}
7: End
8: End For
9: For Each (i ∈ S)
10: bi ← −∞
11: End For
12: For Each ({i, j} ⊆ S : i 	= j)
13: MC{i, j} ← F(L0 ∪ {i, j}) − F(L0)
14: bi ← max{bi ,MC{i, j}}
15: b j ← max{b j ,MC{i, j}}
16: End For

The proposed approach by Kuyzu et al. [9] requires 2|L| marginal cost cal-
culations, complex computations and historical data. Likewise, the synergy-based
bidding method by Olcaytu and Kuyzu [12] requires 2|L| marginal cost calculations
to obtain all possible outcomes of the auctions. Whereas our algorithm requires at
most

(|L|
2

) = |L|(|L|−1)
2 cost calculations. All of the aforementioned approaches use

the function F(·) for calculating the cost serving subsets of lanes. The computational
effort required for computing all possible subsets increases drastically as the number
of auction lanes increase which makes it impractical for moderate and large instances.
Computational experiments, presented in the next section, show that our proposed
algorithm performs comparable to that of Kuyzu et al. [9] with much less computation
effort.
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4 Computational studies

We evaluate the impact of using our proposed heuristic on carrier profitability with the
help of a simulated marketplace, which was created with the same parameter settings
in the study of Kuyzu et al. [9]. We run several simulations with a high number of
replications under different parameter configurations. The simulated market area is
1500 km x 1500 km and divided into nine equal size square regions. For each square
region 100 random origin-destination (o-d) points are generated in the beginning of
each replication.

The marketplace includes seven carriers with each one having a pre-defined size:
small, medium, or large. A small-size carrier has 30 existing lanes, corresponding to
long term commitments, the o-d pairs of which are chosen randomly from 3 randomly
selected adjacent regions. Similarly, a medium size carrier has 60 existing lanes from
4 adjacent regions, while a large size carrier has 90 existing lanes from 5 adjacent
regions.

In each simulation run, we generate a carrier which determines its bids using the
heuristic approach described in Sect. 3. We refer to this carrier as Smart . We generate
six competitors, each of which compute the individual marginal cost of each auction
lane with respect to its set of existing lanes and applies a fixed markup (MU) to
determine its final bid on each auction lane. The competitors consist of two small
size carriers (SC1, SC2), two medium size carriers (MC1, MC2), and two large size
carriers (LC1, LC2). To calculate the cost of adding auction lane to existing lane
network greedy merge heuristic is used both for Smart and the competitive carriers.

We vary the size of Smart and the MU values of the competitors between different
simulation runs. Smart has either of 30, 60 and 90 lanes. The MU value of the
competitors is either of 0.10, 0.15, 0.20, 0.30, or 0.40. All competitors use the same
MU during a simulation run. combining each possible network size for Smart with
each competitor MU value, a total of 15 simulations are run.

One hundred replications are done for each parameter set. The sets of existing
lanes of all the carriers are randomly determined for each replication, each of which
consists of 52 periods. Ten randomly generated lanes are auctioned in each period. At
the beginning of each period, every carrier offers a price for the auction lane, and it is
assumed that the carriers do not have a fleet size limitation to serve these lanes. We
assume that one period is equal to one week. We assume that a truck can travel 720
km, hence each truck route can be at most 5040 km.

The results of each simulation run are obtained by taking the average of the repli-
cations. We report three types of statistics: unit profit, total profit, and number of
auctions won. Total profit is the difference between total revenue earned from the
auctions won and the sum of the costs of adding them to the carrier’s existing lane
network. Total profit is equal to total profit divided by the total length of auctions won.
Unit profits are presented in Table 1, total profits are presented in Table 2, and number
of auctions won are presented in Table 3. When the obtained values are examined, it is
observed that when the competitors’ MU values increase, their total profits increase,
as expected. Both Smart and competitive carriers have greater profits when they have
large size existing lane network. When carriers have a larger existing lane network,
the auction lane is expected to be more likely to be added with less marginal cost, in
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Table 1 Unit profits

Smart Competitors Unit profit

L0 MU Smart SC1 SC2 MC1 MC2 LC1 LC2

30 0.10 0.284 0.031 0.039 − 0.017 0.005 0.006 − 0.008

30 0.15 0.285 0.076 0.085 0.023 0.045 0.049 0.035

30 0.20 0.272 0.119 0.129 0.062 0.086 0.088 0.076

30 0.30 0.263 0.201 0.213 0.135 0.160 0.165 0.157

30 0.40 0.257 0.274 0.289 0.207 0.230 0.235 0.228

60 0.10 0.333 0.019 0.027 − 0.002 − 0.016 0.020 0.035

60 0.15 0.328 0.063 0.072 0.039 0.024 0.062 0.078

60 0.20 0.323 0.106 0.115 0.079 0.062 0.103 0.120

60 0.30 0.309 0.188 0.198 0.155 0.134 0.181 0.200

60 0.40 0.302 0.260 0.269 0.222 0.201 0.251 0.271

90 0.10 0.372 0.042 0.032 − 0.007 − 0.017 0.003 0.007

90 0.15 0.360 0.087 0.077 0.033 0.023 0.045 0.048

90 0.20 0.349 0.130 0.119 0.072 0.062 0.085 0.087

90 0.30 0.325 0.204 0.196 0.145 0.131 0.162 0.161

90 0.40 0.319 0.278 0.270 0.212 0.194 0.230 0.229

other words with lower empty travel. It is observed that Smart obtains greater total
profits regardless of the sizes of the competitive carriers and MU values.

For the auction setting we are considering in this paper, Kuyzu et al. [9] propose
a stochastic bid price optimization model with the objective of maximizing the car-
rier’s expected profit combined with a coordinate search algorithm. Their approach
requires the cost of adding each subset of the auction lanes to the carrier’s existing
lane networks, which entails computing F(S) on each possible S ⊆ L with the help
of a greedy heuristic. We use exactly the same parameter sets to see the effectiveness
of our heuristic and use their results as a benchmark. The reader is referred to their
work for more detailed information on their approach.

Comparison of the performance of the optimization method of Kuyzu et al. [9]
(KM) and synergy-based bidding method of Olcaytu and Kuyzu [12] (OM) with that
of our proposed heuristic (Smart) is presented in Table 4. It is observed that total
profits are close to KM while the number of auctions won is higher and greater than
OM. When the obtained total profits are examined, it can be noticed that the proposed
synergy-based method not only makes much more profit than the competitor carriers
but also achieves close results to those of KM and better results of OM.

The simulation is implemented on a desktop PC with a configuration of Intel(R)
Core(TM) i7-4790 Opteron Processor and 16 GB RAMwith Java(TM) programming
language. The average running times of each replication of the simulations with KM
and our heuristic are presented in Table 5. Considering the running times, Smart’s
solution times are observed to increase in direct proportion to the existing lane sizes
as expected. Considering the total profits and the running times, we observe that the
proposed heuristic is an efficient method.
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Table 2 Total profits

Smart Competitors Total profit

L0 MU Smart SC1 SC2 MC1 MC2 LC1 LC2

30 0.10 4363 −8 105 −3372 −1274 −1195 −2429

30 0.15 6005 1654 1541 572 1955 1440 375

30 0.20 8007 3159 2873 4268 5082 3753 2930

30 0.30 12,359 5666 5155 10,710 10,353 7925 7532

30 0.40 17,483 7467 6811 16,297 14,708 11,202 11,022

60 0.10 8054 −537 −177 −1582 −3006 211 1004

60 0.15 10,515 919 1493 2276 627 2773 3220

60 0.20 13,191 2228 3001 5865 3986 5132 5248

60 0.30 19,388 4503 5518 11,732 9853 9093 8606

60 0.40 26,374 6071 7172 16,171 14,556 12,196 10,985

90 0.10 11,229 769 497 −2256 −3322 −1498 −1321

90 0.15 13,985 2127 2004 1153 269 1058 997

90 0.20 17,045 3386 3335 4407 3606 3395 3055

90 0.30 23,695 5247 5416 9706 8984 7210 6518

90 0.40 31,351 6740 6957 13,767 12,947 9989 9141

Table 3 Number of auctions won

Smart Competitors Number of Auctions Won

L0 MU Smart SC1 SC2 MC1 MC2 LC1 LC2

30 0.10 24.40 51.13 43.95 83.90 86.82 124.55 105.25

30 0.15 33.18 50.42 43.28 82.65 85.37 122.70 103.85

30 0.20 41.00 49.27 42.63 80.78 83.48 120.77 102.07

30 0.30 62.08 46.50 40.57 77.13 79.90 115.75 98.07

30 0.40 87.23 43.20 37.92 72.65 75.37 110.23 93.40

60 0.10 36.77 44.73 51.32 80.27 73.45 119.33 118.20

60 0.15 47.23 43.97 50.17 78.88 71.88 116.88 116.63

60 0.20 52.03 42.82 48.77 77.13 70.08 114.57 114.60

60 0.30 77.78 40.63 45.62 72.98 65.83 107.97 109.18

60 0.40 106.65 37.92 41.78 68.63 61.00 100.83 103.18

90 0.10 51.17 42.88 47.90 80.72 77.42 112.95 118.27

90 0.15 58.63 41.82 46.70 78.90 75.68 110.72 115.97

90 0.20 65.64 40.67 45.37 76.95 73.30 108.07 113.30

90 0.30 89.38 37.82 42.30 72.07 69.03 102.43 106.97

90 0.40 118.55 35.05 39.12 67.13 64.15 96.05 99.95

Our synergy-based bidding heuristic method yields solution much faster than KM
andOMon average.Moreover, our computational study demonstrates that the heuristic
method is evaluated to be efficient in that it doesn’t require historical data and complex
computations, and also avoids carrier from possible financial loss.
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Table 4 Comparisons of KM, OM and Smart carrier’s results

Smart Competitor Unit profit Total profit # Auctions won

L0 MU KM OM Smart KM OM Smart KM OM Smart

30 0.10 0.30 0.23 0.28 4500 2186 4363 24.1 17.7 24.4

30 0.15 0.34 0.26 0.29 6805 3460 6005 32.2 23.3 33.2

30 0.20 0.35 0.27 0.27 8439 5249 8007 37.3 30.5 41.0

30 0.30 0.37 0.29 0.26 12,525 10,074 12,359 49.3 48.8 62.1

30 0.40 0.40 0.30 0.26 18,214 16,485 17,483 63.6 72.3 87.2

60 0.10 0.35 0.32 0.33 8426 4511 8054 35.8 21.9 36.8

60 0.15 0.38 0.34 0.33 12,689 6739 10,515 46.2 28.8 47.2

60 0.20 0.39 0.36 0.32 14,790 9481 13,191 51.6 37.1 52.0

60 0.30 0.42 0.36 0.31 20,655 15,985 19,388 65.2 58.1 77.8

60 0.40 0.45 0.36 0.30 27,670 24,558 26,374 79.6 85.6 106.7

90 0.10 0.40 0.40 0.37 14,386 6040 11,229 50.2 24.3 51.2

90 0.15 0.41 0.41 0.36 17,431 8880 13,985 57.6 32.6 58.6

90 0.20 0.43 0.41 0.35 20,778 12,158 17,045 64.6 42.2 65.6

90 0.30 0.45 0.40 0.33 25,358 20,451 23,695 75.4 66.2 89.4

90 0.40 0.49 0.40 0.32 32,972 30,051 31,351 88.9 94.3 118.6

Table 5 Average running time
per replication (in milliseconds)

Smart Competitor Time (ms)

# lanes MU KM OM Smart

30 0.10 31,873 2,395 68

30 0.15 27,080 2,183 65

30 0.20 29,436 2,288 68

30 0.30 29,341 2,282 67

30 0.40 35,452 2,552 75

60 0.10 50,509 3,213 95

60 0.15 57,661 3,528 102

60 0.20 54,871 3,404 99

60 0.30 58,696 3,573 103

60 0.40 54,652 3,395 98

90 0.10 117,036 6,137 178

90 0.15 114,079 6,006 176

90 0.20 114,710 6,035 177

90 0.30 118,523 6,202 181

90 0.40 114,894 6,043 177
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5 Conclusions

In this study, we develop an efficient heuristic to generate carrier’s bids in multiple
independent sealed-bid first-price procurement auctions simultaneously. To present
the effectiveness of the developed heuristic, we simulate a competitive auction-based
transportation marketplace. Analysis of the simulation results show that the proposed
heuristic is effective and easy to implementwithout the need for complex computations
and historical data.

Today, with many developments in the global sense, the importance of the trans-
portation sector is increasing with globalization. The rapid pace of technological
developments and the increasing use of electronic marketplaces for transportation
procurement are causing the bidding time intervals to become much shorter. Hence,
the carriers need to determine bid prices much more rapidly. We observe that bidding
strategies for carriers participating multiple transportation auctions simultaneously
are still largely unexplored. This study constitutes an important contribution to the
literature.
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