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Abstract
We study decision dependent distributionally robust optimization models, where the
ambiguity sets of probability distributions can depend on the decision variables. These
models arise in situations with endogenous uncertainty. The developed framework
includes two-stage decision dependent distributionally robust stochastic programming
as a special case. Decision dependent generalizations of five types of ambiguity sets are
considered. These sets are based on bounds on moments, covariance matrix, Wasser-
stein metric, Phi-divergence and Kolmogorov–Smirnov test. For the finite support
case, we use linear, conic or Lagrangian duality to give reformulations of these mod-
elswith a finite number of constraints. Reformulations are also given for the continuous
support case for moment, covariance, Wasserstein and Kolmogorov–Smirnov based
models. These reformulations allow solutions of such problems using global optimiza-
tion techniques within the framework of a cutting surface algorithm. The importance
of decision dependence in the ambiguity set is demonstrated with the help of a numer-
ical example modeling simultaneous determination of order quantity and selling price
for a newsvendor problem.

Keywords Distributionally robust optimization · Decision dependent ambiguity set ·
Conic duality

1 Introduction

The uncertain characteristics of a system’s performance often depend on its design
decisions. This type of uncertainty is called endogenous uncertainty. For example in
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a newsvendor model product demand function may depend on its selling price [1].
Additional examples of decision problemswith endogeneous uncertainty fromfinance,
resource management, process design, and network design are given in Sect. 2. The
goal of this paper is to present decision dependent ambiguity frameworks to model
problems involving endogenous uncertainty. The main contribution is in showing that
the dualization of a certain inner problem continues to be applicable in this more
general setting. This dualization has a unique advantage for the problems under con-
sideration. It allows application of algorithms from nonlinear global optimization to
solve the resulting reformulations.

Specifically, we study the optimization problems in which the ambiguity set of
distributions may depend on the decisions in the following modeling framework:

min
x∈X

{
f (x) + max

P∈P(x)
EP [h(x, ξ)]

}
. (D3RO)

Here x is the vector of decision variables with the feasible set X ⊆ R
n , and ξ is

the vector of uncertain model parameters, which is defined on a measurable space
(Ξ,F); Ξ is the support in R

d , and F is a σ -algebra. We may allow ξ to also
depend on x, i.e., replace h(x, ξ) in (D3RO) with h(x, ξ(x)) but we have not done
so here for notation simplicity. For a given x, the ambiguity set P(x) of the unknown
probability distribution depends on the decision variables x, and P(x) ⊆ P(Ξ,F),
whereP(Ξ,F) is the set of probability distributions defined on (Ξ,F). The function
f (x) is the deterministic part of the objective with no uncertain parameters. Keeping
this function in (D3RO) allows us to consider decision models involving two-stage
decision making.

We denote the inner problem maxP∈P(x) EP [h(x, ξ)] as (D3RO)-inner. Note that
if h(x, ξ) is a recourse function in a two-stage stochastic program, i.e.,

h(x, ξ) = min
y∈Rq

g(x, y, ξ), s.t.ψi (x, y, ξ) ≥ 0 ∀i ∈ [m], (1)

where g(x, y, ξ) and ψi (x, y, ξ) are bounded and continuous functions of x, y and ξ ,
then (D3RO) becomes a two-stage decision dependent distributionally robust stochas-
tic program (TSD3SP), which is an important application of (D3RO). We assume that
the minimization problem in (1) is feasible for any x ∈ X and ξ ∈ Ξ , and h(x, ξ) is
finite. In other words, we assume that (D3SP) has complete recourse [2]. Moreover,
we assume a certain Slater-type condition for the set P(x), as needed.

The ambiguity set P(x) can be constructed in many different ways. The reformu-
lations given in this chapter are for the decision dependent generalizations of the most
common types of ambiguity sets proposed in the distributionally robust optimization
literature [3]. In Sect. 3 we investigate the reformulation of (D3RO) for five different
possible specifications of P(x): (i) the ambiguity sets defined by using component-
wisemoment inequalities and bounds on the scenario probabilities [4,5]; (ii) ambiguity
sets defined by using themean vector and covariancematrix inequalities [6]; (iii) ambi-
guity sets defined by using the Wasserstein metric [7–10]; (iv) ambiguity sets defined
by using φ-divergence [11–16]; and (v) the ambiguity sets defined by using the multi-
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variate Kolmogorov–Smirnov test [17]. The reformulations are given in Sects. 3.1 to
3.5, respectively. The choice of the specific ambiguity set when modeling a problem is
context dependent. A choice depends on the data being represented by the set, and the
needs of the modeler. Moments based sets might be natural when their estimates are
available from a prior statistical analysis. However, Wasserstein-distance based sets
have an underlying polyhedral structure that makes them more amenable to algorithm
development within the linear programming or linear conic duality frameworks. Total
variance based sets specify bounds on the probabilities of each scenario more natu-
rally. Kolmogorov–Smirnov test is commonly used in hypothesis testing that compares
probability distributions.

The basic concept used in arriving at the reformulations of (D3RO)-inner is to
use linear programming duality or conic duality as needed in the specific settings.
Lagrangian duality is used for the situations where considering the saddle point prob-
lem appears more suitable.

We note that the computational complexity of the reformulated problem is not the
main motivation of this paper. Our goal is towards studying the modeling frameworks
that more realistically represent the underlying phenomenon. Here we also do not
focus on developing any new (possibly more efficient) algorithms, as that is left for
future studies. In general, we refer to the global optimization techniques for solving the
non-convex optimization problems resulting from our reformulations [18]. Moreover,
to simplify the presentation, we consider the finite support case in the main text.
Reformulations (without proof) are also given for the ambiguity sets (i)–(iii) allowing
for continuous support. In these cases semi-infinite programming reformulation of the
corresponding models are given. These semi-infinite reformulations allow the use of
a cutting surface algorithm, given in Sect. 4.1, to solve the semi-infinite problems.
The models having first-stage binary variables allow for the use of a reformulation
technique that reformulates the product of a binary variable with a continuous variable
(Lagrange multiplier). The central idea behind this technique is given in Sect. 4.2. A
newsvendor example illustrating the reformulations and the relevance of decision
dependent ambiguity is given in Sect. 5. The construction of the decision dependent
parameters appearing in the specification of the ambiguity set is discussed brieflywhen
making the concluding remarks.

2 Literature review on optimization with decision dependent
uncertainty

The endogenous uncertainty has been considered in dynamic programming [19],
stochastic programming [20], robust optimization [21,22], with applications in
financial market modeling [23–25], resource management [26], stochastic traffic
assignment [27], oil (natural gas) exploration [28–30], and robust network design
[31,32].

In the framework of stochastic optimization, the endogenous uncertainty affects
the underlying probability distribution and the scenario tree. Jonsbråten et al. [33]
studied stochastic programming problems with decision dependent scenario distri-
butions, where the distribution is indexed by a Boolean vector. They provided an
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implicit enumeration algorithm for solving these problems based on a branch-and-
bound scheme. This model and the proposed branch-and-bound method was applied
to an optimal selection and sequencing of oil well exploration problem under reservoir
capacity uncertainty [28]. Ahmed [31] investigated a class of single stage stochastic
programs with discrete candidate probability distributions that are based on Luce’s
choice axiom [34]. The decision affects utility functions of the choices, and hence the
probability distribution [35]. These types of problems arise from network design and
server selection applications [31]. It is shown that stochastic programs of this class can
be reformulated as 0-1 hyperbolic programs. Viswanath et al. [32] investigated a two-
stage shortest path problem in a stochastic network which arises from disaster relief
services. Here the first stage investment decisions can reduce the failure probability
of links in the network, and a shortest path is identified based on the post-event net-
work. Held et al. [36] developed a heuristic algorithm to solve a two-stage stochastic
network interdiction problem, where the interdictor is the first-stage decision maker
whose objective is to maximize the probability that the minimum path length exceeds
a certain value after the interdiction. The interdictor’s decision changes the network
topology and the uncertainty description. The structure of single-stage stochastic pro-
gramming with a decision dependent probability distribution was also studied by [37].
Lee et al. [38] investigated a newsvendor model under decision dependent uncertainty,
where sequential decisions are made after a re-estimation of the demand distribution.
They provide conditions under which the estimation and decision process converges.

Grossmann et al. [20,30] developed a disjunctive programming reformulation for
multistage decision dependent stochastic programs. They investigated this problem
with finitely many scenarios, where exogenous and endogenous uncertain parameters
are involved. In theirmodels, endogenous parameters are resolved after the operational
decisions are made (e.g., a facility is installed or an investment is made). A branch-
and-bound algorithm is developed to solve the disjunctive program by branching on
the logic variables involved in the disjunctive clauses [20,39], and a lower bound is
obtained at each node by solving a Lagrangian dual sub-problem [40]. More solution
strategies for the disjunctive program are given in [41]. This framework is applied
to model and solve the offshore oil or gas field infrastructure multi-stage planning
problem with uncertainty in estimating parameters that are not immediately realized
[29]. The framework is also applied to optimize process network synthesis problems
with yield uncertainty that can be reduced by investing in pilot plants [42]. Tarhan et al.
[43] developed a computational strategy that combines global optimization and outer-
approximation to solve multistage nonlinear mixed-integer programs with decision
dependent uncertainty.

Decision dependent uncertainty is also considered in the framework of robust opti-
mization by letting the uncertainty set depend on the decision variables. Spacey et al.
[44] studied a problem ofminimizing the run time of a computer program by assigning
code segments to execution locations where the scheduling of code segment execution
depends on the assignment. In robust combinatorial optimization, decision dependent
uncertainty set is used to ensure the same relative protection level of all binary deci-
sion vectors [21]. To model a robust task scheduling problem with uncertainty in the
processing time, Vujanic et al. [45] proposed a decision dependent uncertainty set as
a Minkowski sum of some static sets such that the uncertain completion time interval
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of a task can naturally depend on the starting time of the task. Hu et al. [1] studied a
newsvendor model where the product demand may depend on the selling price. Since
the analytical relationship between the demand and the selling price is unknown, they
construct a family of decreasing and convex functions from historical data as the func-
tional ambiguity set of the true demand function, and solve the functionally robust
optimization problem of this model using a univariate reformulation. Nohadani et al.
[22] investigated robust linear programs with decision dependent budget-type uncer-
tainty (RLP-DDU). They showed that this problem is NP-hard even in the case where
the uncertainty set is a polyhedron and the decision dependence is affine. RLP-DDU
can be reformulated as amixed integer linear program (MILP), if the decision variables
affect uncertain variables by controlling the upper bounds of the uncertain variables.
This concept is demonstrated in a robust shortest-path problem, where the uncertainty
is resolved progressively when approaching the destination.

3 Reformulation of (D3RO)

We investigate the dual of the inner problem of (D3RO) under the assumption that the
probability distributions are specified over a finite support on Ξ . Reformulations for
the case where Ξ is continuous are also given for the first three cases. We make the
following assumption to simplify the presentation of our key observations:

Assumption 1 Every P ∈ P(x) has a decision independent finite support Ξ :=
{ξ k}Nk=1, ∀x ∈ X , for a fixed N .

The finite support assumption is commonly used when developing computational
algorithms for solving general two-stage stochastic optimization. The finite sup-
port framework arises either due to an application of sample average approximation
approach when solving problem having parameters with continuous support, or in
a data-driven setting when the data provides the nominal samples for the model.
For a more general model, the set Ξ can be a compact set in the Euclidean space.
The reformulations given in Sects. 3.1–3.3 that have finitely many constraints due to
Assumption 1 (specified by ξ k , k = 1, . . . , N ) become semi-infinite programs, where
the constraints are parameterized over the continuous support Ξ . Dual formulations
for finite support case provide a bridge to understanding dual formulations for the case
where the distributions have continuous support. In the finite support case, because of
LP duality, often we do not need Slater-type conditions. However, these conditions are
required for the more general case. It is important to be able to see such distinctions
when considering applications. Moreover, all reformulations adapt to the case where
ξ k is replaced with ξ k(x).

An interpretation of Assumption 1 is as follows. In this case, the candidate prob-
ability distributions in P(x) are represented as a vector w ∈ R

N such that wi (x) is
the probability assigned to scenario ξ i (i ∈ [N ]) and ‖w(x)‖1 = 1 for all x ∈ X .
By judicious specification of x, the support of the distribution (turning a scenario on
or off) may also be allowed to change with x by forcing certain scenarios to have
zero probability in the specification of the set P(x). Therefore, this finite support
framework allows for a great deal of generality.

123



2570 F. Luo, S. Mehrotra

3.1 Ambiguity sets defined by simplemeasure andmoment inequalities

We consider the moment robust set defined as follows:

P SM (x) :=
{
P ∈M(Ξ,F)

∣∣∣∣ ν1(x)� P�ν2(x),

∫
Ξ

fi (ξ)P(dξ)∈[li (x), ui (x)] i ∈[m]
}
,

(2)

where M(Ξ,F) is the set of positive measures defined on (Ξ,F), ν1(x), ν2(x) ∈
M(Ξ,F) are two given measures for a fixed x that are lower and upper bounds of
candidate probability measures, and f := [ f1(ξ), . . . , fm(ξ)] is a vector of moment
functions. The ordering “�” is defined as follows: For any two measures (not neces-
sarily probability measures)M1 andM2 defined on (Ξ,F),M1 � M2 is equivalent
toM1(S) ≤ M2(S) ∀S ∈ F . If Assumption 1 is satisfied, thenM1 � M2 is equiv-
alent toM1(ξ

k) ≤ M2(ξ
k) ∀k ∈ [N ]. To ensure that P is a probability distribution,

we set l1(x) = u1(x) = 1 and f1(ξ) = 1 in the above definition of P SM (x). For any
ξ ∈ Ξ , let ξ := [ξ1, . . . , ξd ]. When standard moments are used, the i th (i ∈ [m])
entry of f has the form: fi (ξ) := (ξ1)

ki1 ·(ξ2)ki2 · · · (ξd)kid , where ki j is a nonnegative
integer indicating the power of ξ j for the i th moment function. The framework also
allows the use of generalized moments by choosing alternative base functions. Note
that the constraint

∫
Ξ

f1(ξ)P(dξ) ∈ [l1(x), u1(x)] in (2) is used to ensure that P is a
probability distribution. The ambiguity set (2) is a generalization of the set in [46] for
the decision dependent case. The following theorem gives a reformulation of (D3RO)
with moment robust ambiguity set P SM (x).

Theorem 3.1 Let Assumption 1 hold, and therefore the ambiguity set (2) be given by
P SM
0 (x) = { p ∈ R

N : l(x) ≤ ∑N
k=1 pk f (ξ

k) ≤ u(x), p
k
(x) ≤ pk ≤ pk(x) ∀k ∈

[N ]}, where p
k
(x) and pk(x) are given lower and upper bounds of each pk. If for any

x ∈ X, h(x, ξ k) is finite for any k ∈ [N ] and the ambiguity set P SM
0 (x) is nonempty,

then the (D3RO) problem with the ambiguity set P SM
0 (x) can be reformulated as the

following nonlinear program:

min
x,α,β,γ ,μ

f (x) + αT l(x) + βT u(x) + γ T p(x) + μT p(x)

s.t. (α + β)T f (ξ k) + γk + μk ≥ h(x, ξ k) ∀k ∈ [N ],
x ∈ X , α,β ∈ R

m, γ ,μ ∈ R
N , α ≤ 0, β ≥ 0, γ ≤ 0, μ ≥ 0.

(3)

Proof UnderAssumption 1, the inner problemof (D3RO) becomes the following linear
program:
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max
p∈RN

N∑
k=1

pkh(x, ξ k)

s.t. l(x) ≤
N∑

k=1

pk f (ξ k) ≤ u(x),

p
k
(x) ≤ pk ≤ pk(x) ∀k ∈ [N ]. (4)

Based on the hypothesis of the theorem, the above linear program is feasible for any
x ∈ X , and its objective value is bounded. We take the dual of (4) using strong
duality and combining the dual problem with the outer problem to get the desired
reformulation. 	

A reformulation for the two-stage case is given in the following corollary.

Corollary 3.1 If h(·, ·) is a recourse function defined in (1), and the ambiguity set
P SM
0 (x) is non-empty for any x ∈ X, then the (D3RO) problem with the ambiguity

set P SM
0 (x) can be formulated as follows:

min
x, y,α,β,γ ,μ

f (x) + αT l(x) + βT u(x) + γ T p(x) + μT p(x)

s.t. (α + β)T f (ξ k) + γk + μk ≥ g(x, yk, ξ k) ∀k ∈ [N ]
ψi (x, yk, ξ k) ≥ 0 ∀i ∈ [m], ∀k ∈ [N ],
x ∈ X , α,β ∈ R

m, γ ,μ ∈ R
N , α ≤ 0, β ≥ 0, γ ≤ 0, μ ≥ 0.

(5)

Proof Recall that the complete recourse assumption ensures that h(x, ξ k) is finite of
any given x. One can take dual of the inner problem and use strong duality as in the
proof of Theorem 3.1. 	


Theorem 3.3, which is an analogue of Theorem 3.1 for the continuous case, can be
proved using conic duality theory in functional spaces.

Theorem 3.2 (conic duality in functional spaces [47]) Let X and Y be linear spaces,
C ⊂ X and K ⊂ Y be convex cones, b ∈ Y and A : X → Y be a linear mapping. The
spaces X and Y are paired with linear spaces (dual spaces) X ′ and Y ′, respectively,
in the sense that bilinear forms 〈·, ·〉 : X ′ × X → R and 〈·, ·〉 : Y ′ × Y → R are
defined. Consider the following pair of conic linear optimization problem and its dual:

inf
x∈C 〈c, x〉 s.t. Ax + b ∈ K , (P)

sup
y∈−K ∗

〈y, b〉 s.t. A∗y + c ∈ C∗, (D)

where C∗ is the polar (positive dual) cone of C, K ∗ is the polar cone of K , and A∗ is
the adjoint mapping of A. Suppose that X and Y are Banach spaces, the cones C and
K are closed and 〈c, ·〉 and A : X → Y are continuous and b ∈ ri[A(C) − K ]. Then
val(P) = val(D), and an optimal solution of (D) exists.
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Theorem 3.3 LetΞ be a closed and bounded set in the Euclidean space. Let the proba-
bility measure P and the positive measures ν1(x), ν2(x) be defined on the measurable
space (Ξ,F), where the σ -algebra F contains all singleton subsets, i.e., {ξ} ∈ F
for all ξ ∈ Ξ . If for any x ∈ Ξ , the inner problem of (D3RO) with the ambiguity set
P SM (x) has a non-empty relative interior, then the inner problem has the following
dual reformulation:

min
α,β,γ,μ

α�l(x) + β�u(x) +
∫

Ξ

γ �(ξ)ν1(x, ξ)dξ +
∫

Ξ

μ�(ξ)ν2(x, ξ)dξ

s.t. (α + β)� f (ξ) + γ (ξ) + μ(ξ) = h(x, ξ) ∀ξ ∈ Ξ,

x ∈ X , α, β ∈ R
m, γ (ξ), μ(ξ) ∈ R ∀ξ ∈ Ξ, α ≤ 0, β ≥0,

γ (ξ) ≤ 0, μ(ξ) ≥ 0.

Furthermore, the strong duality holds and a dual optimal solution exists.

Proof For notational convenience, we omit the x variable in the proof. Let V+(Ξ,F)

be the cone of of positive measures on (Ξ,F). The inner problem of the original
model is a conic linear program in a functional space, which we rewrite as follows:

sup
P

EP [h(ξ)]
s.t. ν1 � P � ν2,

li ≤
∫

Ξ

fi (ξ)P(dξ) ≤ ui , i ∈ [m],
(6)

where P ∈ V+(Ξ,F). We write a dual of (6) as follows:

inf
α,β,γ,μ

α�l + β�u +
∫

Ξ

γ (ξ)dν1(ξ) +
∫

Ξ

μ(ξ)dν2(ξ)

s.t. (α + β)� f (ξ) + γ (ξ) + μ(ξ) = h(ξ) ∀ξ ∈ Ξ,

α, β ∈ R
m, α ≤ 0, β ≥ 0, γ (ξ) ≤ 0, μ(ξ) ≥ 0 ∀ξ ∈ Ξ. (7)

We now verify that the conditions in Theorem 3.2 hold for (6) and (7). The primal
decision variable P is an element in the the following Banach space of finite signed
measures over (Ξ,F):

M(Ξ,F) = {μ | μ is a finite signed measure on (Ξ,F)}.

The Banach space M(Ξ,F) is equipped with the norm ‖μ‖ = |μ|(X), where μ =
μ+ − μ−, |μ| = μ+ + μ−. The μ+, μ− are the positive and negative components
of μ. The dual decision variable [α, β, γ, μ] is an element in the Banach space Rm ×
R
m × L × L , where L is a Banach space defined as

L = {
ψ

∣∣ψ is a measurable function in (Ξ,F), such thatmaxξ∈Ξ |ψ(ξ)| < ∞}
.
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The primal problem can be rewritten as the following linear conic optimization prob-
lem:

sup
P∈M(Ξ,F)

〈h, P〉

s.t. 〈 fi , P〉 − li ∈ R+ i ∈ [m], −〈 fi , P〉 + ui ∈ R+ i ∈ [m],
P − ν1 ∈ M+(Ξ,F), −P + ν2 ∈ M+(Ξ,F), P ∈ M+(Ξ,F),

(8)

where 〈ψ, P〉 = ∫
Ξ

ψdP . The linear mapping A : M(Ξ,F) → R
m × R

m ×
M(Ξ,F) × M(Ξ,F) is given as:

A ◦ P := [〈 f , P〉, −〈 f , P〉, P, −P].

The dual problem can be rewritten as the following linear conic optimization problem:

inf[α,β,γ,μ]∈
R
m×R

m×L×L

〈[l, u, ν1, ν2], [α, β, γ, μ]〉

s.t. (α + β)� f (ξ) + γ (ξ) + μ(ξ) − h(ξ) ∈ {0} ∀ξ ∈ Ξ,

[α, β, γ, μ] ∈ R
m− × R

m+ × L− × L+,

(9)

where L+ = {ψ ∈ L | ψ(ξ) ≥ 0 ∀ξ ∈ Ξ} and L− = {ψ ∈ L | ψ(ξ) ≤ 0 ∀ξ ∈ Ξ}.
By definition, it is clear that the conesM+(Ξ,F) and Rm+ ×R

m+ ×M+(Ξ,F) ×
M+(Ξ,F) are closed. To show that the linear functional 〈h, ·〉 and the linear mapping
A is continuous, it suffices to show that if Pn → 0, we have 〈h, Pn〉 → 0 and
A ◦ Pn → 0 as n → ∞. Indeed, if Pn → 0, we have

|〈h, Pn〉| =
∣∣∣∣
∫

Ξ

h(ξ)dPn(ξ)

∣∣∣∣ ≤ maxξ∈Ξh(ξ) · Pn(Ξ) → 0, and similarly, |〈 fi , Pn〉| → 0.

Therefore, 〈h, Pn〉 → 0 and A ◦ Pn → 0 as n → ∞. Since the primal problem has
a non-empty relative interior, by Theorem 3.2, the strong duality holds and the dual
problem has an optimal solution. 	


3.2 Covariancematrix based ambiguity set

We now consider a distributional ambiguity set with multi-variate bounds defined as
follows:

PDY (x) :=
{
P ∈ P(Ξ,F)

∣∣∣∣∣
(EP [ξ ] − μ(x))T Q(x)−1(EP [ξ ] − μ(x)) ≤ α(x)

EP [(ξ − μ(x))(ξ − μ(x))T ] � β(x)Q(x)

}
.

(10)
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This set is a generalization of the set used in [6] for the decision dependent case. In
the finite support case this set is written as follows:

PDY
0 (x)

:=

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩
p ∈ [N ]

∣∣∣∣∣∣∣∣∣∣∣∣

N∑
i=1

pi = 1,

⎛
⎝ N∑
i=1

p′
i ξ

i − μ(x)

⎞
⎠
T

Q(x)−1

⎛
⎝ N∑
i=1

pi ξ
i − μ(x)

⎞
⎠ ≤ α(x),

N∑
i=1

pi (ξ
i − μ(x))(ξ i − μ(x))T � β(x)Q(x)

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭
(11)

Note that in a special case of (10), μ(x) and Q(x) may not depend on x and only
α(x), β(x) depend on the decision variables. In this case, the decision only affects
the size of the ambiguity set. Note that in PDY

0 (x) we can also allow the probabilities
pi to depend on x as in PDY (x). This possible generalization is ignored here for
simplicity. The following theorem gives a reformulation of (D3RO)with the ambiguity
set PDY

0 (x). The following theorem is based on Lemma 1 in [6] for the finite support
and decision dependent case.

Theorem 3.4 Let Assumption 1 hold. Suppose that Slater’s constraint qualification
conditions are satisfied, i.e., for any x ∈ X, there exist a vector p′ in the interior of
PDY (x). Then the (D3RO) problem with the ambiguity set PMB(x) can be reformu-
lated as:

min
x,s,u,z,Y

f (x) + s + [√α(x),−(Q(x)−1/2μ(x))T ]z + β(x)Q(x) • Y

s.t. s − (ξ i )T Q(x)−1/2 z1 + (ξ i − μ(x))(ξ i − μ(x))T • Y ≥ h(x, ξ i ) ∀ i ∈ [N ],
x ∈ X , z := [z0, z1] ∈ NSOC, Y ∈ R

N×N , Y � 0,

(12)

whereNSOC is a second order cone defined asNSOC :=
{
y := [y0, y1, . . . , yd ]

∥∥∥∥y0 ≥
√∑d

i=1 y
2
i

}
, z := [z0, z1] with z0 ∈ R and z1 ∈ R

d , and A • B = Tr(AT B) for

matrices A and B.

Proof With the ambiguity set PDY
0 the inner problem of (D3RO) is given as follows:

max
p,τ

N∑
i=1

pi h(x, ξ i )

s.t.
N∑
i=1

pi = 1, : s ∈ R,
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τ =
N∑
i=1

piξ
i , : u ∈ R

d ,

(τ − μ(x))T Q(x)−1(τ − μ(x)) ≤ α(x), : z ∈ NSOC,

N∑
i=1

pi (ξ
i − μ(x))(ξ i − μ(x))T � β(x)Q(x), : Y � 0,

p := [p1, . . . , pN ] ∈ R
N+ , ∀i ∈ [N ]. (13)

Under the Slater’s condition using the strong duality for semi-definite programming,
we reformulate the dual problem as:

min
s,u,z,Y

s + β(x)Q(x) • Y + [√
α(x),−

(
Q(x)−1/2μ(x)

)T ]
z

s.t. s + uT ξ i + (ξ i − μ(x))(ξ i − μ(x))T • Y ≥ h(x, ξ i ) ∀i ∈ [N ],
u + Q(x)−1/2z1 = 0,

z ∈ NSOC, Y ∈ R
d×d , Y � 0.

(14)

Substituting (14) in (D3RO), we obtain (12). 	


Corollary 3.2 If h(·, ·) is a recourse function defined in (1) and the ambiguity set
PDY
0 (x) is non-empty for any x ∈ X, then the (D3RO) problem with the ambiguity

set PDY
0 (x) can be reformulated as follows:

min
x,s, y,u,z,Y

f (x) + s + [√α(x),−(Q(x)−1/2μ(x))T ]z + β(x)Q(x) • Y

s.t. s − (ξ k)T Q(x)−1/2z1 + (ξ k − μ(x))(ξ k − μ(x))T • Y ≥ g(x, yk, ξ k)

∀ k ∈ [N ],
ψi (x, yk, ξ k) ≥ 0 ∀i ∈ [m], ∀k ∈ [N ],
x ∈ X , z := [z0, z1] ∈ NSOC, Y � 0.

(15)

The following theorem, which is an analogue of Theorem 3.4, can be proved using
conic duality.

Theorem 3.5 LetΞ bea closedandbounded set in theEuclidean space. Suppose theσ -
algbraF contains all singleton sets, i.e., {ξ} ∈ F for all ξ ∈ Ξ . Suppose the following
Slater-type conditions are satisfied: For all x ∈ X, there exists a probability measure
P ∈ P(Ξ,F) satisfying (EP [ξ ] − μ(x))T Q(x)−1(EP [ξ ] − μ(x)) < α(x) and
EP [(ξ −μ(x))(ξ −μ(x))T ] ≺ β(x)Q(x). Then problem (D3RO) with the ambiguity
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set PDY (x) can be reformulated as

min
x,s,u,z,Y

f (x) + s + [√α(x),−(Q(x)−1/2μ(x))T ]z + β(x)Q(x) • Y

s.t. s − ξ T Q(x)−1/2z1 + (ξ − μ(x))(ξ − μ(x))T • Y ≥ h(x, ξ) ∀ ξ ∈ Ξ,

x ∈ X , z := [z0, z1] ∈ NSOC, Y ∈ R
d×d , Y � 0.

Proof For the notational convenience, we omit the x argument in all functions and
parameters in the proof. Let M+(Ξ,F) be the cone of positive measures defined on
the measurable space (Ξ,F). The inner problem of (D3RO) under the uncertainty set
PDY is written as:

max EP [h(ξ)]
s.t. (EP [ξ ] − μ)�Q−1(EP [ξ ] − μ) ≤ α,

EP [(ξ − μ)(ξ − μ)�] � βQ,

EP [1] = 1, P ∈ M+(Ξ,F).

(16)

Define the linear mapping A1 : M+(Ξ,F) �−→ R as A1P := ∫
Ξ
1dP(ξ), define

the linear mapping A2 : M+(Ξ,F) �−→ R
m+1 as A2P := [0, Q−1/2

∫
Ξ

ξdP(ξ)],
and define the linear mapping A3 : M+(Ξ,F) �−→ R

m×m as A3P := − ∫
Ξ

(ξ −
μ)(ξ − μ)�dP(ξ). Define the linear functional 〈h, ·〉 : M+(Ξ,F) �−→ R as
〈h, P〉 := ∫

Ξ
h(ξ)dP(ξ). Let b = [√α, 0] be a constant vector in R

m+1. Then (16)
can be reformulated as the following conic linear program:

max 〈h, P〉
s.t.A1P − 1 = 0,

A2P + b ∈ KSOC ,

A3P + βQ ∈ KSD,

P ∈ M+(Ξ,F),

(17)

where KSOC and KSD are the second-order cone and the positive semi-definite cone,
respectively. Applying the duality theory [47] of the conic linear program in the func-
tional space, we can obtain the dual of (16) as given in the statement of the theorem.
The slater-type condition is equivalent to that there exists a probability measure P ′
such thatA2P ′ +b ∈ int(KSOC ), andA3P ′ +βQ ∈ int(KSD). Based on (23) in [47],
the statement after (23), and Proposition 2.9 of [47], the strong duality holds. 	


3.3 Ambiguity sets defined byWasserstein metric

Instead of using moment based definitions of the ambiguity set, we may define this set
using a statistical distance, such as the Wasserstein metric. We now study the (D3RO)
problem with a decision dependent ambiguity set defined using the L1-Wasserstein
metric as follows:
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PW (x) := {P ∈ P(Ξ,F) |W(P, P0) ≤ r(x)}, (18)

where P0 is a nominal probability distribution, andW(·, ·) : P(Ξ,F)×P(Ξ,F) →
R is the L1-Wasserstein metric defined in [48]:

W(P1, P2) := inf
K∈S(P1,P2)

∫
Ξ×Ξ

‖s1 − s2‖K (ds1 × ds2), (19)

where S(P1, P2) := {
K ∈ P(Ξ ×Ξ,F ×F) : K (A×Ξ) = P1(A), K (Ξ × A) =

P2(A), ∀A ∈ F}
is the set of all joint probability distributions whose marginals are

P1 and P2, and ‖ · ‖ is an arbitrary norm defined on R
d . The ambiguity set (18) is a

generalization of the one considered in [7–10] for the decision dependent case. As a
special case of (18), under Assumption 1, PW (x) is written as:

PW (x) =
{
p ∈ R

N | W( p, p̂) ≤ r(x),

N∑
i=1

pi = 1, pi ≥ 0, ∀i ∈ [N ]
}

, (20)

where p̂ is a given empirical probability distribution onΞ , and theWasserstein metric
can be simplified as

W( p, p̂) =
⎧⎨
⎩min

w

N∑
i=1

N∑
j=1

‖ξ i − ξ j‖wi j
∣∣ N∑

j=1

wi j = pi ∀i ∈ [N ],

N∑
i=1

wi j = p̂ j ∀ j ∈ [N ], wi j ≥ 0 ∀i, j ∈ [N ]
}

,

where p̂ j is the probability of scenario ξ j . The following theoremgives a reformulation
of (D3RO) for the ambiguity set (20).

Theorem 3.6 Let Assumption 1 hold. If for any x ∈ X, h(x, ξ i ) is finite for any i ∈ [N ]
and the ambiguity set (20) is nonempty, then (D3RO) problem with the ambiguity set
(20) can be reformulated as:

min
x,α,β,μ,λ,γ,η

f (x) −
N∑
i=1

p̂iβi − r(x)γ + η

s.t. − αi − μi + η ≥ h(x, ξ i ) ∀i ∈ [N ],
− αi + β j + ‖ξ i − ξ j‖γ + λi j ≤ 0 ∀i ∈ [N ], ∀ j ∈ [N ],
x ∈ X , αi ∈ R, βi ∈ R, μi ≥ 0, λi j ≥ 0, γ ≤ 0, η ∈ R

∀i ∈ [N ], ∀ j ∈ [N ].

(21)

Proof Since Ξ is finite, the (D3RO)-inner problem with ambiguity set PW (x) can be
formulated as the following linear program:
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max
p,w

N∑
i=1

h(x, ξ i )pi

s.t.
N∑
j=1

wi j = pi ∀i ∈ [N ],

N∑
i=1

wi j = p̂ j ∀ j ∈ [N ],

N∑
i=1

N∑
j=1

‖ξ i − ξ j‖wi j ≤ r(x),

N∑
i=1

pi = 1, pi ≥ 0, wi j ≥ 0 ∀i ∈ [N ], ∀ j ∈ [N ],

(22)

where w is a joint probability distribution with two marginal distributions given by p
and p̂, respectively. The dual of the above linear program is:

min
α,β,μ,λ,γ,η

−
N∑
i=1

p̂iβi − r(x)γ + η

s.t. − αi − μi + η ≥ h(x, ξ i ) ∀i ∈ [N ],
− αi + β j + ‖ξ i − ξ j‖γ + λi j ≤ 0 ∀i ∈ [N ], ∀ j ∈ [N ],
αi ∈ R, βi ∈ R, μi ≥ 0, λi j ≥ 0, γ ≤ 0, η ∈ R ∀i ∈ [N ], ∀ j ∈ [N ].

(23)

After substituting (23) into (D3RO), we obtain the desired reformulation (21). 	

A reformulation for the two-stage case is given in the following corollary.

Corollary 3.3 If h(·, ·) is a recourse function defined in (1), and the ambiguity set
PW (x) is non-empty for any x ∈ X, then the (D3RO) problem with the ambiguity set
PW (x) can be reformulated as follows:

min
x, y,α,β,μ,λ,γ

f (x) −
N∑

k=1

p̂kβk − r(x)γ

s.t. − αk − μk ≥ g(x, yk, ξ k) ∀k ∈ [N ],
− αi + β j + ‖ξ i − ξ j‖γ + λi j ≤ 0 ∀i ∈ [N ], ∀ j ∈ [N ],
ψi (x, yk, ξ k) ≥ 0 ∀i ∈ [m], ∀k ∈ [N ],

x ∈ X , αi ∈ R, βi ∈ R, μi ≥ 0, λi j ≥ 0, γ ≤ 0 ∀i ∈ [N ], ∀ j ∈ [N ].

(24)

A generalization of (21) of (D3RO) for the continuous support case is given in
Appendix A.
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3.4 Ambiguity sets defined using�-divergence

We now study the (D3RO) problem using a decision dependent ambiguity set defined
using the notion of φ-divergence:

Pφ(x) := {
P ∈ P(Ξ,F) : Dφ(P||P0) ≤ η(x)

}
, (25)

where Dφ(P||P0) = ∫
Ω

φ
(

dP
dP0

)
dP0, and φ is a non-negative and convex function.

This type of ambiguity set is a generalization of the one considered in [11,12,14–
16,49] for the decision dependent case. Under Assumption 1, and letting p̂i be the
probability of scenario ξ i , the ambiguity set (25) is written as:

Pφ(x)=
{
P=

N∑
i=1

piδξ i :
N∑
i=1

p̂iφ(pi/ p̂i )≤η(x),

N∑
i=1

pi = 1, pi ≥ 0 ∀i≤N

}
.

(26)

Two reformulations of (D3RO) with ambiguity set Pφ(x) are given in the following
theorem.

Theorem 3.7 Let Assumption 1 hold, andφ be a non-negative convex function. Assume
that the following Slater’s condition is satisfied for every x ∈ X: there exist a p ∈ R

N

such that pi > 0,
∑N

i=1 pi = 1 and
∑N

i=1 p̂iφ(pi/ p̂i ) < η(x). Then (D3RO) with
the ambiguity set Pφ(x) can be reformulated as the following semi-infinite program:

min
x, p,α,β,λ,z

z

s.t. z ≥
N∑
i=1

h(x, ξ i )pi + α
( 1

N

N∑
i=1

φ(Npi ) − η(x)
)

+ β
( N∑

i=1

pi − 1
)

+
N∑
i=1

piλi ∀ p ∈ S,

x ∈ X , α ≤ 0, β ∈ R, λi ≥ 0, pi ≥ 0 ∀i ∈ [N ],

(27)

where S = { p ∈ R
N : ∑N

i=1 pi = 1, pi ≥ 0 ∀i ∈ [N ]}. Alternatively, (27) also
has the reformulation:

min
x, p,α,β,λ

f (x) +
N∑
i=1

pi h
(
x, ξ i

) + α
( 1

N

N∑
i=1

φ(Npi ) − η(x)
)

+ β
( N∑

i=1

pi − 1
)

+
N∑
i=1

λi pi

s.t. αφ′(Npi ) + β + h(x, ξ i ) + λi = 0 ∀i ∈ [N ],
x ∈ X , α ≤ 0, β ∈ R, λi ≥ 0, pi ≥ 0 ∀i ∈ [N ].

(28)
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Proof The (D3RO) problem can be written as min
x∈X f (x) + Φ(x), where the function

Φ(x) is the optimal objective of the following optimization problem:

Φ(x) = max
p

N∑
i=1

pi h
(
x, ξ i

)

s.t.
1

N

N∑
i=1

φ(Npi ) ≤ η(x),

N∑
i=1

pi = 1,

pi ≥ 0 ∀i ≤ N , x ∈ X .

(29)

Since φ is convex, (29) is a convex program with respect to the decision variable p.
For a fixed x ∈ X , the Lagrangian dual of (29) is written as follows:

min
α,β,λ

max
p

L( p;α, β,λ)

s.t.α ≤ 0, β ∈ R, λi ≥ 0, ∀i ∈ [N ],
(30)

whereL( p;α, β,λ) = ∑N
i=1 h(x, ξ i )pi+α

(
1
N

∑N
i=1 φ(Npi )−η(x)

)
+β

(∑N
i=1 pi−

1
)

+ ∑N
i=1 piλi , and α, β, λ are the Lagrange multipliers. Since Slater’s condition

is satisfied for any x ∈ X , strong duality holds. The inner maximization problem of
(30) is equivalent to {max z, s.t. z ≥ L( p;α, β,λ) ∀ p ∈ S}, which gives the
reformulation (27).

Note that the inner problem of (30) is an unconstrained convex optimization prob-
lem. Using the KKT optimality conditions we have:

∂L
∂ pi

= αφ′(Npi ) + h(x, ξ i ) + β + λi = 0, ∀i ∈ [N ]. (31)

After substituting the expression of the Lagrangian in (30), adding the optimality
condition and using strong duality, we obtain the reformulation given in (28). 	

We remark that in the cutting-surface algorithm (Algorithm 1) given in Sect. 4, the
separation problem is specified over the set S, and it maximize

∑N
i=1 h(x, ξ i )pi +

α
(

1
N

∑N
i=1 φ(Npi ) − η(x)

)
+ β

(∑N
i=1 pi − 1

)
+ ∑N

i=1 piλi over p ∈ S, where

x, α, β,λ are the current solution obtained from solving the master problem at an iter-
ation. Since α ≤ 0, and φ is a convex function, the separation problem is maximizing
a concave function, which is a convex optimization problem.

A reformulation for the two-stage stochastic optimization case is given in the fol-
lowing corollary.

Corollary 3.4 If h(·, ·) is a recourse function defined in (1) and the ambiguity setPφ(x)

is non-empty for any x ∈ X, then the (D3RO) problem with the ambiguity set Pφ(x)

can be reformulated as follows:
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min
x, y,z, p,
α,β,λ

z

s.t. z ≥ f (x) +
N∑

k=1

pkg
(
x, yk, ξ k

)

+ α
( 1

N

N∑
k=1

φ(Npk) − η(x)
)

+ β
( N∑
k=1

pk − 1
)

+
N∑

k=1

λk pk ∀ p ∈ S,

ψi (x, yk, ξ k) ≥ 0 ∀i ∈ [m], ∀k ∈ [N ],
z ∈ R, x ∈ X , α ≤ 0, β ∈ R, λk ≥ 0, pk ≥ 0 ∀k ∈ [N ],

(32)

where S = { p ∈ R
N : ∑N

k=1 pk = 1, pk ≥ 0 ∀k ∈ [N ]}.

3.5 Ambiguity sets defined based on the Kolmogorov–Smirnov test

The K–S distance was used by [17] in defining an ambiguity set for a data-driven
distributionally robust optimizationmodel. For two univariate probability distributions
P1 and P2, let F1 and F2 be their cumulative distribution functions. The Kolmogorov–
Smirnov (KS) distance is defined as:

D(P1, P2) = sup
s

|F1(s) − F2(s)|. (33)

We now study the (D3RO) problem with the ambiguity set defined based on the KS-
distance. Note that although (33) is defined for a univariate random variable, this
definition can be directly generalized for the probability distribution of a random
vector with a finite support. Specifically, under Assumption 1, let P0 = ∑N

i=1 p̂iδξ i

be an empirical probability distribution, where δξ i is the indicator function. The KS-

distance between a discrete probability distribution P = ∑N
i=1 piδξ i and P0 can be

written as:

D(P, P0) = sup
k∈[N ]

∣∣∣
k∑

i=1

pi −
k∑

i=1

p̂i
∣∣∣. (34)

The decision dependent ambiguity set of probability distributions is constructed using
the KS-distance as follows:

PK S(x)=
⎧⎨
⎩ p∈R

N : sup
k∈[N ]

∣∣∣
k∑

i=1

pi −
k∑

i=1

p̂i
∣∣∣≤η(x),

N∑
i=1

pi = 1, pi ≥0 ∀i ∈[N ]
⎫⎬
⎭ .

(35)

A reformulation of the (D3RO) problem is given in the following theorem.
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Theorem 3.8 Let Assumption 1 hold. If for any x ∈ X, h(x, ξ k) is finite for any
k ∈ [N ] and the ambiguity set (35) is nonempty, then the (D3RO) problem with the
ambiguity set (35) can be reformulated as:

min
x,λ,α,β,γ

f (x) + λ +
N∑
i=1

N∑
k=1

(αk + βk) p̂i +
N∑

k=1

(αk − βk)η(x)

s.t. λ +
N∑
k=i

(αk + βk) + γi ≥ h(x, ξ i ) ∀i ∈ [N ],

λ ∈ R, αi ≥ 0, βi ≤ 0, γi ≤ 0 ∀i ∈ [N ].

(36)

Proof The (D3RO) problem with the ambiguity set (35) can be written as:

min
x

f (x) + max
p

N∑
i=1

h(x, ξ i )pi

s.t. sup
k∈[N ]

∣∣∣
k∑

i=1

pi −
k∑

i=1

p̂i
∣∣∣ ≤ η(x),

N∑
i=1

pi = 1, pi ≥ 0 ∀i ∈ [N ].

(37)

Note that the inner problem of (37) can be reformulated as the following linear pro-
gram:

max
p

N∑
i=1

h(x, ξ i )pi

s.t.
k∑

i=1

pi −
k∑

i=1

p̂i ≤ η(x) ∀k ∈ [N ],

k∑
i=1

pi −
k∑

i=1

p̂i ≥ −η(x) ∀k ∈ [N ],

N∑
i=1

pi = 1, pi ≥ 0 ∀i ∈ [N ].

(38)

After taking the dual of the above linear program and combining it with the outer
problem, we obtain (36). 	


A reformulation for the two-stage stochastic optimization case is given in the fol-
lowing corollary.
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Corollary 3.5 If h(·, ·) is a recourse function defined in (1) and the ambiguity set is
given by (35). If for any x ∈ X, h(x, ξ k) is finite for any k ∈ [N ] and the ambiguity
set (35) is nonempty, then the (D3RO) problem with the ambiguity set (35) can be
reformulated as follows:

min
x, y,λ,α,β,γ

f (x) + λ +
N∑
i=1

N∑
k=1

(αk + βk) p̂i +
N∑

k=1

(αk − βk)η(x)

s.t. λ +
N∑
k=i

(αk + βk) + γi ≥ g(x, yi , ξ i ) ∀i ∈ [N ],

ψi (x, yk, ξ k) ≥ 0 ∀i ∈ [m], ∀k ∈ [N ],
x ∈ X , λ ∈ R, αi ≥ 0, βi ≤ 0, γi ≤ 0 ∀i ∈ [N ].

(39)

The reformulation (36) of (D3RO) with the ambiguity set defined using the K–S
distance can be generalized for the case where the support Ξ is continuous. The
details of this generalization are given in Appendix B.

4 Solution approaches

4.1 Models with continuous support

For models with continuous and compact supportΞ , reformulations given in Sect. 3.1
(without the measure bound constraint) Sect. 3.2, Appendix A, B, and that in Sect. 3.4
are semi-infinite programs (gen-SIP):

min
x

f (x)

s.t. g(x, t) ≤ 0, ∀t ∈ T ,

x ∈ X ,

(gen-SIP)

by appropriately specifying g(x, t). Here X ⊆ R
k1 and T ⊆ R

k2 × Z
k3 . A cutting-

surface algorithm from [10] (Algorithm 1) is now presented to solve such problems.
We assume to have an oracle that can solve a deterministic non-convex optimization
problem with finitely many constraints. The basic cutting-surface algorithm solves a
finite constraint relaxation problem at each iteration:

min
x∈X { f (x) : s.t. g(x, t) ≤ 0, t ∈ T ′}, (40)

where T ′ are finite samples from T . This relaxation is called the master problem.
The algorithm generates desired samples as the algorithm progresses. These samples
are identified from the support by solving a separation problem. See for example, the
algorithm given in [10]. Specifically, a new constraint is added at each iteration of
the master problem. This constrained is identified by finding a t ∈ T for which the

123



2584 F. Luo, S. Mehrotra

incumbent solution from themaster problem is violated. Given the incumbent solution
x̂ ∈ X , the following separation problem

max
t∈T g(x̂, t), (41)

is solved for the purposes of generating the next constraint. The algorithm outputs
an ε-optimal solution (Definition 4.1) to (gen-SIP) in a finite number of iterations
(Theorem 4.1).

Definition 4.1 For a general semi-infinite program in the form of (gen-SIP), a point
x0 ∈ X is an ε-feasible solution of (gen-SIP) if max

t∈T g(x0, t) ≤ ε. A point x0 ∈ X

is an ε-optimal solution of (gen-SIP) if x0 is an ε-feasible solution of (gen-SIP) and
f (x0) ≤ Val(gen-SIP).

Algorithm 1 A cutting-surface algorithm (modified exchange algorithm) to solve
(gen-SIP).
Prerequisites: An oracle that generates the optimal solution to the master problem (40) and an oracle
that generates an ε-optimal solution to the separation problem (41).
Output: An ε-optimal solution of (gen-SIP).
Step 1 Set T0 ← ∅, k ← 0.
Step 2 Determine an optimal solution xk of the problem min

x∈X { f (x) : s.t. g(x, t) ≤ 0, t ∈ Tk }.
Step 3 Determine a ε

2 -optimal solution tk+1 of the problem max
t∈T g(xk , t). If g(xk , tk+1) ≤ ε

2 , stop and

return xk ; otherwise let Tk+1 ← Tk ∪ {tk+1}, k ← k + 1 and go to Step 2

Theorem 4.1 (Theorem 3.2 in [10]) If X × T is compact, and g(x, t) is continuous
on X × T , then Algorithm 1 terminates in finitely many iterations and returns an
ε-optimal solution of (gen-SIP).

We note that the oracle problem (41) in the cutting-surface algorithm is simply a
function evaluation problem for the finite support case. In this case the algorithm can
be adapted by sequentially adding constraints as violated inequalities are identified.
This may be useful when N is large.

4.2 Models with binary decision variables and finite support

The reformulations developed in Sect. 3 have nonlinear terms that are products of
dual variables and primal variables. These reformulations are in general non-convex
programming problems. A solution approach is needed to handle this nonlinearity.
However, when applying the reformulations to problems where first-stage decision
variables x are binary and the dual variables/Lagrange multipliers are bounded, the
nonlinear terms may become a product of a binary variable and a bounded continuous
variable. For example, this is the case when in Sect. 3.1 the expressions l(x), u(x),
p
k
(x), p

k
(x) are linear functions of x.
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Such terms can be linearized as follows. Consider a bilinear term xy where x ∈
{0, 1} is a binary variable and y is a bounded continuous variable with the bounds
a ≤ y ≤ b. We introduce a continuous variable z and the following constraints to
represent xy:

ax ≤ z ≤ bx, y − b(1 − x) ≤ z ≤ y − a(1 − x). (42)

When x = 1, the second constraint of (42) is equivalent to z = y, and thefirst constraint
a ≤ z ≤ b becomes redundant.When x = 0, the first constraint of (42) is equivalent to
z = 0, and the second constraint y−b ≤ z ≤ y−a becomes redundant.With the above
linearization technique, problemswhere the nonlinear terms in the dual formulations in
Sects. 3.1–3.4 involve a bilinear product of continuous and binary variables, and h(xξ)

is convex in x can be reformulated as a mixed 0-1 convex program. As an example,
in [50], we investigate a distributionally-robust service center location problem with
decision dependent utilities. We show that this problem can be reformulated as a
two-stage stochastic mixed 0-1 second-order cone program using such as technique.

5 Illustrative numerical example

We now use a numerical example to illustrate the relevance of incorporating endoge-
nous ambiguity in a distributionally-robust optimization model. Specifically, we
consider a distributionally-robust newsvendor model:

max
x∈X ,q∈Q

min
P∈P(x)

EP [x · min(q, D)] − cq, (DNV)

where c is the unit cost, D is the stochastic demand, x is the selling price, and q is the
number of units ordered/purchased by the vendor. The variables x and q are decision
variables. The setsX andQ are the feasible sets of selling price and order quantity. The
probability distribution of the demand D depends on the selling price. The set P(x) is
a decision dependent ambiguity set of the probability distribution of D. The objective
is to maximize the risk-averse profit. Product demand is a decreasing function of the
selling price. For every candidate selling price xi , there is a nominal deterministic
demand value D̂i corresponding to xi . In the numerical illustration, we consider a
finite support Ξ for D which is given by Ξ = {di }8i=1 where d1 = 5, d2 = 10, d3 =
15, d4 = 20, d5 = 25, d6 = 30, d7 = 35, d8 = 40. The set X of candidate
selling price is given by X = {x1, x2, x3, x4} where x1 = 1.2, x2 = 1.4, x3 =
1.6, x4 = 1.8. The set Q of order quantities is given by Q = {qi }8i=1 where qi = di
for all i ∈ {1, . . . , 8}. The cost is c = 1.0. The nominal demand values are given by
D̂1 = d8, D̂2 = d6, D̂3 = d4, D̂4 = d2. Let Pi = P(xi ) for i ∈ {1, . . . , 4}. The
nominal optimal solution (when no ambiguity exits) is x∗ = x2 = 1.4, q∗ = q6 = 30,
and the nominal optimal value is V ∗ = 11.30. We consider different ways to define
Pi and study the optimal solution of (DNV) under these definitions. In the current
illustration, we enumerate all the possible combinations of (x, q) ∈ X × Q and

123



2586 F. Luo, S. Mehrotra

solve (DNV) to determine the optimal solution. A future work addresses this problem
through a systematic algorithm development [51].

5.1 Definition ofPi usingmean and variance

Consider the case of defining Pi using mean and variance as described in Sect. 3.2.
Specifically, the Pi is defined as

Pi =
⎧⎨
⎩ p ∈ R

K+

∣∣∣∣∣∣
D̂i − δi ≤ ∑K

k=1 pkdk ≤ D̂i + δi∑K
k=1 pk(dk − D̂i )

2 ≤ γi∑K
k=1 pk = 1

⎫⎬
⎭, (43)

where K = 8. Similarly, we can enumerate all the possible combinations of (x, q) ∈
X × Q and solve (DNV) in every case to determine the optimal solution. In the case
that (x, q) = (xi , q j ) the objective value of (DNV) is given by

V (xi , q j ) = min
K∑

k=1

pkxi · min(q j , dk) − cq j

s.t.
K∑

k=1

pk = 1,

D̂i − δi ≤
K∑

k=1

pkdk ≤ D̂i + δi ,

K∑
k=1

pk(dk − D̂i )
2 ≤ γi ,

pk ≥ 0 ∀k ∈ [K ].

(44)

The optimization problem in (44) is a linear program of the decision variables p.
In the first setting of the ambiguity, we set δi = 2 and γi = 5 for i ∈ {1, 2, 3, 4}.
The optimal solution is x∗ = x2 = 1.4, q∗ = q6 = 30, and the optimal value
is V ∗ = 10.60. In the second setting of the ambiguity, we increase the ambiguity
by setting δi = 3 and γi = 10 for i ∈ {1, 2, 3, 4}. The optimal solution becomes
x∗ = x2 = 1.4, q∗ = q5 = 25, and the optimal value is V ∗ = 9.30. Note that
although the optimal selling price has not changed, the optimal order quantity changes
with decision dependent ambiguity.

5.2 Definition ofPi using theWasserstein metric

ThePi can be defined using the Wasserstein metic (20). Specifically, letPi be defined
as
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Pi ={ p∈R
K | W( p, p̂i )≤ri ,

K∑
k=1

pk = 1, pk ≥0, ∀k∈[K ]} ∀i ∈[I ], (45)

where I = 4, K = 8, and p̂i is a nominal probability distribution on Ξ satisfying

p̂ik =
{
1 if dk = D̂i ,

0 otherwise.
(46)

In the case that (x, q) = (xi , q j ) the objective value of (DNV) is given by

V (xi , q j ) = min
K∑

k=1

pkxi · min(q j , dk) − cq j

s.t.
K∑

k=1

pk = 1,

K∑
k=1

tkl = p̂il ∀l ∈ [K ],

K∑
l=1

tkl = pk ∀k ∈ [K ],

K∑
k=1

K∑
l=1

|dk − dl |tkl ≤ ri ,

pk ≥ 0, tkl ≥ 0 ∀k, l ∈ [K ],

(47)

Notice that (47) is a linear program of the decision variables pk and tkl (k, l ∈ [K ]).
In the first setting of the ambiguity, we set ri = 0.5 for i ∈ {1, 2, 3, 4}. The optimal
solution is x∗ = x2 = 1.4, q∗ = q6 = 30, and the optimal value is V ∗ = 11.30. In the
second setting of the ambiguity, we increase the ambiguity of the demand at the price
x2 by setting r2 = 0.6 and ri = 0.5 for i ∈ {1, 3, 4}. The optimal solution becomes
x∗ = x3 = 1.6, q∗ = q4 = 20, and the optimal value is V ∗ = 11.20. Note that in this
case both the optimal selling price and the order quantity changes with the ambiguity.

6 Concluding remarks

We have established a framework for reformulating the distributionally robust opti-
mization problems with important types of decision dependent ambiguity sets. These
ambiguity sets contain decision dependent parameters. For example, the moment
robust ambiguity set (10) contains parameters α(x), β(x), μ(x) and Q(x), which are
functions of the decision x. We now briefly discuss the estimation of these functions
using a data-driven approach. Ambiguity sets for ξ under an arbitrary decision x can be
constructed if such information is available from past decisions, or if it is possible for
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us to experiment with trial decisions {xi }ki=1 and collect samples of the random vector
ξ under each decision xi . From these samples we can establish the analytical relation
between the parameters in defining the ambiguity set and the decision using statistical
learning models. We can subsequently extrapolate this analytical relation to a general
decision x to obtain an empirical decision dependent ambiguity set description.

The goal of this chapter was to show that it is possible to extend the dual formu-
lations in DRO even when the ambiguity sets are decision dependent. The analysis
suggests that the situations for which DRO models admit a dual reformulation also
allow for dual reformulations for the decision dependent case. The reformulated mod-
els are generally non-convex optimization problems requiring further investigation
towards developing efficient algorithms for the specific situations. The non-convex
optimization problems may have further structure when additional assumptions on
decision dependent parameters and the feasible set X are imposed. This structure
may be exploited for further refined reformulations and the development of efficient
algorithms.
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A Reformulation of (D3RO) withWasserstein metric and continuous
support of random parameters

Westudy the reformulation of (D3RO)withWassersteinmetric and continuous support
of random parameters. In contrast to the case studied in Sect. 3.3, we do not assume
that Assumption 1 holds. As a consequence, the support Ξ of the decision dependent
random parameters ξ can be continuous. Suppose at a decision x0, we have observed
N samples of the random variable ξ , written as {ξ i }Ni=1. We construct an empirical

distribution as: P0 = ∑N
i=1

1
N δξ i . Setting the empirical distribution as the center of

the Wasserstein ball, we can define the decision dependent ambiguity set as:

PW
C (x) := {P ∈ P(Ξ,F) | W(P, P0) ≤ r(x)}, (48)

whereW(P, P0) is defined in (19). The reformulation of (D3RO) with the ambiguity
set PW

C (x) is given by the following theorem.
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Theorem A.1 The (D3RO) model with the ambiguity set PW
C (x) can be reformulated

as the following semi-infinite program if PW
C (x) is non-empty for any x ∈ X:

min
x,v

f (x) + 1

N

N∑
i=1

vi + r(x) · vN+1

s.t. h(x, s) − vi − vN+1 · ‖s − ξ i‖ ≤ 0, ∀s ∈ Ξ,∀i ∈ [N ]
x ∈ X , v1, . . . , vN ∈ R, vN+1 ≥ 0.

(49)

Proof From Theorem 3.6 of [10], the inner problem of D3RO with the ambiguity
set defined by the Wasserstein metric (48) is equivalent to the following conic linear
program:

max
μ

∫
s∈Ξ

h(x, s)μ(ds × Ξ)

s.t. μ(Ξ × {ξ i }) = 1/N , ∀i ∈ [N ]
μ(Ξ × Ξ ′) = 0,∑
i∈[N ]

∫
s∈Ξ

‖s − ξ i‖μ(ds × {ξ i }) ≤ r(x),

μ � 0,

(50)

where Ξ ′ := Ξ \ {ξ i }N , and μ � 0 denotes that μ is a positive measure. Based on
Theorem 3.7 of [10], we can apply the conic duality theory from [47] to (50), and
obtain the following dual formulation of (50):

min
v

1

N

N∑
i=1

vi + r(x) · vN+1

s.t. h(x, s) − vi − vN+1 · ‖s − ξ i‖ ≤ 0 ∀s ∈ Ξ,∀i ∈ [N ],
v1, . . . , vN ∈ R, vN+1 ≥ 0.

(51)

After combining (51) with the outer minimization problem over x , we obtain the
desired reformulation (49). 	


B Reformulation of (D3RO) with K–S distance and continuous support
of the random parameters

We now investigate the reformulation of (D3RO) with the ambiguity set defined by
K–S distance where the support Ξ is not finite. We assume that Ξ is contained in a
hyper-rectangle [a, b] := [a1, b1] × . . . × [ad , bd ]. The definition of K–S distance
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(33) can be generalized for two multivariate cumulative distribution functions as fol-
lows:

D(P1, P2) = sup
s∈Rd

|F1(s) − F2(s)|, (52)

where s = [s1, . . . , sd ] and the cumulative function Fi (i = 1, 2) is defined
as: Fi (s) = ∫ s1

−∞ . . .
∫ sd
−∞ P1(x1, . . . , xd)dx1 . . . dxd . Suppose for a x0 ∈ X ,

we have observed N samples of the random vector ξ , written as {ξ i }Ni=1. We

define the empirical distribution as P0 := ∑N
i=1

1
N δξ i

and denote the cumu-
lative distribution function of P0 as F0. Let P([a, b],B) denote the set of
probability distributions on [a, b] with the Borel sigma algebra B. For any
P ∈ P([a, b],B), let FP denote the cumulative distribution function of P .
The decision dependent ambiguity set based on K–S distance can be constructed
as:

PK S
C (x) := {

P ∈ P([a, b],B) : sup
s∈[a,b]

|FP (s) − F0(s)| ≤ α(x)
}
. (53)

Wenow reformulate the ambiguity set (53) into finitelymany expectation constraints of
indicator functions by partitioning the hyper-rectangle [a, b] into hyper-rectangular
cells. Specifically, let ξ ik be the k-th component of the i-th observed sample. For
each component k (k ∈ [d]), we sort the observed samples {ξ ik}Ni=1 based on the
k-th component in the ascending order, and suppose that the sorted sample compo-
nents are labeled as {ξ [i]

k }Ni=1 such that ak < ξ
[1]
k < ξ

[2]
k < · · · < ξ

[N ]
k < bk .

Let us divide each interval [ak, bk] into N + 1 sub-intervals as: I k0 = [ak, ξ [1]
k ),

I ki = [ξ [i]
k , ξ

[i+1]
k ) for i ∈ [N − 1] and I kN = [ξ [N ]

k , bk], and create an N -
dimensional grid based on the sub-intervals for each dimension k to partition
[a, b] into (N + 1)d sub-rectangular cells. Based on this partition and using the
convention that ξ

[0]
k = ak for k ∈ [d], the reference CDF can be written

as:

F0(s)= N j1 j2... jd

N
for s∈ I 1j1× I 2j2 ×. . .× I djd , jr ∈{0, 1, . . . , N }, r ∈[d],

(54)

where N j1 j2... jd is the number of observed samples within the hyper-rectangle

[a1, ξ [ j1]
1 ] × [a2, ξ [ j2]

2 ] × · · · × [ad , ξ [ jd ]
d ]. For simplicity of notations, we let

I j1 j2... jd := I 1j1 × I 2j2 × · · · × I djd , then the ambiguity set (53) can be reformulated
as

PK S
C (x) =

{
P ∈ P([a, b],B) :

∣∣∣∣P(s ∈ I j1 j2... jd ) − N j1... jd

N

∣∣∣∣
≤ α(x) for jr ∈ {0, 1, . . . , N }, r ∈ [d]

}
. (55)
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Reformulation of the (D3RO) with the ambiguity set (53) is given in the following
theorem:

Theorem B.1 If h(x, s) is continuous in s ∈ [a, b] for any x ∈ X and (53) is non-
empty for any x ∈ X, then the (D3RO) with the ambiguity set (53) can be reformulated
as the following semi-infinite program:

min
x,λ,λ

f (x) +
N∑

j1=0

· · ·
N∑

jd=0

(
N j1... jd

N
+ α(x)

)
λ j1... jd

+
N∑

j1=0

· · ·
N∑

jd=0

(
N j1... jd

N
− α(x)

)
λ j1... jd + γ

s.t. λ j1... jd +λ j1... jd +γ ≥h(x, s) ∀s∈cl(I j1... jd ), ∀ jr ∈ {0, 1, . . . , N }, r ∈[d],
γ ∈R, λ j1... jd ≤0, λ j1... jd (s)≥0, ∀ jr ∈ {0, 1, . . . , N }, r ∈ [d].

(56)

Proof Note that the probability P(s ∈ I j1 j2... jd ) in (55) can be written as the expec-
tation of the indicator function 1I j1 j2 ... jd

(s) with respect to P . The inner problem of

(D3RO) can be reformulated as the following conic linear program:

max
P∈P([a,b],B)

EP [h(x, s)]

s.t. EP [1I j1 ... jd
(s)] ≤ N j1... jd

N
+ α(x) ∀ jr ∈ {0, 1, . . . , N }, r ∈ [d], λ j1... jd ≥ 0

EP [1I j1 ... jd
(s)] ≥ N j1... jd

N
− α(x) ∀ jr ∈ {0, 1, . . . , N }, r ∈ [d], λ j1... jd ≤ 0

EP [1[a,b](s)] = 1, γ ∈ R.

(57)

Applying conic duality [47] to (57) we obtain the following dual problem of (57):

min
λ,λ,γ

N∑
j1=0

· · ·
N∑

jd=0

(
N j1... jd

N
+ α(x)

)
λ j1... jd

+
N∑

j1=0

. . .

N∑
jd=0

(
N j1... jd

N
− α(x)

)
λ j1... jd + γ

s.t. (λ j1... jd + λ j1... jd )1I j1 ... jd
(s) + γ 1[a,b] ≥ h(x, s) ∀s ∈ [a, b],

γ ∈ R, λ j1... jd ≥ 0, λ j1... jd (s) ≤ 0, ∀ jr ∈ {0, 1, . . . , N }, r ∈ [d].

(58)

Note that by partitioning the range of the vector s, the first constraint of (58) can be
reformulated as the following semi-infinite constraints:

λ j1... jd + λ j1... jd + γ ≥ h(x, s) ∀s ∈ I j1... jd , ∀ jr ∈ {0, 1, . . . , N }, r ∈ [d].
(59)
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Since h(x, s) is continuous in s ∈ [a, b] for any x ∈ X , we can replace I j1... jd with the
closure cl(I j1... jd ) in the above semi-infinite constraints. Then by Proposition 2.8(iii) of
[47], the optimal objective of (57) equals the optimal objective of (58).After combining
(58) with the outer minimization problem over x ∈ X , we can reformulate (D3RO)
into (56). 	
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