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Abstract
For a C2-smooth function on a finite-dimensional space, a necessary condition for its
quasiconvexity is the positive semidefiniteness of its Hessian matrix on the subspace
orthogonal to its gradient, whereas a sufficient condition for its strict pseudoconvexity
is the positive definiteness of its Hessian matrix on the subspace orthogonal to its
gradient. Our aim in this paper is to extend those conditions for C1,1-smooth functions
by using the Fréchet and Mordukhovich second-order subdifferentials.

Keywords Second-order subdifferential · Mean value theorem · C1,1-smooth
function · Quasiconvexity · Pseudoconvexity

1 Introduction

Since the notion of convexity does not satisfy a variety of mathematical models used
in sciences, economics, and engineering, various generalizations of convex functions
have been introduced in literature [7,11,18] such as (strictly) quasiconvex and (strictly)
pseudoconvex functions. Those functions share many nice properties of convex func-
tions and cover somemodelswhich are effective and adaptable to real-world situations.
To be more specific, the quasiconvexity of a function ensures the convexity of its sub-
level sets, and the pseudoconvexity implies that its critical points are minimizers.
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First-order characterizations for quasiconvexity and pseudoconvexity can be found
in [4,7,10,11] for smooth functions and [1,2,5,14–16,22,23,25] for nonsmooth ones.
The well-known second-order necessary condition for the quasiconvexity of C2-
smooth functions (see for instance [3,7,9,11]) states that the Hessian matrix of a
quasiconvex function is positive-semidefinite on the subspace orthogonal to its gra-
dient. Furthermore, if the Hessian matrix of a C2-smooth function is positive definite
on the subspace orthogonal to its gradient then the given function is strictly pseudo-
convex [11]. Using some kinds of generalized second-order derivatives, many authors
established some second-order criteria for the quasiconvexity and pseudoconvexity
of functions without the C2-smooth property. By employing Taylor’s formula and an
estimation formula of generalized Hessian, Luc [17] set up the necessary and suf-
ficient conditions for the quasiconvexity of C1,1-smooth functions. In [12] Ginchev
and Ivanov introduced the concept of second-order upper Dini-directional derivatives
and utilized it to characterize the pseudoconvexity of radially upper semicontinuous
functions. By using the theory of viscosity solutions of partial differential equations,
Barron, Goebel, and Jensen [6] obtained some necessary conditions and sufficient
ones for the quasiconvexity of upper semicontinuous functions.

It can be seen that the Fréchet and the Mordukhovich second-order subdifferen-
tials play a crucial role in variational analysis [19,20,24]. Recently, Nadi and Zafarani
[21] established some characterizations of the quasimonotone and pseudomonotone
of set-valued mappings in terms of their Fréchet coderivatives. Using the relation-
ship between generalized monotone mappings and generalized convex functions,
they presented some second-order characterizations of quasiconvex [21, Corollary
3.16] and pseudoconvex functions [21, Corollary 3.20] via their Fréchet second-
order subdifferentials. In this paper, utilizing Fréchet andMordukhovich second-order
subdifferentials, we establish directly some necessary and sufficient conditions for
quasiconvexity and pseudoconvexity of C1,1-smooth functions without using charac-
terizations of generalized monotone mappings. For the necessity, we prove that the
Fréchet second-order subdifferential of a pseudoconvex function is positive semidefi-
nite on the subspace orthogonal to its gradient while the Mordukhovich second-order
subdifferential of a quasiconvex function is only positive semidefinite along its some
selection. It is noted that although the latter can be implied from [21, Corollary
3.16], we give another simpler proof of this result via the mean value inequality
and some facts of quasiconvex functions. For the sufficiency, we propose two condi-
tions guaranteeing the strict pseudoconvexity. The first one is the positive definiteness
of the Mordukhovich second-order subdifferential of a given function on the sub-
space orthogonal to its gradient. The second one claims that the Fréchet second-order
subdifferential of a given function has some selection which is positive on the sub-
space orthogonal to its gradient. Moreover, a second-order sufficient condition for the
strict quasiconvexity is also established by using Fréchet second-order subdifferen-
tials. Throughout the paper, we proposed a variety of examples to illustrate and analyze
the obtained results.

The paper is organized as follows. Some background material from variational
analysis and generalized convexity are recalled in Sect. 2. Section 3 presents some
second-order conditions for quasiconvexity and pseudoconvexity of C1,1-smooth func-
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tions. Sufficient conditions are given in Sect. 4. Conclusions and further investigations
are discussed in the last section.

2 Preliminaries

To beginwith, some necessary notions from [20]will be recalled. Let F be a set-valued
mapping between Euclidean spaces Rn and R

m . As usual, the effective domain and
the graph of F are given, respectively, by

domF := {x ∈ R
n|F(x) �= ∅} and gphF := {(x, y) ∈ R

n × R
m |y ∈ F(x)}.

The sequential Painlevé–Kuratowski outer limit of F as x → x̄ is defined as

Lim sup
x→x̄

F(x) := {y ∈ R
n | ∃ sequences xk → x̄, yk → y,

with yk ∈ F(xk) for all k = 1, 2, . . .}. (1)

Let us consider an extended-real-valued function ϕ : Rn → R := (−∞,∞]. We
always assume that ϕ is proper and lower semicontinuous. The Fréchet subdifferential
of ϕ at x̄ ∈ domϕ := {x ∈ R

n : ϕ(x) < ∞} (known as the presubdifferential and as
the regular subdifferential) is

̂∂ϕ (x̄) :=
{

x∗ ∈ R
n | lim inf

x→x

ϕ(x) − ϕ (x̄) − 〈x∗, x − x̄〉
‖x − x̄‖ ≥ 0

}

. (2)

Then the limiting subdifferential of ϕ at x̄ (known also the general or basic subdif-
ferential) is defined via the outer limit (1)

∂ϕ(x̄) := Lim sup
x

ϕ→x̄

̂∂ϕ(x), (3)

where x
ϕ→ x̄ signifies that x → x̄ with ϕ(x) → ϕ(x̄). Observe that both Fréchet and

limiting subdifferentials reduce to the classical Fréchet derivative for continuously
differentiable functions.

Given a set � ⊂ R
n with its indicator function δ�(x) equal to 0 for x ∈ � and

to ∞ otherwise, the Fréchet and the Mordukhovich normal cones to � at x̄ ∈ � are
defined, respectively, via the corresponding subdifferentials (2) and (3) by

̂N (x̄;�) := ̂∂δ�(x̄) and N (x̄;�) := ∂δ�(x̄). (4)

The Fréchet and Mordukhovich coderivatives of F at (x̄, ȳ) ∈ gphF are defined,
respectively, via corresponding normal cones (4) by

D∗F(x, y)(y∗) := {x∗ ∈ R
n : (x∗,−y∗) ∈ N ((x̄, ȳ), gphF)},
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̂D∗F(x, y)(y∗) := {x∗ ∈ R
n : (x∗,−y∗) ∈ ̂N ((x̄, ȳ), gphF)}.

We omit ȳ = f (x̄) in the above coderivative notions if F := f : R
n → R

m is
single-valued.

Definition 2.1 Let ϕ : Rn → R be a function with a finite value at x̄ .

(i) For any ȳ ∈ ∂ϕ(x̄), the map ∂2ϕ(x̄, ȳ) : Rn ⇒ R
n with the values

∂2ϕ(x̄, ȳ)(u) = (D∗∂ϕ)(x̄, ȳ)(u) (u ∈ R
n)

is said to be theMordukhovich second-order subdifferential of ϕ at x̄ relative to ȳ.
(ii) For any ȳ ∈ ̂∂ϕ(x̄), the map̂∂2ϕ(x̄, ȳ) : Rn ⇒ R

n with the values

̂∂2ϕ(x̄, ȳ)(u) = (̂D∗
̂∂ϕ)(x̄, ȳ)(u) (u ∈ R

n)

is said to be the Fréchet second-order subdifferential of ϕ at x̄ relative to ȳ. We
omit ȳ = ∇ϕ(x̄) in the above second-order subdifferentials if ϕ ∈ C1 around x̄ ,
i.e., continuously Fréchet differentiable in a neighborhood of x̄ .

In general, the Fréchet second-order subdifferential and the Mordukhovich one are
incomparable. However, if ϕ ∈ C1 around x̄ , then

̂∂2ϕ(x̄)(u) ⊂ ∂2ϕ(x̄)(u), ∀u ∈ R
n . (5)

If ϕ ∈ C1,1 around x̄ , i.e., Fréchet differentiable around x̄ with the gradient ∇ϕ being
locally Lipschitzian around x̄ then the calculation of second-order subdifferentials
can be essentially simplified due to the following scalarization formulas (see [19,
Proposition 3.5] and [20, Proposition 1.120])

̂∂2ϕ(x̄)(u) = ̂∂〈u,∇ϕ〉(x̄), ∂2ϕ(x̄)(u) = ∂〈u,∇ϕ〉(x̄). (6)

In this case, Mordukhovich second-order subdifferentials are nonempty [20, Corol-
lary 2.25] while Fréchet ones may be empty. If ϕ ∈ C2 around x̄ , i.e., ϕ is twice
continuously Fréchet differentiable in a neighborhood of x̄ , then

∂2ϕ(x̄)(u) = ̂∂2ϕ(x̄)(u) = {∇2ϕ(x̄)u}, ∀u ∈ R
n . (7)

Let us recall some well-known notions of generalized convexity.

Definition 2.2 (a) A function ϕ : Rn → R is said to be quasiconvex if

ϕ((1 − λ)x + λy) ≤ max{ϕ(x), ϕ(y)}

for every x, y ∈ R
n and for every λ ∈ [0, 1].
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(b) A function ϕ : Rn → R is said to be strictly quasiconvex if

ϕ((1 − λ)x + λy) < max{ϕ(x), ϕ(y)}

for every x, y ∈ R
n, x �= y and for every λ ∈ (0, 1).

(c) A differentiable function ϕ : Rn → R is called pseudoconvex if

x, y ∈ R
n, ϕ(x) > ϕ(y) �⇒ 〈∇ϕ(x), y − x〉 < 0.

(d) A differentiable function ϕ : Rn → R is called strictly pseudoconvex if

x, y ∈ R
n, x �= y, ϕ(x) ≥ ϕ(y) �⇒ 〈∇ϕ(x), y − x〉 < 0.

It follows, immediately, from the given definitions, that a strictly quasiconvex (pseudo-
convex) function is quasiconvex (pseudoconvex). For differentiable functions, (strict)
pseudoconvexity implies (strict) quasiconvexity. The next theorem shall point out that
within the class of (strictly) quasiconvex functions, (strict) pseudoconvexity may be
specified by means of its behaviour at critical points.

Theorem 2.1 [7, Theorem 3.2.9] Let ϕ : Rn → R be a continuously differentiable
function. Then, ϕ is (strictly) pseudoconvex if and only if the following conditions
hold:

(i) ϕ is quasiconvex;
(ii) If ∇ϕ(x) = 0 then x is a (strict) local minimizer for ϕ.

Finally, we consider a lemma which will be used in the sequel.

Lemma 2.1 Let ϕ : R
n → R be a differentiable function. If ϕ is not strictly

quasiconvex, then there exist x1, x2 ∈ R
n, x1 �= x2 and t0 ∈ (0, 1) such that

〈∇ϕ(x1 + t0(x2 − x1)), x2 − x1〉 = 0 and

ϕ(x1 + t(x2 − x1)) ≤ ϕ(x1 + t0(x2 − x1)), ∀t ∈ [0, 1]. (8)

Proof Since ϕ is not strictly quasiconvex, there exist x1, x2 ∈ R
n, α ∈ (0, 1) such that

x1 �= x2 and
ϕ((1 − α)x1 + αx2) ≥ max{ϕ(x1), ϕ(x2)}. (9)

Consider the function f : R → R given by

f (t) = ϕ(x1 + t(x2 − x1)), ∀t ∈ R.

Then, thanks to the Weierstrass theorem and (9), we can find a number t0 ∈ (0, 1)
for which the function f admits a maximum on the interval [0, 1] at t0. Hence, (8) is
satisfied and by the Fermat rule we have

0 = ∇ f (t0) = 〈∇ϕ(x1 + t0(x2 − x1)), x2 − x1〉.

��

123



2418 P. D. Khanh, V. T. Phat

3 Necessary conditions

Let us recall the well-known second-order necessary condition for quasiconvexity of
C2-smooth functions.

Theorem 3.1 (see [3, Lemma 6.2] or [7, Theorem 3.4.2]) Let ϕ : R
n → R be a

C2-smooth function. If ϕ is quasiconvex, then

x, u ∈ R
n, 〈∇ϕ(x), u〉 = 0 �⇒ 〈∇2ϕ(x)u, u〉 ≥ 0. (10)

By using the mean value inequality in terms of limiting subdifferential for Lips-
chitzian functions [20, Corollary 3.51 ] we extend the above result to C1,1-smooth
functions.

Proposition 3.1 Let ϕ : Rn → R be a Lipschitz continuous function on an open set
containing [a, b]. Then one has

〈x∗, b − a〉 ≥ ϕ(b) − ϕ(a) for some x∗ ∈ ∂ϕ(c), c ∈ [a, b).

Theorem 3.2 Let ϕ : Rn → R be a C1,1-smooth function. If ϕ is quasiconvex then

x, u ∈ R
n, 〈∇ϕ(x), u〉 = 0 �⇒ 〈z, u〉 ≥ 0 for some z ∈ ∂2ϕ(x)(u). (11)

Proof Let x, u ∈ R
n be such that 〈∇ϕ(x), u〉 = 0. If u = 0 then 〈z, u〉 = 0 for all

z ∈ ∂2ϕ(x)(u). Otherwise, consider the function f : Rn → R given by

f (y) := 〈∇ϕ(y), u〉 ∀y ∈ R
n .

Then, f (x) = 0 and f is locally Lipschitz continuous onRn by the C1,1-smoothness of
ϕ. Moreover, ∂ f is locally bounded (see [20, Corollary 1.81] or [24, Theorem 9.13]),
robust [24, Proposition 8.7] on R

n and for every y ∈ R
n

∂ f (y) = ∂〈u,∇ϕ〉(y) = ∂2ϕ(y)(u).

For the sequences xk := x + (1/k)u, x ′
k := x − (1/k)u (k ∈ N), one has xk →

x, x ′
k → x and, in view of Proposition 3.1, there exist θk ∈ [0, 1/k), θ ′

k ∈ (0, 1/k]
and zk ∈ ∂ f (x + θku), z′k ∈ ∂ f (x − θ ′

ku) such that

〈zk, (1/k)u〉 = 〈zk, xk − x〉 ≥ f (xk) − f (x) = f (xk),

〈z′k, (1/k)u〉 = 〈z′k, x − x ′
k〉 ≥ f (x) − f (x ′

k) = − f (x ′
k).

By the quasiconvexity of ϕ, it follows from [11, Proposition 1] that

0 ≥ min{〈∇ϕ(xk), x
′
k − xk〉, 〈∇ϕ(x ′

k), xk − x ′
k〉}

= min{(−2/k) f (xk), (2/k) f (x
′
k)}

≥ min{(−2/k2)〈zk, u〉, (−2/k2)〈z′k, u〉}.
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Therefore,max{〈zk, u〉, 〈z′k, u〉} ≥ 0 for all k ∈ N. Since ∂ f is locally bounded around
x , the sequences (zk), (z′k) are bounded.Without loss of generality, we can assume that
zk → z and z′k → z′. It follows that max{〈z, u〉, 〈z′, u〉} ≥ 0 and by the robustness of
∂ f we have z, z′ ∈ ∂ f (x) = ∂2ϕ(x)(u). The proof is complete. ��
Remark 3.1 Theorem 3.2 can be deduced directly from [21, Corollary 3.16] when ϕ is
a C1,1-smooth function. The mean value inequality allows us to give a simpler proof
for this result.

The following example shows that the inequality in (11)maynot be true for all points
belonging to the second-order Mordukhovich subdifferentials even for pseudoconvex
functions.

Example 3.1 [13, Remark 3.1] Let ϕ : R → R be defined by

ϕ(x) :=
∫ |x |

0
φ(t)dt,

where

φ(t) =
{

2t2 + t2 sin
( 1
t

)

if t > 0,

0 if t = 0.

Observe that ϕ is a pseudoconvex C1,1-smooth function. Indeed, for every x ∈ R, we
have

∇ϕ(x) =
{

φ(x) if x ≥ 0,

−φ(−x) if x < 0.

Hence, ∇ϕ is locally Lipschitz and so it is C1,1-smooth. Moreover, ∇ϕ(x) = 0 if and
only if x = 0 and 0 is a local minimum of ϕ. It follows from [7, Theorem 3.2.7] that ϕ
is a pseudoconvex function. Clearly, one has ∂2ϕ(0)(u) = [−|u|, |u|] for each u ∈ R.
Thus, for all u �= 0, there exists z∗ ∈ ∂2ϕ(0)(u) such that 〈z∗, u〉 < 0.

Although the pseudoconvexity does not imply the positive semidefiniteness of the
second-order Mordukhovich subdifferential, it guarantees the positive semidefinite-
ness of the second-order Fréchet subdifferential.

Theorem 3.3 Let ϕ : Rn → R be a C1,1-smooth function. If ϕ is pseudoconvex then

x, u ∈ R
n, 〈∇ϕ(x), u〉 = 0 �⇒ 〈z, u〉 ≥ 0 for all z ∈ ̂∂2ϕ(x)(u). (12)

Proof Suppose to the contrary that there exist x, u ∈ R
n and z ∈ ̂∂2ϕ(x)(u) such that

〈∇ϕ(x), u〉 = 0 and 〈z, u〉 < 0. By (6), we have z ∈ ̂∂〈u,∇ϕ〉(x) and so

0 ≤ lim inf
y→x

〈u,∇ϕ(y)〉 − 〈u,∇ϕ(x)〉 − 〈z, y − x〉
‖y − x‖

= lim inf
y→x

〈u,∇ϕ(y)〉 − 〈z, y − x〉
‖y − x‖ . (13)
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For the sequence xk := x − (1/k)u (k ∈ N), one has xk → x and

〈∇ϕ(x), xk − x〉 = 〈∇ϕ(x),−(1/k)u〉 = 0.

The pseudoconvexity of ϕ implies that ϕ(xk) ≥ ϕ(x) and by the classical mean value
theorem there exists θk ∈ (0, 1/k) such that

0 ≤ ϕ(xk) − ϕ(x) = 〈∇ϕ(x − θku), xk − x〉 = 〈∇ϕ(x − θku), (−1/k)u〉.

For the sequence yk := x − θku (k ∈ N), one has yk → x and 〈∇ϕ(yk), u〉 ≤ 0.
Therefore, by (13) we have

0 ≤ lim inf
k→∞

〈u,∇ϕ(yk)〉 − 〈z, yk − x〉
‖yk − x‖

≤ lim inf
k→∞

〈z, θku〉
‖θku‖

= 〈z, u〉
‖u‖

which is a contradiction to 〈z, u〉 < 0. ��
The next example shows that (12) is violated if the pseudoconvexity is relaxed to

quasiconvexity.

Example 3.2 Let ϕ : R → R be given by

ϕ(x) := 1

2
x |x |, ∀x ∈ R.

Observe that ϕ is a quasiconvex C1,1-smooth function and ∇ϕ(x) = |x | for every
x ∈ R. It is clear that

N ((0, 0); gph∇ϕ) = {(x, y) ∈ R
2| y = |x |, y ≤ −|x |}.

Note that the Fréchet coderivative of ∇ϕ in this case is given by

̂∂2ϕ(0)(u) = ̂D∗∇ϕ(0)(u) =
{

[−u, u] if u ≥ 0,

∅ if u < 0.

Observe that for z = −1, u = 1, we have z ∈ ̂∂2ϕ(0)(u) and 〈z, u〉 < 0.

4 Sufficient conditions

A second-order sufficient condition for the strict pseudoconvexity in the C2-smooth
case is recalled in the following theorem.
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Theorem 4.1 [11, Proposition 4] Let ϕ : Rn → R be a C2-smooth function satisfying

x ∈ R
n, u ∈ R

n \ {0}, 〈∇ϕ(x), u〉 = 0 �⇒ 〈∇2ϕ(x)u, u〉 > 0. (14)

Then, ϕ is a strictly pseudoconvex function.

Our aim in this section is to establish some similar versions of Theorem 4.1 in
the C1,1-smooth case by using the Fréchet and Mordukhovich second-order subdif-
ferentials. The first version is the replacement of the Hessian matrices in (14) by the
Mordukhovich second-order subdifferentials. Our proof is based on Theorem 2.1 and
the following sufficient optimality condition for C1,1-smooth functions.

Proposition 4.1 [8, Corollary 4.8] Suppose thatϕ : Rn → R is aC1,1-smooth function
and x ∈ R

n. If ∇ϕ(x) = 0 and

〈z, u〉 > 0 for all z ∈ ∂2ϕ(x)(u), u ∈ R
n

then x is a strict local minimizer of ϕ.

Theorem 4.2 Let ϕ : Rn → R be a C1,1-smooth function satisfying

x ∈ R
n, u ∈ R

n \ {0}, 〈∇ϕ(x), u〉 = 0 �⇒ 〈z, u〉 > 0 for all z ∈ ∂2ϕ(x)(u). (15)

Then ϕ is a strictly pseudoconvex function.

Proof Observe that if ∇ϕ(x) = 0, then (15) implies the positive semidefiniteness of
∂2ϕ(x) and so, by Proposition 4.1, x is a strict local minimizer of ϕ. Hence, it follows
from Theorem 2.1 that ϕ is strictly pseudoconvex if and only if ϕ is quasiconvex.

Assume that ϕ is not quasiconvex. Then, by Lemma 2.1, there exist x1, x2 ∈
R
n, x1 �= x2 and t0 ∈ (0, 1) such that 〈∇ϕ(x1 + t0(x2 − x1)), x2 − x1〉 = 0 and

(8) is satisfied. Let x̄ := x1 + t0(x2 − x1) and u := x2 − x1. It follows that u �= 0 and
〈∇ϕ(x̄), u〉 = 0 and so, by (15),

〈z, u〉 > 0, ∀z ∈ ∂2ϕ(x̄)(u). (16)

For the sequence xk := x̄ + (1/k)u (k ∈ N) we have xk → x̄ . For sufficiently large k,
we have t0 + 1/k ∈ (0, 1) and so ϕ(xk) ≤ ϕ(x̄) by (8). Applying the classical mean
value theorem, for sufficiently large k, there exists θk ∈ (0, 1/k) such that

〈∇ϕ(x̄ + θku), (1/k)u〉 = ϕ(xk) − ϕ(x̄) ≤ 0. (17)

Consider the function φ : Rn → R given by

φ(x) = 〈u,∇ϕ〉(x), ∀x ∈ R
n .

Applying Proposition 3.1, for every k, there exist γk ∈ (0, θk] and zk ∈ ∂φ(x̄ + γku)

such that

〈zk,−θku〉 ≥ φ(x̄) − φ(x̄ + θku)
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= 〈u,∇ϕ(x̄)〉 − 〈u,∇ϕ(x̄ + θku)〉
= −〈u,∇ϕ(x̄ + θku)〉.

Combining the above inequality with (17) we have 〈zk, u〉 ≤ 0 for sufficiently large
k. Since ∂φ is locally bounded at x̄ , the sequence (zk) is bounded. Without loss of
generality, we can assume that zk → z. It follows that 〈z, u〉 ≤ 0 and by the robustness
of ∂φ we have z ∈ ∂φ(x̄) = ∂2ϕ(x̄)(u). This is a contradiction to (16). The proof is
complete. ��

We consider two examples to analyze (15). The first one shows that (15) cannot be
relaxed to the following condition

x ∈ R
n, u ∈ R

n\{0}, 〈∇ϕ(x), u〉 = 0 �⇒ 〈z, u〉 > 0 for some z ∈ ∂2ϕ(x)(u) (18)

Moreover, (18) is not sufficient for the quasiconvexity of ϕ.

Example 4.1 Let ϕ : R → R be the function given by

ϕ(x) :=
∫ x

0
φ(t)dt,

where

φ(t) =

⎧

⎪

⎨

⎪

⎩

−2t2 + t2 sin( 1t ) if t > 0,

0 if t = 0,

2t2 + t2 sin( 1t ) if t < 0.

Observe that ϕ is a C1,1-smooth function and ∇ϕ(x) = φ(x) for every x ∈ R.
Moreover, we have ∂2ϕ(0)(u) = [−|u|, |u|] for all u ∈ R. Let x ∈ R, u ∈ R \ {0}
be such that 〈∇ϕ(x), u〉 = 0. It follows that ∇ϕ(x) = 0, or equivalently x = 0. For
z∗ = u ∈ ∂2ϕ(0)(u), we have 〈z∗, u〉 = |u|2 > 0. The condition (18) holds for ϕ.

However, ϕ is not quasiconvex. Indeed, for x = 1

π
, y = − 1

π
, we have

〈∇ϕ(x), y − x〉 = 4

π3 > 0, 〈∇ϕ(y), y − x〉 = − 4

π3 < 0.

By [11, Proposition 1], ϕ is not quasiconvex.
The second example points out that we cannot replace the Mordukhovich second-

order subdifferential in (15) by the Fréchet second-order one since it may be empty.

Example 4.2 Let ϕ : R → R be the function given by

ϕ(x) :=
∫ x

0
φ(t)dt ∀x ∈ R,

where

φ(t) :=
{

−2t − t sin(log(|t |)) if t �= 0,

0 if t = 0
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is a locally Lipschitz function. Hence, ϕ is C1,1-smooth and ∇ϕ(x) = φ(x) for every
x ∈ R. Let x, u ∈ R, u �= 0 such that 〈∇ϕ(x), u〉 = 0. Then, ∇ϕ(x) = 0 and so
x = 0. We havê∂2ϕ(0)(u) = ∅. Thus, the below condition holds

x ∈ R, u ∈ R\{0}, 〈∇ϕ(x), u〉 = 0 �⇒ 〈z, u〉 > 0 for all z ∈ ̂∂2ϕ(x)(u).

However, ϕ is not a pseudoconvex function. Indeed, for x = 0, y = 1, we have

〈∇ϕ(x), y − x〉 = 0, 〈∇ϕ(y), y − x〉 = −2 < 0.

By [11, Proposition 2], ϕ is not pseudoconvex.

When the Fréchet second-order subdifferential is nonempty, we can use it to char-
acterize the strict quasiconvexity and strict pseudoconvexity of C1,1-smooth functions.

Theorem 4.3 Let ϕ : Rn → R be a C1,1-smooth function satisfying

x ∈ R
n, u ∈ R

n\{0}, 〈∇ϕ(x), u〉 = 0 �⇒ 〈z, u〉 > 0 for some z ∈ ̂∂2ϕ(x)(u) ∪ −̂∂2ϕ(x)(−u)

(19)

Then ϕ is a strictly quasiconvex function.

Proof Assume that ϕ is not strictly quasiconvex. Then, by Lemma 2.1, there exist
x1, x2 ∈ R

n with x1 �= x2 and t0 ∈ (0, 1) such that 〈∇ϕ(x1+t0(x2−x1)), x2−x1〉 = 0
and (8) is satisfied. Let x := x1 + t0(x2 − x1) and u := x2 − x1. It follows that u �= 0
and 〈∇ϕ(x), u〉 = 0 and so, by (19), there exists z ∈ ̂∂2ϕ(x)(u)∪−̂∂2ϕ(x)(−u) such
that 〈z, u〉 > 0. Since

̂∂2ϕ(x)(u) ∪ −̂∂2ϕ(x)(−u) = ̂∂〈u,∇ϕ〉(x) ∪ −̂∂〈−u,∇ϕ〉(x)

it must happen one of the following cases.
Case 1: z ∈ ̂∂〈u,∇ϕ〉(x). Since 〈∇ϕ(x), u〉 = 0, we have

0 ≤ lim inf
y→x

〈u,∇ϕ(y)〉 − 〈u,∇ϕ(x)〉 − 〈z, y − x〉
‖y − x‖

= lim inf
y→x

〈u,∇ϕ(y)〉 − 〈z, y − x〉
‖y − x‖ . (20)

For the sequence xk := x + (1/k)u (k ∈ N) we have xk → x . For sufficiently large k,
we have t0 + 1/k ∈ (0, 1) and so ϕ(xk) ≤ ϕ(x) by (8). Applying the classical mean
value theorem, for sufficiently large k, there exists θk ∈ (0, 1/k) such that

〈∇ϕ(x + θku), (1/k)u〉 = ϕ(xk) − ϕ(x) ≤ 0. (21)

For the sequence yk := x + θku (k ∈ N) we have yk → x and 〈∇ϕ(yk), u〉 ≤ 0 by
(21) for every k ∈ N. It follows from (20) that
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0 ≤ lim inf
k→∞

〈u,∇ϕ(yk)〉 − 〈z, yk − x〉
‖yk − x‖

≤ lim inf
k→∞

−〈z, θku〉
‖θku‖

= −〈z, u〉
‖u‖

which is a contradiction to 〈z, u〉 > 0.
Case 2. z ∈ −̂∂〈−u,∇ϕ〉(x). Repeating the proof of Case 1. with u, z being replaced
by −u,−z we also get a contradiction. ��
Remark 4.1 Observe that the strict quasiconvexity in Theorem 4.3 cannot be improved
to strict pseudoconvexity. Indeed, let ϕ be the function given in Example 3.2. We have

̂∂2ϕ(0)(u) ∪ −̂∂2ϕ(0)(−u) = [−|u|, |u|] ,

for all u ∈ R. Observe that if x ∈ R, u ∈ R \ {0} are such that 〈∇ϕ(x), u〉 = 0 then
x = 0. Hence, with z := u ∈ ̂∂2ϕ(0)(u) ∪ −̂∂2ϕ(0)(−u) we have 〈z, u〉 = |u|2 > 0
and so (19) holds while ϕ is not strictly pseudoconvex.

We now improve (19) to get another characterization for the strict pseudoconvexity.

Theorem 4.4 Let ϕ : Rn → R be a C1,1-smooth function satisfying

x ∈ R
n, u ∈ R

n\{0}, 〈∇ϕ(x), u〉 = 0 �⇒ 〈z, u〉 > 0 for some z ∈ ̂∂2ϕ(x)(u).

(22)
Then ϕ is a strictly pseudoconvex function.

Proof By Theorem 4.3, ϕ is strictly quasiconvex. We will use Theorem 2.1 to prove
the strict pseudoconvexity of ϕ. Let x ∈ R

n such that ∇ϕ(x) = 0. It follows from (6)
and (22) that

̂∂〈u,∇ϕ〉(x) = ̂∂2ϕ(x)(u) �= ∅ and ̂∂〈−u,∇ϕ〉(x) = ̂∂2ϕ(x)(−u) �= ∅

for every u ∈ R
n \ {0}. By [20, Proposition 1.87], the scalar function 〈u,∇ϕ〉 is

differentiable at x for every u ∈ R
n \ {0}. Hence, ϕ is twice differentiable at x and

̂∂2ϕ(x)(u) = {∇〈u,∇ϕ〉(x)} = {∇2ϕ(x)u}

for every u ∈ R
n \ {0}. Again, by (22), its Hessian ∇2ϕ(x) is positive definite. More-

over, by [24, Theorem 13.2], the Hessian matrix ∇2ϕ(x) also furnishes a quadratic
expansion for ϕ at x . Therefore, since ∇2ϕ(x) is positive definite and ∇ϕ(x) = 0, it
yields that x is a strict local minimizer of ϕ. By Theorem 2.1, ϕ is strictly pseudocon-
vex. ��
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Remark 4.2 According to the proof of Theorem 4.4, the condition (22) also implies
that ϕ is twice differentiable at its critical points.

In the two next examples, we will show that (22) and (15) are incomparable.

Example 4.3 Let ϕ : R → R be the function defined by

ϕ(x) =
{

1
2 x

2 if x ≤ 0,

3x2 if x > 0.

Then, ϕ is C1,1-smooth and

∇ϕ(x) =
{

x if x ≤ 0,

6x if x > 0.

Let x, u ∈ R, u �= 0 such that 〈∇ϕ(x), u〉 = 0. Then, ∇ϕ(x) = 0 and so x = 0.
Clearly,

̂∂2ϕ(0)(u) =
{

[u, 6u] if u ≥ 0,

∅ if u < 0,
and ∂2ϕ(0)(u) =

{

[u, 6u] if u ≥ 0,

{u, 6u} if u < 0.

Hence, (15) holds while (22) is not satisfied.

Example 4.4 Let ϕ : R → R be the function defined by

ϕ(x) :=
∫ x

0
φ(t)dt,

where φ : R → R is given by

φ(t) =

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

1

2π
if t ≥ 1

π
,

t

2
+ t2 sin

(

1

t

)

if 0 < |t | <
1

π
,

0 if t = 0.

− 1

2π
if t ≤ − 1

π
.

Since φ is locally Lipschitz, ϕ is C1,1-smooth and ∇ϕ(x) = φ(x) for every x ∈ R.

Moreover, ϕ is twice differentiable everywhere except the points
1

π
and − 1

π
. Let

x, u ∈ R
n , u �= 0 such that 〈∇ϕ(x), u〉 = 0. Then ∇ϕ(x) = 0. We have

∣

∣

∣

∣

x sin
1

x

∣

∣

∣

∣

= |x |
∣

∣

∣

∣

sin
1

x

∣

∣

∣

∣

≤ |x | <
1

π
.
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when − 1
π

< x < 1
π
. Hence,

x sin
1

x
+ 1

2
>

1

2
− 1

π
> 0, for all x ∈

(

− 1

π
,
1

π

)

.

Therefore, ∇ϕ(x) = 0 if and only if x = 0. Clearly,

̂∂2ϕ(0)(u) =
{

1

2
u

}

and ∂2ϕ(0)(u) =
{

[− 1
2u, 3

2u
]

if u ≥ 0,
[ 3
2u,− 1

2u
]

if u < 0.

Hence, (22) holds while (15) is not satisfied.

5 Conclusions and further investigations

Several second-order necessary and sufficient conditions for the (strict) quasiconvexity
and the (strict) pseudoconvexity of C1,1-smooth functions have been established on
finite-dimensional Euclidean spaces. We also propose many examples to analyze and
illustrate our results. Further investigations are needed to solve the following questions:

1. How to extend our results to wider classes of smooth and non-smooth functions
on infinite-dimensional Hilbert or even Banach spaces?

2. How to apply our results to construct second-order necessary and sufficient con-
ditions for nonlinear programming problems with non-convex and C1,1-smooth
data?
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