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Abstract
We decompose the copositive cone COPn into a disjoint union of a finite number of
open subsets SE of algebraic sets ZE . Each set SE consists of interiors of faces ofCOPn .
On each irreducible component of ZE these faces generically have the samedimension.
Each algebraic set ZE is characterized by a finite collection E = {(Iα, Jα)}α=1,...,|E |
of pairs of index sets. Namely, ZE is the set of symmetric matrices A such that the
submatrices AJα×Iα are rank-deficient for all α. For every copositive matrix A ∈ SE ,
the index sets Iα are the minimal zero supports of A. If uα is a corresponding minimal
zero, then Jα is the set of indices j such that (Auα) j = 0. We call the pair (Iα, Jα) the
extended support of the zero uα , and E the extended minimal zero support set of A.
We provide some necessary conditions on E for SE to be non-empty, and for a subset
SE ′ to intersect the boundary of another subset SE .

Keywords Copositive cone · Minimal zero · Facial structure · Algebraic sets

1 Introduction

An element A of the space Sn of real symmetric n × n matrices is called copositive
if xT Ax ≥ 0 for all vectors x ∈ R

n+. The set of such matrices forms the copositive
cone COPn . This cone plays an important role in non-convex optimization, as many
difficult optimization problems can be reformulated as conic programs over COPn .
For a detailed survey of the applications of this cone see, e.g., [3,4,10,13].

In [8] the local structure of the cone COPn around a given copositive matrix A was
considered. In particular, the cone of feasible directions and the tangent cone at A and
the minimal face of A have been computed. These objects have a description in terms
of the minimal zeros of A.

A zero u of a copositivematrix A is a non-zero nonnegative vector such that uT Au =
0 [1,6]. The support supp u of a zero u = (u1, . . . , un)T ∈ R

n+ is the subset of indices
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j ∈ {1, . . . , n} such that u j > 0. A zero u of A is called minimal if there is no zero
v of A such that supp v ⊂ supp u holds strictly [11]. The minimal zero support set,
i.e., the ensemble suppV A

min of minimal zero supports of a copositive matrix A is a
characteristic that yields a finite classification of the matrices in COPn . However, this
classification is quite coarse, e.g., the set of matrices A′ ∈ COPn which share the
minimal zero support set with A may have a description by different ensembles of
equalities and inequalities around different points.

Here we make a further step in the study of the local properties of COPn . While
the paper [8] focussed on the infinitesimal structure of COPn near a given matrix A,
in this work we consider finite neighbourhoods of A. To this end we propose a finer
characteristic of copositive matrices, still leading to a finite classification, namely
their extended minimal zero support set. In addition to the minimal zero supports of
the matrix A this object contains the complementary index sets of its minimal zeros.
Here the complementary index set comp u of a zero u of A is defined as the set of
indices j such that (Au) j = 0. We show that the set SE of matrices A′ ∈ COPn

which share the extended minimal zero support set E with A is an open subset of some
explicit algebraic set ZE ⊂ Sn . As such it is described by the same set of polynomial
equations at every point, which yields a complete and homogeneous characterization
of its local structure.

It should be noted that a similar notion has been defined in the context of evolu-
tionarily stable strategies in [2], see also [5]. Along with the support I = supp x of a
strategy x , which is a vector in the standard simplex, the set { j | (Ax) j = xT Ax} is
considered. It is called extended support and corresponds to the complementary index
set defined in the present paper. For evolutionarily stable strategies we have I ⊂ J .
In both settings the index set is linked to the first order optimality condition at the
corresponding point.

The proposed decomposition of COPn into subsets SE is compatible with the facial
structure of the cone. For every face F ⊂ COPn , the interior points of F all belong
to the same subset SE , and hence each SE can be represented as a disjoint union of
such facial interiors. Moreover, for each subset SE we construct a coefficient matrix
with entries polynomial in the elements of A ∈ SE such that the solution space of the
homogeneous linear system of equations with this coefficient matrix is the linear hull
of the minimal face of A. As a consequence, on each irreducible component of the
algebraic set ZE the minimal faces of A ∈ SE have generically the same dimension,
with possibly higher dimensions on some algebraic subset.

The main purpose of this contribution is to provide new tools for the study of the
facial structure and especially the extreme rays of the copositive cone, which play
a crucial role, e.g., in the verification of the exactness of computationally tractable
relaxations of the copositive cone.

The remainder of the paper is structured as follows. In Sect. 1.1 we provide some
notations and formal definitions. In Sect. 2 we prove our main result (Theorem 1)
on the decomposition of the cone COPn into relatively open subsets according to
the extended minimal zero support set. In Sect. 3 we derive some properties of the
subsets and the extended minimal zero support set, in particular related to the facial
structure of COPn . We provide some necessary conditions on E for SE to be non-
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empty (Lemma 5), and for a subset SE ′ to intersect the boundary of another subset SE
(Lemma 6). In Sect. 3.1 we provide some examples of subsets SE .

1.1 Notations and definitions

The space of real symmetric matrices of size n × n will be denoted by Sn .
For an index set I ⊂ {1, . . . , n}, denote by I its complement {1, . . . , n} \ I .
We shall denote vectors by lower-case letters andmatrices by upper-case letters. For

amatrix A and avectoru of compatible dimension, the i-th element of thematrix-vector
product Au will be denoted by (Au)i . Inequalities u ≥ 0 on vectors will be meant
element-wise, where we denote by 0 = (0, . . . , 0)T the all-zeros vector. Similarly we
denote by 1 = (1, . . . , 1)T the all-ones vector. Let Δ = {u ∈ R

n+ | 1T u = 1} be the
standard simplex.

For a subset I ⊂ {1, . . . , n} we denote by AI the principal submatrix of A whose
elements have row and column indices in I , i.e. AI = (Ai j )i, j∈I ∈ S |I |. For subsets
I , J ⊂ {1, . . . , n} we denote by AJ×I the submatrix of A whose elements have row
indices in J and column indices in I . Similarly for a vector u ∈ R

n we define the
sub-vector uI = (ui )i∈I ∈ R

|I |.
For a nonnegative vector u ∈ R

n+ wedefine its support as supp u = {i ∈ {1, . . . , n} |
ui > 0}.

A zero u of a copositive matrix A is called minimal if there exists no zero v of
A such that the inclusion supp v ⊂ supp u holds strictly. We shall denote the set of
minimal zeros of a copositive matrix A by V A

min and the ensemble of supports of the
minimal zeros of A by suppV A

min. To each index set I there exists at most one minimal
zero u ∈ Δ of Awith supp u = I [11, Lemma 3.5], hence the minimal zero support set
suppV A

min is in bijective correspondence to theminimal zeros of Awhich are contained
in Δ.

We now introduce the extended minimal zero support set of a copositive matrix.
Note that if u is a zero of a copositive matrix A, then Au ≥ 0 [1, p. 200, lines 11–12].

Definition 1 Let A ∈ COPn and let u be a zero of A. The complementary index set
comp u of u is the index set { j | (Au) j = 0} = supp(Au). The extended support
esupp u of u is the pair (supp u, comp u) of index sets. The extended minimal zero
support set esuppV A

min is the ensemble of extended supports of the minimal zeros of
A.

By [7, Lemma 2.5] we have that supp u ⊂ comp u for every zero u of a copositive
matrix A.

Let E = {(Iα, Jα)}α=1,...,m be a finite collection of pairs of index sets. Define the
set

SE = {A ∈ COPn | esuppV A
min = E}

of copositive matrices having extended minimal zero support set E . Then the whole
copositive cone COPn decomposes into a disjoint union of a finite number of such
subsets SE . We shall also associate to E the set
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ZE = {A ∈ Sn | AJα×Iα is rank deficient ∀ α = 1, . . . ,m}.

Clearly ZE is algebraic, given by the zero locus of a finite number of determinantal
polynomials in the elements of A.

2 Openness of SE in ZE

In this section we prove our main result, which states that the sets SE of matrices
sharing the same extendedminimal zero support set E are open in the relative topology
of the algebraic set ZE . We shall need the following statements [11, Corollary 3.4 and
Lemma 3.7].

Lemma 1 Let A be copositive and u a zero of A. Then u is a finite sum of minimal
zeros of A.

Lemma 2 Let A ∈ COPn and I ⊂ {1, . . . , n} be non-empty. Then the following are
equivalent.

(a) A has a minimal zero with support I .
(b) the principal submatrix AI is positive semi-definite with corank 1, and the gener-

ator of ker AI can be chosen with all its elements positive.

We may now proceed to our main results.

Lemma 3 Let E = {(Iα, Jα)}α=1,...,m be a collection of pairs of index sets. Then
SE ⊂ ZE .

Proof We have to show that whenever a matrix A ∈ COPn has extended minimal zero
support set E , its submatrices AJα×Iα are rank deficient for all α = 1, . . . ,m. First
note that Iα ⊂ Jα , and hence AJα×Iα is rank deficient if and only if it has a non-zero
right kernel vector. Such a kernel vector is readily provided by the sub-vector uα

Iα
,

where uα is a minimal zero of A having support Iα . This completes the proof. ��
Theorem 1 Let A ∈ COPn and let E = {(Iα, Jα)}α=1,...,m be the extended minimal
zero support set of A. Then there exists a neighbourhood U ⊂ Sn of A such that
U ∩ SE = U ∩ ZE .

Proof Assume for the sake of contradiction that there exists a sequence Ak ∈ ZE \ SE
of matrices converging to A.

Let uα ∈ Δ be the minimal zero of A with support Iα and complementary index
set Jα , α = 1, . . . ,m. By Lemma 2 the submatrix AIα is positive semi-definite of co-
rank 1. The 1-dimensional kernel of this submatrix is generated by the element-wise
positive sub-vector uα

Iα
.

By definition of ZE the submatrices (Ak)Jα×Iα are rank-deficient. Since Iα ⊂ Jα ,
the submatrices (Ak)Iα are also rank deficient, i.e., their co-rank is at least 1. Since the
co-rank is upper semi-continuous, it can be at most 1 for all submatrices (Ak)Iα except
possibly a finite number. Without loss of generality we may assume that the co-rank of
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(Ak)Iα equals 1 for all k, and hence has a 1-dimensional kernel. Since (Ak)Iα → AIα ,
this kernel tends to the 1-dimensional subspace generated by the sub-vector uα

Iα
> 0.

Let us choose vectors vα
k with support supp vα

k ⊂ Iα such that the sub-vectors (vα
k )Iα

generate the kernel of (Ak)Iα and vα
k → uα .Without loss of generality wemay assume

that all sub-vectors (vα
k )Iα are element-wise positive and their elements sum to 1. The

vectors vα
k then have the properties

vα
k ∈ Δ, supp vα

k = Iα, (Akv
α
k )Iα = 0. (1)

The submatrix AIα has |Iα| − 1 positive and one zero eigenvalue. Since (Ak)Iα →
AIα and the submatrices (Ak)Iα have exactly one zero eigenvalue, the other eigenvalues
of (Ak)Iα must be positive for all k sufficiently large. Hence we may assume without
loss of generality that the submatrices (Ak)Iα are positive semi-definite for all k. From
(1) it follows by Lemma 2 that (vα

k )Iα is a minimal zero of the submatrix (Ak)Iα .
By definition the submatrix BJα×Iα is rank deficient for everymatrix B ∈ ZE , which

by virtue of the inclusion Iα ⊂ Jα implies that it has a non-zero right kernel vector.
This kernel vector is also in the kernel of the principal submatrix BIα . However, the
kernel of (Ak)Iα is 1-dimensional and generated by the sub-vector (vα

k )Iα . Therefore
(vα

k )Iα is also in the kernel of (Ak)Jα×Iα , and (Akv
α
k )Jα = 0. On the other hand,

we have Akv
α
k → Auα , and hence we may assume without loss of generality that

supp(Auα) ⊂ supp(Akv
α
k ) for all k. Since comp uα = Jα by assumption, we obtain

supp (Akv
α
k ) = Jα .

If Ak ∈ COPn , then by the preceding vα
k is a minimal zero of Ak with extended

support (Iα, Jα). Here minimality of vα
k follows from the fact that the kernel of (Ak)Iα

is 1-dimensional and this submatrix is positive semi-definite. Hence every other zero
with support in Iα must be proportional to vα

k .
Let us show that indeed Ak ∈ COPn except for possibly a finite number of indices

k. For each k, consider the problem

min
w∈Δ

1

2
wT Akw. (2)

Assume for the sake of contradiction that there exists a sub-sequence of matrices Ak

converging to A, which for brevity will also be denoted by Ak , such that the optimal
value γk of problem (2) is negative for all k. Let w∗

k ∈ Δ be the corresponding
minimizers. Without loss of generality we may pass to a sub-sequence {w∗

k } which
converges to some vector u∗ ∈ Δ. Then 0 > 2γk = (w∗

k )
T Akw

∗
k → (u∗)T Au∗, and

we must have (u∗)T Au∗ ≤ 0. However, the matrix A is copositive, which implies
(u∗)T Au∗ ≥ 0 and hence u∗ is a zero of A. Define the index sets I = supp u∗,
J = comp u∗, and note that I ⊂ J . Since w∗

k → u∗, we may assume without loss of
generality that I ⊂ suppw∗

k for all k.
By Lemma 1 the zero u∗ can be represented as a sum of minimal zeros of A.

Equivalently, u∗ is a convex combination of the minimal zeros uα , and there exist
nonnegative numbers ηα ,

∑m
α=1 ηα = 1, such that u∗ = ∑m

α=1 ηαuα . Note that
supp u∗ = ⋃

α: ηα>0 Iα .
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We have 0 = (Au∗)J = ∑m
α=1 ηα(Auα)J . However, Auα ≥ 0 for all α. Therefore

(Auα)J = 0 and as a consequence J ⊂ Jα and thus also (Akv
α
k )J = 0 for all α such

that ηα > 0. For each k, define vk = ∑m
α=1 ηαvα

k . By (1) we have vk ∈ Δ for all k,
and

supp vk =
⋃

α: ηα>0

supp vα
k =

⋃

α: ηα>0

Iα = I .

Moreover, (Akvk)J = ∑m
α=1 ηα(Akv

α
k )J = 0, and vTk Akvk = (vk)

T
I (Akvk)I = 0.

Let us consider the first order optimality condition at w∗
k . It states that for each k

there exists a nonnegative vector λk ∈ R
n+ and a number μk such that

∂

∂w

(
1

2
wT Akw − λT

k w + μk(1 − 1Tw)

)

= Akw − λk − μk1 = 0

at w = w∗
k , and λT

k w∗
k = 0. Multiplying from the left by w∗

k , we obtain

0 = (w∗
k )

T Akw
∗
k − (w∗

k )
T λk − μk1Tw∗

k = 2γk − μk,

and hence

λk = Akw
∗
k − μk1 = Akw

∗
k − 2γk1.

Passing to the limit on both sides and taking into account 2γk → (u∗)T Au∗ = 0,
we obtain limk→∞ λk = Au∗. Without loss of generality we may hence assume that
supp(Au∗) ⊂ supp λk for all k. It follows that

suppw∗
k ⊂ supp λk ⊂ supp(Au∗) = J .

Let us now introduce a parameter τ ≥ 0 and consider the vector wk(τ ) = (1 −
τ)vk +τw∗

k . By virtue of (w
∗
k )

T Akvk = (w∗
k )

T
J (Akvk)J = 0 the value of the objective

function of problem (2) on this vector equals

1

2
wT
k (τ )Akwk(τ ) = (1 − τ)2

2
vTk Akvk + τ(1 − τ)(w∗

k )
T Akvk + τ 2

2
(w∗

k )
T Akw

∗
k

= τ 2γk .

Recall that I = supp vk ⊂ suppw∗
k and hence the minimal face of w∗

k in Δ contains
the vector vk . Since w∗

k = wk(1) is in the relative interior of its minimal face, there
exists τ > 1 such that wk(τ ) is also in this face and hence in Δ. However, τ 2γk < γk
for such τ , contradicting that γk is the minimum of the objective function over Δ.

Thus we may assume that Ak ∈ COPn for all k. It remains to show that
esuppV Ak

min = E for all sufficiently large k. The minimal zeros vα
k of Ak ensure that

E ⊂ esuppV Ak
min. Let us show the opposite inclusion.
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On the algebraic structure of the copositive cone 2013

Suppose for the sake of contradiction that there exists a pair of index sets ( Î , Ĵ )

which is not contained in E and such that Ak has a minimal zero ûk ∈ Δ with
extended support ( Î , Ĵ ) for sufficiently large k. Without loss of generality assume that
ûk → û ∈ Δ. Then 0 = ûTk Akûk → ûT Aû, and ûmust be a zero of Awith supp û ⊂ Î .

Hence there exists a minimal zero uα of A such that Iα ⊂ supp û ⊂ Î . However, every
Ak possesses a minimal zero with support Iα , namely vα

k . By the minimality of ûk we

then must have Î = Iα and ûk = vα
k , contradicting the assumption ( Î , Ĵ ) /∈ E .

Thus Ak ∈ SE for sufficiently large k, which completes the proof of the theorem. ��
The theorem implies that in a neighbourhood of any copositive matrix A ∈ COPn

with esuppV A
min = E , the structure of the set SE of copositive matrices sharing the

extended minimal zero support set with A is completely described by the polynomial
relations determining the algebraic set ZE . We have the following result.

Corollary 1 Let E = {(Iα, Jα)}α=1,...,m be an arbitrary collection of pairs of index
sets. Then SE is an open subset in the relative topology of the algebraic set ZE .

Proof If SE = ∅, then the assertion of the corollary is trivial. In the opposite case it
follows from Theorem 1. ��

3 Properties of the subsets SE

In this section we establish some properties of the extended minimal zero support set
and the corresponding subsets SE , in particular in relation to the facial structure of
COPn .

First we consider the action of the automorphism group of COPn on the decom-
position into subsets SE .

Lemma 4 The decomposition of COPn into subsets SE is invariant under scaling
A �→ DAD by positive definite diagonal matrices and equivariant under the action
A �→ PAPT of the symmetric group Sn.

Proof Let u be a minimal zero of A ∈ COPn with extended support (I , J ).
Suppose D is a positive definite diagonal matrix. Then D−1u is a minimal zero

of the diagonally scaled matrix DAD ∈ COPn . It is easily seen that the extended
support of D−1u is again (I , J ). Hence A and DAD have the same extended minimal
zero support set and reside in the same subset SE .

On the other hand, let P ∈ Sn be a permutation matrix. Then Pu is a minimal
zero of the permuted matrix PAPT . However, the extended support ( Ĩ , J̃ ) of Pu is
obtained from (I , J ) by element-wise application of the permutation P . Hence the
extended minimal zero support set of PAPT is obtained from E by the element-wise
action of P .

This completes the proof. ��
We have the following simple properties.
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Lemma 5 Let E = {(Iα, Jα)}α=1,...,m be a collection of pairs of index sets such that
SE �= ∅. Then for every α, β we have Iα ⊂ Jβ if and only if Iβ ⊂ Jα . Moreover,
Iα �= ∅ and Iα ⊂ Jα for all α. If α �= β, then Iα �⊂ Iβ .

Proof Let A ∈ SE and let uα beminimal zeros of Awith supp uα = Iα , α = 1, . . . ,m.
Since uα �= 0, we have Iα �= ∅ for all α.

We shall show that the inclusion Iβ ⊂ Jα is equivalent to the relation (uβ)T Auα =
0. Indeed, since uβ ≥ 0 and Auα ≥ 0, the relation (uβ)T Auα = 0 is equivalent to
supp uβ ∩ supp(Auα) = Iβ ∩ Jα = ∅. This in turn is equivalent to Iβ ⊂ Jα .

By the symmetry of the condition (uβ)T Auα = 0 with respect to an exchange of
α, β we obtain the first claim of the lemma.

The second claim follows from the relation (uα)T Auα = 0.
The last assertion holds by theminimality property of the supports Iα of theminimal

zeros uα . ��
If the set SE is non-empty and not the zero set {0}, then it has a boundary, which

by Corollary 1 is a subset of ZE \ SE . Since COPn is closed, this boundary consists
of copositive matrices, and hence of elements of other subsets SE ′ with E ′ �= E . The
following result describes a relation between the two collections E ′, E .

Lemma 6 LetE = {(Iα, Jα)}α=1,...,m be a collection of pairs of index sets, and let Ak ∈
SE be a sequence of matrices tending to some limit A ∈ SE ′ , E ′ = {(I ′

α, J ′
α)}α=1,...,m′ .

Then for every α = 1, . . . ,m there exists α′ ∈ {1, . . . ,m′} such that I ′
α′ ⊂ Iα ,

Jα ⊂ J ′
α′ . In particular, we have ZE ′ ⊂ ZE .

Proof Let uk ∈ Δ be the minimal zero of Ak with extended support (Iα, Jα). Assume
without loss of generality that uk → u ∈ Δ. We have 0 = uTk Akuk → uT Au,
and hence u is a zero of A. Moreover, supp u ⊂ supp uk = Iα . On the other hand,
Akuk → Au, and hence supp(Au) ⊂ supp(Akuk) = Jα . It follows that Jα ⊂ comp u.

By Lemma 1 the zero u of A can be decomposed as a sum of minimal zeros of A,
u = ∑

α′ uα′
with the extended support of the minimal zero uα′

being (I ′
α′ , J ′

α′) ∈ E ′.
Note also that Au = ∑

α′ Auα′
. Now both uα′

and Auα′
are nonnegative vectors, and

hence

I ′
α′ = supp uα′ ⊂ supp u, supp(Auα′

) ⊂ supp(Au)

for all α′ appearing in the sum, the second inclusion being equivalent to comp u ⊂ J ′
α′ .

The first assertion of the lemma now readily follows.
Now if the submatrix BJ ′×I ′ of some matrix B ∈ Sn has a non-zero right kernel

vector, then also BJ×I has a non-zero right kernel vector whenever I ′ ⊂ I , J ⊂ J ′.
This proves the second assertion. ��

We now pass to the properties related to the facial structure of COPn .

Lemma 7 All matrices in the relative interior of a faceF ⊂ COPn belong to the same
subset SE . The matrices in the boundary of the face F do not belong to the subset SE .
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Proof Let A in the relative interior of F have extended minimal zero support set
E = {(Iα, Jα)}α=1,...,m , and let uα be minimal zeros of A with support Iα . Note that
F is the minimal face of A. By [8, Theorem 17] the linear hull of F is given by all
matrices B ∈ Sn such that (Buα)Jα = 0 for all α = 1, . . . ,m. Hence this linear hull
is a subset of ZE . Thus by virtue of Theorem 1 there exists a neighbourhood U of A
such that U ∩ F ⊂ SE .

It follows that the extended minimal zero support set is locally constant on the
interior of the face F . This implies the first assertion of the lemma.

On the other hand, suppose for the sake of contradiction that A′ ∈ ∂F ∩ SE . Then
again by Theorem 1 there exists a neighbourhoodU ′ of A′ in the linear hull ofF such
that U ′ ⊂ SE and hence U ′ ⊂ COPn . This contradicts the assumption A′ ∈ ∂F and
proves the second assertion of the lemma. ��
Corollary 2 Each of the subsets SE ⊂ COPn is a disjoint union of relative interiors
of faces of COPn.

Proof The corollary follows from Lemma 7 and the fact that relative interiors of
different faces do not intersect. ��

We shall need the following auxiliary result.

Lemma 8 Let M be a k × k matrix of rank k − 1 and with left kernel vector having
a non-zero first element. Denote Ii = {1, . . . , k} \ {i}, i = 1, . . . , k. Then the right
kernel of M is generated by the vector u ∈ R

k with elements ui = (−1)i det MI1×Ii .

Proof By assumption the first row ofM is a linear combination of the other k−1 rows.
Since the matrix M is of rank k−1, the remaining k−1 rows are linearly independent
and at least one of the determinants defining the elements of u is non-zero. Let the
vector v = (v1, . . . , vk)

T generate the right kernel of M .
Now replace the elements of the first row of M by independent variables x1, . . . , xk

and let f (x) = −∑k
i=1 ui xi be the determinant of the so-modified matrix. This

determinant is zero if and only if the vector x = (x1, . . . , xk) is a linear combination
of the other rows of the matrix. In this case v is a right kernel vector of the matrix, and∑k

i=1 vi xi = 0. Thus v must be proportional to u, which completes the proof. ��
Let now A ∈ COPn be arbitrary and let E be the extended minimal zero support

set of A. Let F be the minimal face of A. As mentioned in the proof of Lemma 7, its
linear hull is given by the solution space of a linear homogeneous system of equations
with the non-zero coefficients being the positive elements of the minimal zeros of A.
By Lemma 8, these elements can be expressed by polynomials in the elements of the
matrix A. Moreover, the linear system has the same form for all matrices in SE .

Therefore the dimension of the minimal face of a matrix A ∈ SE is given by the
column rank defect of a matrix depending polynomially on A. We obtain the following
result.

Lemma 9 Let E be a collection of pairs of index sets, and let C be an irreducible
component of the algebraic set ZE such that S = C ∩ SE �= ∅. Then the dimension of
the minimal face of a matrix A ∈ S is constant over S, with the possible exception of
an algebraic subset of lower dimension where the dimension of the face is higher.
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Proof The column rank defect of a matrix is determined by which of its minors are
zero or not. In our case these minors are polynomials in the elements of A, and hence
they either identically vanish on C or their zero set is an algebraic subset of lower
dimension. On this subset the column rank defect can only increase. ��

In particular, each component of SE either does not contain any extremal matrix, or
all matrices in the component are extremal with the possible exception of an algebraic
subset of lower dimension. This makes the decomposition proposed in this paper
especially well-suited for the study of the extremal matrices of COPn . One may
denote non-extremal matrices of COPn which are elements of a subset SE containing
extremal matrices by quasi-extremal.

3.1 Examples

In this section we provide some explicit examples of subsets SE .
Interior of COPn : The largest subset for any order n is the subset S∅, which equals

the interior of the cone. In this case Z∅ = Sn . This example shows that the boundary
of SE may be as complicated as the copositive cone itself.

Generic points in ∂COPn : An open dense subset of the boundary ∂COPn must be
defined by subsets SE of dimension n(n+1)

2 −1. The corresponding algebraic set ZE is
determined by a single polynomial equation. In this casewemust have E = {(I , I )} for
some non-empty index set I , and the corresponding equation amounts to det AI = 0.

Zero subset: The unique 0-dimensional subset SE is the point {0}, with E =
{({i}, {1, . . . , n})}i=1,...,n .

Orbit of the Horn matrix:Anon-trivial example of a subset SE is the set of matrices

D

⎛

⎜
⎜
⎜
⎜
⎝

1 −1 1 1 −1
−1 1 −1 1 1
1 −1 1 −1 1
1 1 −1 1 −1

−1 1 1 −1 1

⎞

⎟
⎟
⎟
⎟
⎠

D ∈ COP5, D = diag(d1, . . . , d5) � 0.

In this case the extended minimal zero support set is given by

E ={({1, 2}, {5, 1, 2, 3}), ({2, 3}, {1, 2, 3, 4}), ({3, 4}, {2, 3, 4, 5}),
({4, 5}, {3, 4, 5, 1}), ({5, 1}, {1, 2, 3, 4})}.

Matrices with circulant zero support set: The previous example can be generalized
to arbitrary order n. The corresponding copositive matrices have been studied in [12].

Let E = {({1, 2, 3}, {2}), . . . , ({n, 1, 2}, {1})}, n ≥ 5, where the pairs of index sets
in E are obtained from each other by a circular shift of the indices 1, . . . , n. Then
SE is an algebraic manifold of dimension n(n−3)

2 consisting of extremal exceptional
copositive matrices [12, Theorem 6.3].

Let E = {({1, 2}, {1, 2}), . . . , ({n, 1}, {n, 1})}, n ≥ 5, where the pairs of index sets
in E are obtained from each other by a circular shift of the indices 1, . . . , n. Then
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Table 1 Decomposition of the cone COP2

No. E Matrices in SE Matrices in ZE

1 ∅ A ∈ (COP2)o A ∈ S2

2 {({1}, {1, 2}), ({2}, {1, 2})} 0 0

3 {({1, 2}, {1, 2})}
(
a2 ab
ab b2

)

: ab < 0 A: det A = 0

4 {({2}, {1, 2})}
(
a 0
0 0

)

: a > 0

(
a 0
0 0

)

5 {({2}, {2})}
(
a b
b 0

)

: a, b > 0

(
a b
b 0

)

6 {({1}, {1}), ({2}, {2})}
(
0 a
a 0

)

: a > 0

(
0 a
a 0

)

7 {({1}, {1})}
(
0 a
a b

)

: a, b > 0

(
0 a
a b

)

8 {({1}, {1, 2})}
(
0 0
0 a

)

: a > 0

(
0 0
0 a

)

Fig. 1 Decomposition of COP2 into subsets SE . The numbers correspond to those in Table 1. The union
of subsets 3, 5, 7 is open and dense in the boundary of COP2. The affine compact section of COP2

corresponds to the section in [9, Fig. 1]

SE is an algebraic manifold of dimension n(n−1)
2 consisting of exceptional copositive

matrices, which can be extremal only for odd n [12, Theorem 6.1].
Stratification of COP2: The 3-dimensional cone COP2 decomposes into the 8

strata listed in Table 1. These strata are depicted in Fig. 1.
Let us derive the extended support sets allowed by Lemma 5. For any element

(I , J ) ∈ E , we must have I �= ∅ and I ⊂ J . This leaves only the possibilities
({1}, {1}), ({1}, {1, 2}), ({2}, {2}), ({2}, {1, 2}), ({1, 2}, {1, 2}). Of these 5 elements,
the first can co-exist only with the third, and the second only with the fourth without
violating the conditions of Lemma 5, with no other possible combinations of several
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elements. Thus the 8 extended support sets which correspond to non-empty subsets
SE are exactly those which are allowed by the lemma.

Further, for two distinct elements (I , J ), (I ′, J ′) out of the 5 possible ones listed
in the previous paragraph, we have I ′ ⊂ I and J ⊂ J ′ only if the pair of elements
is made up of the first and second, or the third and fourth, or the fifth and second,
or the fifth and fourth. It follows that the conditions of Lemma 6 are satisfied if the
pair (E, E ′) is given by those pairs of two of the 8 sets listed in Table 1 which have
numbers (1, 
), (
, 2), (3, 4), (3, 8), (5, 4), (5, 6), (7, 6), (7, 8). Here 
 corresponds
to an arbitrary number. It can be observed that for exactly those pairs the subset SE ′ is
contained in the boundary of SE .

Increase of facial dimension within SE : Let us give an example of a subset SE which
is made up of facial interiors of different dimension, as mentioned in Lemma 9. Let
n = 6 and consider the extended support set

E ={({1, 5}, {1, 2, 4, 5}), ({2, 6}, {1, 2, 3, 6}), ({1, 2, 3}, {1, 2, 3, 6}),
({2, 3, 4}, {2, 3, 4}), ({3, 4, 5}, {3, 4, 5}), ({4, 5, 6}, {4, 5, 6})}.

The corresponding subset SE ⊂ COP6 has dimension 11 and consists of matrices A
of the form

D

⎛

⎜
⎜
⎝

1 − cosφ1 cos(φ1 + φ2) cosφ4 −1 cosφ1
− cosφ1 1 − cosφ2 cos(φ2 + φ3) cosφ1 −1

cos(φ1 + φ2) − cosφ2 1 − cosφ3 cos(φ3 + φ4) cosφ2
cosφ4 cos(φ2 + φ3) − cosφ3 1 − cosφ4 cos(φ4 + φ5)
−1 cosφ1 cos(φ3 + φ4) − cosφ4 1 − cosφ5

cosφ1 −1 cosφ2 cos(φ4 + φ5) − cosφ5 1

⎞

⎟
⎟
⎠ D,

where φi > 0, i = 1, . . . , 5, φ1 < φ5, φ2 + φ3 + φ4 + φ5 < π , and D is a positive
definite diagonal matrix. If φ1 + φ5 �= π , then the dimension of the face of A equals
1. For φ1 + φ5 = π , however, the dimension of the face increases to 2, and the
corresponding matrices are quasi-extremal.
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