
Optimization Letters (2021) 15:153–170
https://doi.org/10.1007/s11590-020-01577-0

ORIG INAL PAPER

Variable fixing heuristics for solving multiple depot vehicle
scheduling problemwith heterogeneous fleet and time
windows

Armando Teles Dauer1 · Bruno de Athayde Prata2

Received: 23 April 2019 / Accepted: 27 March 2020 / Published online: 6 April 2020
© Springer-Verlag GmbH Germany, part of Springer Nature 2020

Abstract
This paper aims at presenting the multiple depot vehicle scheduling problem with het-
erogeneous fleet and time windows (MDHFVSP-TW). We used a time-space network
(TSN) to perform the modeling of MDHFVSP-TW, along with two methodologies to
reduce its size and, therefore, its complexity. Along with size reduction methods, a
mixed integer programming (MIP) heuristic with variable fixation was presented. Its
operation is based on the use of the solution for this problem with relaxed variables
as a basis for the removal of arcs from the problem, reducing its size and enabling
its resolution in reasonable computational time. Extensive tests were performed for a
collection of randomly generated instances. Subsequently, a case study arising from
a real instance from a Brazilian city is presented. The computational results showed
that the proposed heuristic and size reduction methods obtained good performance,
providing high-quality solutions in an adequate computational time.

Keywords Combinatorial optimization · Public transport systems · Mixed integer
linear programming · Machine learning

1 Introduction

Three main components shape a mass transit system: the passenger, who needs to
know how to go from an origin to a destiny and how long it will take; the crew, who
needs to know their working scheduling for the day and if they will need to change
to different vehicles; and the vehicles, that must be allocated in a certain way so that
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the number of vehicles available meet the demand. Finding an efficient schedule that
satisfies all the requirements of this system, regarding all the constraints, can be a
complex and arduous task.

Ceder [4] evidences that transportation planning process is based on four essential
components, usually in the following order: a network design, a defined timetable, the
allocation of vehicles to the trips, and the assignment of a crew. The best-case scenario
is when all components are planned simultaneously, maximizing the efficiency of the
system. However, scheduling a mass transit system is a complex process, and applying
an integrated approach to real-world size instances is extremely hard and demands a
large amount of effort and computational time.

Ibarra et al. [16] explain that the focus of this process is to minimize the overall
cost, to reduce the usage of the vehicles, to decrease the fuel consumption and the
drivers’ wage. The main problem can be divided into three smaller problems: the
vehicle scheduling problem (VSP); the crew scheduling problem (CSP) and the crew
rostering problem (CRP).

The VSP determines which group of trips will be assigned to each bus aiming to
reduce the number (capital cost minimization) and the use of vehicles (operational
cost minimization). The complexity of this problem is influenced by several charac-
teristics, including: the number of depots, single depots VSP (SDVSP) can be solved
in polynomial time, while multiple depot VSP (MDVSP) is an NP-hard problem as
demonstrated by Bertossi et al. [2]; homogeneous or heterogeneous fleet (if the sys-
tem operates different capacity vehicles with distinct operational costs); the number
and location of relief points along with specific characteristics of a system such as
inter-routine and how deadheads are implemented.

The possibility of delay or advance the start of a trip in a few minutes is a common
practice in some cities in Brazil. This technique, named time windows, is applied to
provide a higher number of connections and combinations, increasing the number of
feasible solutions. This technique also allows a new connection of two trips (which
otherwise would not be possible) producing an optimized solution, improving the use
of resources while minimizing operating costs.

Themain contributions of this paper are as follows. Firstly,we propose a newvariant
of the VSP that includes multiple depots, heterogeneous fleet, and the application of
time windows (MDHFVSP-TW). According to our thorough literature review, this
variant has not been modeled yet, despite its practical and theoretical importance.
Secondly, we present a solution method for the MDHFVSP-TW combining the time-
space network (TSN) representation and a mixed integer programming formulation.
To reduce the size of the TSN and the computational time required to solve this
problem, we also propose two TSN size-reduction techniques. The first technique
reduces the number of arcs based on their cost, eliminating arcs that, because of their
high cost, have little chance of composing the final solution. The second method is
based onmachine learning algorithms, using the knowledge produced from previously
solved instances to reduce the size of the time-space network assertively. After that,
an extensive computational evaluation is conducted to measure the robustness of the
proposed approaches. Finally, we present a case study of a small instance arising from
Brazilian city demonstrating the ability and efficiency of the proposed algorithms to
solve real-world problems.
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The remainder of this paper is organized in the following sections. Section 2 presents
a literature review on the MDVSP. Section 3 introduces the problem statement, the
methodology for the generation of the TSN along with the proposed mathematical
model. Section 4 presents the proposed approaches. Section 5 presents the computa-
tional results obtained in a set of randomly generated instances. Section 6 presents
a case study. Section 7 summarizes the main findings and proposes some topics for
future research.

2 Literature review

In this section, we present related approaches to the variant under study aiming to
highlight the contributions provided by the current research.

Dell’Ammico et al. [5] study a variation of the multiple depot VSP (MDVSP),
intending to obtain a polynomial–time heuristic method capable of providing a low-
cost feasible solution, guaranteeing the use of a minimal number of vehicles. The
proposed algorithm is based on the shortest path approach and works in stages, in each
stage determining a number of forbidden arcs and thenfinding a feasible circuit through
the shortest path algorithm. Forbes et al. [8] present an exact algorithm approach for
the MDVSP based on a linear programming relaxation and a subsequent branch and
bound stage. Ribeiro and Soumis [23] propose a solution for the MDVSP applying a
column generation algorithm to solve a continuous relaxation of this problem.

Lobel [19] presents a solution methodology based on a column generation heuris-
tic applied to LP relaxation of a multi-commodity flow formulation. This method
denominated Lagrangean Pricing, performs on arcs of complete paths and not only in
individual arcs. Banihashemi and Haghani [1] carried out a study on a variant of the
MDVSP, including route time constraints such as fuel consumption. Two techniques
are proposed of a combined solution of MDVSP sub-problem and size reduction
methodologies to allow the solution of large-size instances.

Huisman et al. [15] study focuses on dynamic scheduling and proposes a different
heuristic approach to theMDVSPnamed dynamic vehicle scheduling aiming to reduce
the number of late starting trips. This approach is divided into two steps, first, the trips
are allocated among the different depots through the solution of the static problem,
and then a series of single depot problems are solved.

Hadjar and Soumis [13] propose a branch-and-cut algorithm to solve the MDVSP.
This branch-and-cut approach is improved with a column generation methodology to
solve the VSP linear-programming relaxation, a variable fixation technique that sets
the value of some variables and a cutting planes technique to reduce the number of
solutions. Oukil et al. [21] aims to solve the long horizon MDVSP using the already
well proven efficient column generation methodology. However, the column genera-
tion methodology faces problems when the instance is highly degenerate. To find a
way of dealing with this problem, the study combined this methodology with prepro-
cessing variable fixing and stabilization. Pepin et al. [22] compares five approaches for
solving the MDVSP. These approaches include truncated branch-and-cut, truncated
column generation, Lagrangian heuristic, tabu search and large neighborhood search
heuristic using truncated column generation.
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Guedes et al. [12] propose a fast approach to solve very large instances of the
MDVSP using a two-stage procedure: first there is a reduction of the state space fol-
lowed by the application of a truncated column generation heuristic. Two methods are
proposed to reduce the state space, the first one is based on a single depot scheduling
for each depot and the second one relaxes the depot returning constraint, allowing the
vehicle to finish its journey in a different depot from where it started. Xu et al. [24]
study a variant of the MDVSP with departure-duration restrictions. These restrictions
ensure that the vehicles return to the depot when crews reach their working time limits.
These authors propose a large neighborhood search improved by embedding a short-
est path faster algorithm as a preliminary exploration tactic approach. Kulkarani et
al. [18] propose a model for the MDVSP based on a minimum cost multi-commodity
network flow formulation, considering vehicles from different depots as different com-
modities. This formulation is based on two types of constraints, flow conservations
constraints and cover constraints. The tests were carried on randomly generated large
sized instances, with 16 depots and 3000 trips.

Ginter et al. [9] aims to solve an MDVSP combining an exact time-space network
(TSN) and a heuristic methodology to solve large real-world instances. The TSN is
treated as a network flow problem, and a decomposition process is applied to obtain
an optimal flow vehicle scheduling along with a fix and optimize heuristic. Kliewer
et al. [17] study MDHFVSP applying a new modeling TSN generation technique that
avoids the exponential growth of the model with the increase of the timetable. Guedes
and Borestein [10] propose a 4-step methodology for solving the MDHFVSP. The
proposed method initially generates the TSN and the connection network, then reduce
the number of variables applying a state space reduction. After the reduction, initial
solutions are generated and, finally, a column generation algorithm solves the reduced
problem to find near-optimal solutions.

Desaulniers et al. [6] formulate the MDVSP with time windows as an integer non-
linear multi-commodity network problem proposing its solution through a heuristic
approach combination of column generation and branch-and-bound techniques. The
model proposed considers exact waiting cost, instead of the common minimal consid-
eration of minimal waiting costs. Hadjar and Soumis [14] studied the MDVSP with
the implementation of up to 30min time windows. The chosen methodology to solve
the problem was a branch-and-price technique and, once the use of time windows
dramatically increases the size of the TSN, a dynamic size reduction was applied to
speed up the branch-and-price algorithm.

On the basis of the literature review, we can observe that there is no other approach
for the vehicle scheduling problem taking into consideration concomitantly multiple
depots, heterogeneous fleet, and time windows.

3 Proposedmathematical formulation

In this model, to which we refer as Multiple Depot Heterogeneous Fleet Vehicle
Scheduling Problem with Time Windows (MDHFVSP-TW), we intend to obtain the
optimal vehicle allocation and trip scheduling in order to minimize the global cost of
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mass transport system operation. Hereafter, the notation used for the formulation of
the model will be presented.

It is important to note that several arcs (and nodes) from a given trip may be
represented in a TSN and only one can be included in the final solution. This multiple
arcs from a same trip are the result of the application of the timewindows and, although
they share the same origin and ending place, their starting and ending times have a
subtle difference from the ones indicated in the timetable. For example, for a given
time window of 1min, a trip may have three representations (set of Nta and Ntd nodes
and the correspondent trip arc) in the TSN: the original, formed by nodes (and the
correspondent trip arc)with the same time as indicated in the timetable, a secondwhere
the starting and ending times of the nodes (and the correspondent trip arc) are reduced
in one minute, and a third one, where 1min is added to the starting and ending times
of the nodes (and to the correspondent trip arc). The group of this arcs, containing
the arc with the original times and the other arcs created due the application of time
windows, were named time windows variations.

Sets

– D Set of depots;
– K Set of vehicles;
– Arcs Set of arcs;
– Atasks Subset of Arcs, including only the task arcs, Atasks ⊆ Arcs;
– Atask I D Subsets of an Atask. Each set contains the time windows variations of
a given arc. Atask I D ⊆ Atasks;

– N Set of nodes;
– Ndo Set of first nodes of each depot, Ndo ⊂ N ;
– Ndd Set of last nodes of each depot, Nde ⊂ N ;
– Cap Set of categories of vehicle capacity;
– Cat Set of vehicles that belong to the same category Cap, cat ⊆ Cap;

Parameters

– VCw Cost increase factor according to the type of vehicle w;
– Ca Cost of arc a;
– Capc Passenger capacity of vehicle w;
– Demid Demand for an arc part of a given Atask I Did group;
– Avacatd Number of vehicles available of a given set cat at depot d;
– Demid Demand for all Atask of group id;

Decision variables

Zw
a =

{
1, if vehiclewis allocated to Arc a;
0, otherwise.

MDHFVSP-TW model

min
∑

a ∈ Arcs

∑
w ∈ K

Ca VCw Zw
a (1)
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Subject to:

∑
( j,s) ∈ N

Zw
i,t; j,s −

∑
( j,s) ∈ N

Zw
j,s;i,t =

⎧⎪⎨
⎪⎩
1, if (i, t) ∈ Ndo;
−1, if (i, t) ∈ Ndd;
0, otherwise;

∀w ∈ K (i, t) ∈ N (2)

∑
w ∈ K

∑
b ∈ Atask I Did

Zw
b = 1 ∀ id ∈ Atask I D; (3)

∑
( j,s) ∈ δ+

(i,t)

Zw
(i,t; j,s) =

∑
(m,n) ∈ δ−

(i,o)

Zw
(m,n;i,o) ∀i ∈ D, w ∈ K ; (4)

∑
w ∈ K

∑
b ∈ Atask I Did

Zw
b Capw ≥ Demid ∀ id ∈ Atask I D; (5)

∑
w ∈ cat

Zw
i,t : j,s ≤ Avaci ∀ i ∈ D, (i, t) ∈ Ndo, c ∈ Cat; (6)

Zk
a ∈ {0, 1} ∀ k ∈ K , a ∈ Arcs. (7)

The objective function (1) aims to minimize the cost of the solution. The value of
the solution for this model is obtained by the multiplication of cost Ca for a selected
arc a times the incremental value factor for the selected type of vehicle VCw. Flow
balance constraint set (2) ensures the continuity of arcs allocated for a vehicle. Task
covering constraint set (3) ensures that for each Atask I D groups, only one task will
be selected to be part of the solution and to be assigned to a particular vehicle. The
constraint set (4) determines that every vehicle will end the journey at their start depot.
The vehicle capacity constraint set (5) determines that the selected vehicle for a trip
must have a passenger capacity equal to or greater than the demand for that trip. The
fleet size constraint set (6) ensures that the number of vehicles of a given type allocated
of a certain depot must be lower than or equal to the available number of vehicles in
that depot. Finally, constraint set (7) determine the domains of the decision variables.

4 Proposed approaches

The Size-reduction (SR) approach is based on the idea that there is a small chance
of a high-cost arc being included in a competitive solution. Therefore, in order to
reduce the size of the problem and speed up its solution, a percentage of these arcs
is eliminated before the beginning of the analysis. This heuristic was firstly proposed
by Fanjul-Peyro and Ruiz [7], for the unrelated parallel machine scheduling problem.
The SR algorithm does not guarantee that the optimal global solution is found for a
given instance and may not present high-quality solutions in some cases. However, for
some cases (as the one in this study), this method can offer a fast and straightforward
implementation at a low computational cost.

In order to determine our limit acceptable arc cost, all the arcs are organized in
crescent order by its cost, from the lower to the higher cost arc. Then the value for a
parameter α is defined, ranging from 0 to 1. The product of α and the total number of
arcs will be used to select the limiting cost. For example, if α is equal to 0.80 and a total
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of 100 arcs in the instance’s time window, the cost of the 80th will be the maximum
allowed cost for the arcs.

The decision to restrict the analysis to connection and waiting arcs has proven
to not be an adequate criterion through the tests. The real percentage of eliminated
arcs was around 2% for α equal to 0.75 and approximately 5% for α equal to 0.50,
a reduction that could not effectively impact the solution times. Consequently, the
approach was modified, allowing the algorithm also to eliminate pull-in and pull-out
arcs. This adjustment significantly affected the maximum permitted value for α, due
to the risks mentioned in the previous paragraph. However, the real percentage of fixed
arcs were much closer to the value of α if compared to the initial approach.

The proposed methodology follows the main idea of the SR approach explained
previously: reduce the size of the TSN to decrease the problem’s size. However, reduc-
ing the size of the TSN, if not done correctly, can substantially lower the quality of the
provided solution. The use of a model based on previously solved MDHFVSP-TW,
with similar instance characteristics, aims to obtain a valid response while mitigating
the loss of quality of the solution. A machine learning technique applied to reduce the
size of a TSN was not found during the literature review. Our idea is to use a machine
learning reduction (MLR) to predict from which arc a vehicle will be allocated based
on the trip characteristics. This prediction would allow removing the non selected arcs,
therefore, reducing the size of the TSN.

In this study, we adopt supervised learning. Due to the unprecedented application
of machine learning algorithms for TSN reduction, we do not know which algo-
rithms are the best fit for our datasets. Thus, five commonly-used algorithms are
under consideration: Logistic Regression (LR); Linear Discriminant Analysis (LDA);
k-Nearest Neighbors (KNN); Classification and Regression Trees (CART); Gaussian
Naive Bayes (NB); and Support Vector Machines (SVM).

The databases for the MLR were created using previously solved MDHFVSP-TW
instances. After the selection of the most appropriate algorithm for each group and
database, the arc elimination begins. This process is divided into two phases: The first
phase is the input of the instance, the TSN generation, and its data mining to generate
a dataset for each type of trip; In the second phase, the selected algorithm is applied
for each case, using the information from the database to predict which arc will likely
be in the final solution, removing the unselected arcs.

In MDHFVSP-TW model for the problem in this study, the variable Z is a large
size binary matrix shaped by lines representing each arc in the TSN and by columns
representing each available vehicle. Despite the large size of this problem, the density
of the matrix Z at the optimal solution is usually low. Supported by this characteristic,
the LP-and-Fix approach utilizes the relaxed solution of variable Z to reduce the
number of arcs that need to be analyzed for the final solution. This approach is based
onMaes et al. [20] algorithm for themultilevel capacitated lotsizing problem, although
some adjustments were made to better suit the needs of the problem under study.

The initial step is to relax the integrality of decision variables X and Z and solve
the problem. The following step is to determine which elements will be fixed and,
for that, a real-valued parameter β varying from 0 to 1 is established. Then, for each
element of Z that is not in the relaxed solution, a random real number between 0.00
to 1.00 is chosen. If the value is smaller or equal to β, the solution value of this arc is
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set to 0, removing it from the TSN. Finally, the integrality of the variables X and Z
is restored and the problem is once more solved. Although the probability of a virtual
arc having a value equal to 0 is small, removing this type of arc could turn the integer
model unfeasible. Therefore, no virtual arcs are fixed.

The proposedmethodology is a combination of the previously explained SRmethod
and the LP-and-Fix implementation. First, the SR is applied, eliminating a percent-
age of the most expensive arcs and therefore, the relaxed execution, fixation and
integer execution are performed, taking advantage of the smaller TSN provided by
the size-reduction. Algorithm 1 presents the combination of the SR and LP-and-Fix
methodologies.

Algorithm 1: Size-Reduction plus LP-and-Fix

Step 1:(initialization) set parameters α and β, input the TSN,
time limit and load the model.
Step 2:(cost organization) organize all costs from the lowest
to the highest in a vector v.
Step 3:(limit cost value) the limit cost value is equal to the
value of (α × v)th element of v.
Step 4:(arcs elimination) For each a ∈ Arcs, if (cost a > limit cost
value) then,

∑
(w∈k) zka = 0.

Step 5:(variable relaxation) relax the integrality of
variables X and Z to accept value between 0.00 and 1.00.
Step 6:(relaxed model solving) solve the relaxed model.
Step 7:(element fixation) analyze the solution of the relaxed
model. For each element whose solution is equal to 0, randomly
pick a number between 0.00 and 1.00. If the number is smaller
or equal to β, fix the value of the element equal to zero.
Step 8:(variable integrality) restore the integrality.
Step 9:(solution) solve the integer model considering
previously fixed variables.

4.1 Machine learning reduction plus LP-and-fix (MLR+ LP-and-fix)

Despite its promising early results, the reduction provided by applying the MLR
approach to only two trip types may not be significantly effective for large instances.
Therefore, machine learning reduction was combined with the LP-and-Fix technique
previously presented. This methodology is divided into two stages: in stage 1, the
dataset for a type of trip is mined from the database and a suitable machine learning
algorithm is defined. This process is repeated for each cluster of instances with the
same characteristics and each trip type. Then, in stage 2, we implement the selected
algorithm to reduce the size of the TSN and finally solve the problem using the LP-
and-Fix approach.

Given the large number of possible combinations, only two groups of trips were
selected for the application of the machine leaning reduction method. Those groups
were named Case 0 and Case 1. Case 0 trips have no connection or awaiting arcs
before and after the trip, the only arcs linked are pull-in and pull-out arcs. Case 1 tasks
have only one connection before its beginning and no other linked arcs besides pull-in
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and pull-out arcs. Algorithm 2 expresses the combination of the proposed machine
learning reduction and LP-and-Fix techniques.

Algorithm 2:Machine Learning Reduction plus LP-and-Fix

Step 1:(initialization) set parameter β. Input the TSN, input
case 0 model, input case 1 model, time limit and load the
model.
Step 2:(case 0 analysis) Sort out the tasks of TSN that fit
case 0 and trough case 0 model define which arcs must be
preserved and which must be deleted from the TSN.
Step 3:(case 1 analysis) Sort out the tasks of TSN that fit
case 1 and trough case 1 model define which arcs must be
preserved and which must be deleted from the TSN.
Step 4:(re-inclusion of arcs) analyze all group of tasks that
present the same starting or ending node and, if the are no
pull-in or pull-out arcs and if the number of connection arcs
is less than the number of tasks, re-include the pull-in or
pull-out arcs correspondent.
Step 5:(variable relaxation) relax the integrality of
variables X and Z to accept value between 0 and 1.
Step 6:(relaxed model solving) solve the model.
Step 7:(element fixation) analyze the solution of the relaxed
model. For each element whose solution is equal to 0, randomly
pick a number between 0.00 and 1.00. If the number is smaller
or equal to β, fix the value of the element equal to zero.
Step 8:(variable integrality) restore the integrality.
Step 9:(solution) solve the model.

5 Computational results

The computational experiments have the primary objective of comparing the perfor-
mance of the developed solution approaches, using randomly generated instances.

We implemented the TSN generation in Python 3.2 as well as the MLR, which
used the scikit-learn library. The LP-and-Fix and SR algorithms were implemented in
C++, using IBM ILOG CPLEX version 12.6 as a standard optimization package in
Concert technology. All experiments were carried out in an Intel Core CPU i5-6400,
2.70GHz, 8GB RAM. The following notation is used to indicate the implemented
algorithms: (1) LP-and-Fix: variable relaxation and zero fix; (2) SR: size-reduction;
(3) SR+LP-and-Fix: size-reduction plus variable relaxation and zero fix; (4) MLR:
machine learning reduction; and (5) MLR+LP-and-Fix: machine learning reduction
plus variable relaxation and zero fix.

5.1 Instances generation

The trip generationmethodology proposed byCarpaneto et al. [3] has beenwidely used
inMDVSP literature. However, a fewmodifications weremade to adapt thismethodol-
ogy to generateMDHFVSP instances. Thesemodifications include the implementation
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of demand function developed byGuedes et al. [10] and away of determining the num-
ber of vehicles of each type for the depots.

We considered three sets of instances for the experiments. The first set is based on
the real-world instance of guedes2015 and it contains instances of nine relief points,
five depots and three vehicles types with capacities of 84, 95 and 140 passengers.
The second and third sets both include instances 10 relief points and consider four
vehicles types with capacities of 70, 80, 100 and 160 passengers and. The second set
is composed of 4-depot instances, while the third contains 6-depot instances.

5.2 Parameter tuning

To test several values of α and β, we generated a set containing five instances of 200
trips, 10 relief points, and 4 depots. Due to the size of the instance, all executions were
limited to 3600s. Each methodology was tested separately, and although these values
can vary according to the number of arcs in the TSN, these results gave us an insight
into the best suitable values for larger instances.

For α, the values of 0.75, 0.80 and 0.85, 0.90 were tested. Low values of alpha result
in lower arc cost limit and, therefore, in a greater number of arcs removed from the
TSN. The solutions for α equal to 0.75 and 0.80 made the TSN unfeasible for this set
of instances while values of α equal 0.85 and 0.90 produced good results with average
deviations from the optimal solutions (gap) of 15.94% and 16.13% respectively.

The set was also tested for values of β ranging from 0.10 to 0.90, comparing the
average solution gap to the average computational time required for each value of β.
Based on these results and later tests carried on larger instances, the most suitable
values for the SR+LP-and-Fix proposed methodology is 0.90 for α and 0.80 for β.
For the MLR+LP-and-Fix, the value of β was also maintained in 0.80.

5.3 Selection of machine learning algorithms

Six literature most commonly found machine learning algorithms were tested, regard-
ing their accuracy, to determine the best suitable algorithm for each dataset. Although
large-sized datasets usually improve machine learning algorithms accuracy and are
highly desirable, due to the high computational costs, each restrict dataset was limited
to 10 previously solved instances. The general datasets are the collection of restrict
datasets with the same characteristics of relief points, depots, and vehicle types. There-
fore, the general database for set 1, the general database was generated using 30 solved
instances and, for set 2, 40 instances were used.

5.4 Lower bound

The proposed lower bound is based on the Lagrangian relaxation methodology. The
constraint sets (4) and (5) were relaxed to reduce the complexity of this problem. The
choice of relaxing this set of constraints is based on experiences in early empirical
tests when this restriction was not implemented. Although the solution was not so far
from the complete model solution, the computational times were significantly smaller.
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To maintain the feasibility after this relaxation, the set of constraints 5 also needed to
be relaxed.

5.5 Results and discussion

Theapplicationof timewindows increases extremely theproblemsize.Considering the
NP-hard characteristic of the HFMDVSP, an ample time window could substantially
increase the computational cost of a feasible solution.This study applied a timewindow
of 1min (forward or backward) for every trip, demonstrating the potential of this
application while maintaining an acceptable computational cost. The value for factor
γ was defined as equal to 0.3 for all instances.

The proposed LP-and-Fix approach is not an exact methodology. Therefore, the
final solution provided for each instance may not always be the same. For approaches
that present this characteristic, it is desirable to solve several times each instance
in order to compare their solutions and have a better understanding of the approach
accuracy. However, due to the computational time required for each execution, given
the size of the instances and the complexity of the problem, the cost for executing the
same instance several times was prohibitive. We compensate for the lack of repeated
executions with a large set of instances, with a total of 155 executions for the SR+LP-
and-Fix methodology and 70 executions for the MLR+LP-and-Fix approach. For
every execution, a computational time limit of 10,800s was established.

A summary of Gap comparison between pure model and SR+LP-and-Fix appli-
cation can be seen in the Table 1. However, we offer a detailed presentation of these
results in the link Supplementary material—SR+LP-and-Fix results. The results for
all solution times are shown in seconds of CPU time. The column model detail the
solution cost and computational time needed for each instance without the heuristic
application. The SR+LP-and-Fix column shows the value of the provided solution
using this method, the computational time required for the solution of the relaxation
(ZLP time), as well as the time required to solve the problem after the fixation of arcs
and restored integrality of variables X and Z (ZIP time). The solution gap column
compares the deviation of the obtained results from both methodologies to the lower
bound value (linear relaxation).

Themodelmethod refers to the execution of themodel onCPLEXwithout heuristics
and, as can be seen, smaller instances can be solved within the specified parameters
in most cases. It should be noticed the values of these solutions presented a small
gap relative to the objective value provided by CPLEX; therefore we can treat these
solutions as near optimal. These values can be used to evaluate the quality of the
relaxed solution and how far these solutions are from the optimal solution, providing
a better understanding of the results of the proposed methodologies.

The results of the experiments indicate that the SR+LP-and-Fix approach is capa-
ble of providing good quality solutions within the specified computational time limit.
For the first set, the value gap is lower than 15.5%, while for the second and third
sets the provided solutions gap is lower than 30%. The comparison of solutions of
instances of same trip sizes from different sets makes possible to assume that the
variety of vehicle types plays a more critical role in the problem complexity than the
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Table 1 Summary of gap comparison between pure model and SR+LP-and-Fix application

Number
of depots

Number of
relief points

Number of
tasks

Gap

Average model
solution

Average SR+LP-
and-Fix (%)

5 9 250 10.59% 15.03

375 – 15.77

530 – 14.28

4 10 250 6.22% 15.65

375 3.91% 14.35

500 – 11.78

625 – 11.71

6 10 250 – 13.88

375 – 15.37

500 – 14.77

number of depots, once the solution gap of the second set is closer to the third set than
the first set.

We offer a detailed presentation of these results in the link Supplementary
material—MLR+LP-and-Fix results.We present the results obtained for the execution
of the two variants of the MLR+LP-and-Fix methodology and compare the provided
solutions with the model and SR+LP-and-Fix solutions. The results for all solu-
tions times are shown in seconds of CPU time. Table 2 presents a summary of Gap
comparison between pure model, SR+LP-and-Fix application and the two proposed
MLR+LP-and-Fix methodologies.

TheMLR+LP-and-Fix methodology presented solutions with a gap close to those
performed by the SR+LP-and-Fix approach for small instances. However, for larger
instances, especially for the instances of the size of 625 trips from set 2, the solutions
obtained showed aworsening in their quality. This difference between the twomethods
may indicate that for larger instances the number of trip cases consideredmust increase
to make the MLR approach as efficient as SR.

It can be observed that the database heavily influences the algorithms predictions
and, for these executions, results obtained with the SR+LP-and-Fix approach were
used as the database. These solutions contain small bias that may be passed on to the
prediction criterion of the algorithm, decreasing the quality of the solutions. Therefore,
the efficiency of this methodologymay be improved through the use of a database with
optimal solutions.

6 Case study

We carried out computational experiments on a real-world problem, from the transit
network of Santa Maria, Brazil, previously studied by Guedes and Borestein [10]
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and Guedes and Borestein [11]. This bus transport system is operated by a private
consortium formed by five different companies known as ATU. This instance consists
of 529 daily trips divided into 20 lines and 9 relief points. The consortium fleet is
composed by three different vehicle types: type A, an articulated bus with capacity
for 140 passengers; type B with a capacity of 95 passengers; and type C, a smaller
vehicle with capacity for 84 passengers.

Since we had no access to the number of vehicles of each type in the depots, this
parameter was estimated using the same methodology explained in Sect. 5.1. The
VCw parameter for each vehicle, based on our estimate of the costs, is 1.0, 1.11 and
1.45 for vehicles of capacity equal to 84.95 and 140 respectively.

Table 3 shows the impact of a 1min timewindowapplication in thefinal solution.We
solved the instance using de SR+LP-and-Fix methodology using the same values of
α and β defined in Sect. 5.2. We choose this methodology since the model alone could
not solve it, and the other proposed method would require additional computational
cost due to the need for a database. Although the time window application caused an
increase in the computational cost, what is expected due to the rise in the problem’s
complexity, there is a reduction of 3.66% in solution cost, showing the potential of this
application, even for small time windows. It is important to point that, applying only
theMDHFVSP-TWpuremodel, the computational time required to obtain the optimal
solution for this instance, without the application of time windows, was 37,830.3 s.
For the instance with application of 1min time windows, the MDHFVSP-TW pure
model required 76,930.7 s to provide the optimal solution.

The MLR database was composed of instances with the same characteristics
of the real instances: nine relief points, five depots, and three vehicle types. For
the MLR+LP-and-Fix restrict database, as presented in Supplementary material—
MLR+LP-and-Fix results we use the first ten instances of 530 trips, for general
MLR+LP-and-Fix database,we use tenfirst instances of 250 and the first ten instances
of 375 trips.

The selection of themachine learning algorithms for this instance followed the same
procedure described in Sect. 5.3. Table 4 presents the results obtained for the proposed
methodologies. Comparing the heuristic methods, the SR+LP-and-Fix acquired the
best solution valuewith a value gap of 2.99%.However, the SR+LP-and-Fix approach
could not prove the optimally of the solution foundwithin the 10,800s limit computing
time.

General and restrict MLR+LP-and-Fix also obtained good solutions with vale
gaps of 4.34% and 3.52%. Also, both methods could provide their final solutions in
less than a third of the limit computing time. However, this instance presented no case
0 trip during the machine learning reduction technique, therefore, the elimination of
arcs based on algorithm predictions was only valid for case 1 trips for this instance.

7 Conclusions

This paper addresses the multiple depot vehicle scheduling problem with heteroge-
neous fleet and time windows. The complexity of this model required the use of
heuristics that does not guarantee the optimally of the solution, however, allows
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obtaining a good quality solution within an acceptable computing cost. Variable fixing
heuristics are proposed, combined with two TSN size reduction methodologies, each
combination was capable of finding good solutions within acceptable computational
costs the evaluated test instances.

Despite a large number of instances and parameters analyzed, this study presents
limitations. Since the LP-and-Fix approach is not an exact methodology, all instances
should have been executed more than once to reduce possible solutions deviations.
However, because of the prohibitive computational cost, this was not carried out for
both randomly generated instances and real-world instances. Additionally, since we
used randomly generated instances of an NP-hard problem, the computational cost
for obtaining the optimal solutions for all instances was also prohibitive, which did
not allow entirely accurate analysis of the methods, limiting the comparison to solu-
tions obtained with the relaxation of the integrality constraints. The impossibility of
achieving the optimal solution of the instances also made it necessary to use solutions
of the SR+LP-and-Fix methodology for the construction of the database, resulting in
a possible decision bias.

The following ideas can be suggested for future enhancements of this work: (1)
improvement of the lower bound, since the linear relaxation is not a robust approach;
(2) comparison of the proposed variable fixing heuristics with column generation
approaches; (3) integration with a crew scheduling problem, developing an integrated
and robust approach, which deals with two major problems of the mass transporta-
tion system area; (4) improvement of the machine learning reduction, increasing the
database size without increasing the associated computational cost and expanding the
number of trips of different characteristics analyzed; (5) inclusion of vehicle acqui-
sition costs in the objective costs; (6) consideration of the vehicle maintenance costs
impact on the vehicle allocation.
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