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Abstract
We consider the inverse optimal value problem on minimum spanning tree under unit
l∞ norm. Given an edge weighted connected undirected network G = (V , E,w)

and a spanning trees T 0, we aim to modify the weights of the edges such that T 0 is
the minimum spanning tree under the new weight vector whose weight is equal to a
given value K and the modification cost under unit l∞ norm is minimized. We present
a mathematical model of the problem. After analyzing the properties, we propose
a sufficient and necessary condition for optimal solutions of the problem. Then we
develop a strongly polynomial time algorithm with running time O(|V ||E |). Finally,
we give an example to demonstrate the algorithm.

Keywords Minimum spanning tree · l∞ norm · Inverse optimal value problem ·
Strongly polynomial time algorithm

1 Introduction

In recent years, spanning tree problems have become an important topic in the field
of combinatorial optimization due to many applications in transportation networks,
communication networks, etc. LetG = (V , E,w) be a connected undirected network,
where V = {1, 2, . . . , n} and E = {e1, e2, . . . , em}. Each edge ei is associated with
a weight wi . Let w = (w1, w2, . . . , wm) be the weight vector. Let Γ be the set of all
spanning trees of G. The weight of a spanning tree T is defined as the sum of weights
of edges in T , that is,w(T ) = ∑

ei∈T wi . Theminimum spanning tree (MST) problem
is to find a spanning tree T ∈ Γ whose weight is minimum.

B Xiucui Guan
xcguan@163.com

1 Department of Mathematics and Physics, Changzhou Campus, Hohai University,
Changzhou 213022, China

2 Institute of Intelligent Optimization and Control, Hohai University, Changzhou 213022, China

3 School of Mathematics, Southeast University, Nanjing 210096, China

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s11590-020-01553-8&domain=pdf
http://orcid.org/0000-0002-2653-1868


2302 B. Zhang et al.

We consider the inverse optimal value problems on minimum spanning trees under
unit l∞ norm (denoted by IOVMST∞), which can be described as follows. Given a
spanning tree T 0 of G, we aim to find a new edge weight vector w̄ such that

(1) The weight of T 0 under w̄ is equal to a given value K , where K < w(T 0);
(2) T 0 is the minimum spanning tree under w̄, that is, the weight of any spanning

tree under w̄ is not less than K ;
(3) The maximum modification maxei∈E |w̄i − wi | is minimized.

The problem IOVMST∞ can be formulated as follows:

minw̄ maxei∈E |w̄i − wi |
s.t.

∑

ei∈T 0
w̄i = K ,

∑

e j∈T
w̄ j ≥ K , ∀T ∈ Γ .

(1.1)

The problem IOVMST∞ has practical background. An enterprise has n agents in
a region, each agent has connection with other agents [2]. Any commercial message
passed between agents i and j will fall into hostile hands with certain probability
pi j . Define the edge weight of edge ek between agents i and j as wk = pi j . The
enterprise leader wants to transmit confidential commercial messages among all the
agents through a spanning tree T 0 of a safe network. A safe network T 0 means the
total probability of T 0 to be intercepted is minimum and the total probability is small
enough to be a constant K . The leader aims to change edge weightw to w̄ such that the
maximum deviation |w̄k −wk | of each edge ek is minimum. To meet this requirement,
the leader needs to arrange some training courses for some agents to decrease the
probabilities of interception when transmitting commercial messages among some
edges. Notice that more deviation |w̄k −wk | of edge ek needs more cost ck of training
courses for agents i and j . For example, let ck = a|w̄k−wk | and a = 10. Then the cost
ck is 10US$ when |w̄k −wk | = 1, but ck is 100 US$ when |w̄k −wk | = 2. This is just
an inverse optimal value problem on minimum spanning tree.

Notice that there is another kind of inverse optimal value problems on minimum
spanning trees under unit l∞ norm, in which we do not need to preassign a spanning
tree T 0, but to make the weight w̄(T ) of any MST under w̄ to be a given value K .
The mathematical model is given below.

minw̄ max
ei∈E

|w̄i − wi |

s.t. min
T∈Γ

∑

ei∈T
w̄i = K . (1.2)

However, the problem (1.2) is trivial to solve. Firstly, we find a minimum spanning
tree T ∗ underw, then solve equation

∑
e∈T ∗(wi+λ∗) = K to calculateλ∗ = K−w(T ∗)

n−1 .
If λ∗ ≥ 0, then w∗

i = wi +λ∗ for each ei ∈ E . If λ∗ < 0, then w∗
i = wi +λ∗ for each

ei ∈ T ∗, and w∗
i = wi − λ∗ for each ei /∈ T ∗. It is not difficult to prove that T ∗ is still

a minimum spanning tree underw∗ andw∗ is an optimal solution of the problem (1.2)
with objective value |λ∗|. Thus, in this paper, we consider the problem IOVMST∞.
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Related to the problem IOVMST∞, the inverse minimum spanning tree problems
(1.3) (denoted by IMST) are mostly studied under different norms including l1 and
l∞ norms and Hamming distance [3–10,12–18].

min ‖w̄ − w‖
(IMST) s.t.

∑

ei∈T 0

w̄i ≤
∑

e j∈T
w̄ j , ∀T ∈ Γ . (1.3)

Note that in the problem IMST we do not need to preassign a value K to the
weight w̄(T 0) for the givenMST T 0 under the new weight vector w̄, hence the prob-
lem IOVMST∞ is a subproblem of the problem IMST∞ under unit l∞ norm. For
the problem IMST∞, Sokkalingam et al. [13] showed that it can be solved in O(n2)
time, and Hochbaum [8] proposed an O(m log n) algorithm, which is more efficient
if the graph is not dense.

For the partial inverse minimum spanning tree problem (denoted by PIMST),
in which not a full spanning tree but a part of it (a forest) is given, Lai and Orlin
[9] showed that the problem PIMST under the weighted l∞ norm can be solved
in strongly polynomial time. Li et al. [10] showed that the capacitated PIMST
under l∞ norm can be solved in polynomial time, in which the deviation |w̄i − wi |
is upper-bounded by given values for each ei ∈ E . Cai et al. [4] considered the
capacitated PIMST when weight increasing is forbidden and presented a strongly
polynomial time algorithm for a general criterion objective function including l1, l2, l∞
norms.

Ahmed and Guan [1] considered the inverse optimal value (IOVLP) problem
on linear programming (LP) problem. Given an LP problem with a desired opti-
mal objective value and a set of feasible cost vectors, they aim to determine
a cost vector such that the optimal objective value of the LP is closest to the
desired value. They first proved that the general problem IOVLP is NP-hard, then
for a concave maximization/minimization problem, they provided sufficient condi-
tions, under which the problem IOVLP is polynomially solvable. When the set
of feasible cost vectors is polyhedral, they described an algorithm for the prob-
lem IOVLP by solving linear and bilinear programming problems. Lv et al. [11]
transformed the problem IOVLP under some conditions into a nonlinear bilevel
programming problem, which was transformed into a single-level nonlinear pro-
gram using the Kuhn–Tucker optimality condition of the lower level problem. They
proposed an algorithm based on exact penalty method and analysed its conver-
gence.

The paper is organized as follows. In Sect. 2, we study some properties
of optimal solutions of the problem IOVMST∞ and propose a sufficient and
necessary condition. In Sect. 3, we develop a strongly polynomial time algo-
rithm with time complexity O(mn). A computational example of the problem
IOVMST∞ is given in Sect. 4. Finally, conclusion and discussion are given in
Sect. 5.
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2 Properties of an optimal solution of the problem IOVMST∞

In this section, we analyze some properties of an optimal solution of the problem
IOVMST∞. Most importantly, we obtain a sufficient and necessary condition for an
optimal solution.

We first introduce some notations. For each e j /∈ T 0, T 0 ∪ {e j } contains a fun-
damental cycle, and we denote by Pj all edges in this cycle except e j and define
Ωi = {e j /∈ T 0|ei ∈ Pj }. If both edge e j /∈ T and edge ei ∈ T are in at least one
cycle, then e j ∈ Ωi . Let Ω0 = {ei ∈ T 0|Ωi = ∅} be the set of isolated edges in T0,
which belongs to every spanning tree of G. If Ω0 �= ∅, then Ω0 is also the set of cut
edges of G. If Ω0 = ∅, then each edge in T 0 belongs to at least one fundamental
cycle. Let

δ = max
ei∈T 0

max
ek∈Ωi

{wi − wk} (2.1)

be the maximum deviation between wi and wk for each ei ∈ T 0 and ek ∈ Ωi .
Denote Θi = {e ji ∈ Ωi |wi − w ji = maxek∈Ωi {wi − wk} > 0} as the set of edges
e ji ∈ Ωi achieving the maximum value for ei . Let Θ0 = {ei ∈ T 0\Ω0|Θi = ∅}. If
Θ0 �= ∅, then for each ei ∈ Θ0, if ep ∈ Ωi , then wp ≥ wi . If Θ0 = ∅, then for each
ei ∈ T 0\Ω0, there exists an edge ep ∈ Ωi such that wp < wi . In order to explain the
meaning of above notations, we give the next example.
Example 1 As shown in Fig. 1, let V = {v1, v2, . . . , v11}, E = {e1, e2, . . . , e17},w =
(3, 4, 3, 3, 4, 3, 1, 5, 5, 3, 4, 5, 5, 3, 4, 4, 1), T 0 = {e1, e2, e3, e4, e8, e9, e12, e13, e15,
e16} (T 0 is denoted by thick lines in Fig. 1).

In Example 1 shown in Fig. 1,
(1) for each ei /∈ T 0, P5 = {e3, e4}, P6 = {e2, e4}, P7 = {e2, e4, e8}, P10 =

{e8, e9}, P11 = {e8, e9, e13}, P14 = {e8, e9, e12, e13}, and P17 = {e8, e9, e12, e13, e15};
(2) for each ei ∈ T 0,Ω1 = Ω16 = ∅,Ω2 = {e6, e7},Ω3 = {e5},Ω4 = {e5, e6, e7},

Ω8 = {e7, e10, e11, e14, e17}, Ω9 = {e10, e11, e14, e17}, Ω12 = {e14, e17}, Ω13 =
{e11, e14, e17}, Ω15 = {e17};

Fig. 1 An example to show the meanings of notations
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(3) for each ei ∈ T 0, Θ1 = Θ16 = ∅, Θ2 = {e7}, Θ3 = ∅, Θ4 = {e7}, Θ8 =
{e7, e17}, Θ9 = {e17}, Θ12 = {e17}, Θ13 = {e17}, Θ15 = {e17};

(4) Ω0 = {e1, e16} and Θ0 = {e3};
(5) e j2 = e7, e j4 = e7, e j8 = e7 or e j8 = e17, e j9 = e17, e j12 = e17, e j13 = e17,

e j15 = e17; δ = w8 − w j8 = w8 − w7 = 4;
Next, we analyze some properties of a feasible solution of the problem IOVMST∞.

Lemma 1 [2] T 0 is a minimum spanning tree with respect to the weight vector w̄ if
and only if the following optimality conditions are satisfied:

w̄i ≤ w̄ j for each e j /∈ T 0 and ei ∈ Pj . (2.2)

Lemma 2 If w̄ is a feasible solution of problem (1.1) with objective value λ̄, then ŵ is
also a feasible solution of (1.1) with objective value λ̂ = λ̄, where

ŵk =
{

w̄k, if ek ∈ T 0,

wk + λ̄, if ek /∈ T 0.
(2.3)

Proof We first prove the feasibility of ŵ. It follows from (2.2) and (2.3) that ŵ j =
w j + λ̄ ≥ w̄ j ≥ w̄i = ŵi for ei ∈ Pj and e j /∈ T 0, where the first inequality follows
from the feasibility of w̄ and the definition of λ̄, and the second inequality follows
from the feasibility of w̄. Moreover,

∑
ei∈T 0 ŵi = ∑

ei∈T 0 w̄i = K . To calculate
the objective value, we have |ŵi − wi | = |w̄i − wi | ≤ λ̄ for each ei ∈ T 0, and
|ŵ j − w j | = |w j + λ̄ − w j | = λ̄ for e j /∈ T 0. So λ̂ = maxek∈E |ŵk − wk | = λ̄. �

By Lemma 2, we know that the weight of edge e j /∈ T 0 in an optimal solution can
be increased to the maximum weight ŵ j = w j + λ̂ if the optimal objective value λ̂ is
obtained. In the following part of the paper, we find an optimal solution of the problem
(1.1) satisfying (2.3).

By using the notation of Ωi for ei ∈ T 0, the problem (1.1) is equivalent to

min max |w̄i − wi |
s.t. w̄i ≤ w̄ j , ei ∈ T 0 and e j ∈ Ωi ,

w̄ j ≥ w j , e j /∈ T 0,∑

ei∈T 0
w̄i = K .

(2.4)

Lemma 3 If w̄ is a feasible solution of problem (2.4) with objective value λ̄, then
λ̄ ≥ δ

2 , where δ is defined as in (2.1).

Proof We only consider δ > 0. In fact, if δ ≤ 0, then T 0 is a minimum spanning tree
of G under weight w, hence λ̄ ≥ 0 ≥ δ

2 . It follows from Lemma 2 that ŵ defined as
in (2.3) is a feasible solution of problem (2.4). Let δ = δp = wp −w jp for some edge
ep ∈ T 0 and e jp ∈ Θp. Then

δ = wp − w jp = wp − ŵp + (ŵp − w jp ) ≤ (wp − ŵp) + (ŵ jp − w jp ) ≤ 2λ̄,
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where the first inequality follows from the feasibility of ŵ and the second inequality
follows from the definition of ŵ and λ̄. Hence λ̄ ≥ δ

2 . �
Let ŵ be a feasible solution of problem (2.4) which satisfies (2.3) and its value is λ̂.

It follows from (2.3) that ŵ j = w j + λ̂ for e j /∈ T 0. For edge ei ∈ T 0, the weight wi

may be increased, decreased, or be unchanged to ŵi . If Ω0 �= ∅ and ei ∈ Ω0, then ei
is an isolated edge belonging to any tree including T 0 and thus wi may be increased
in an optimal solution in some cases (see Fig. 4b).

2.1 Properties of an optimal solution of the problem IOVMST∞ when20 = ∅ and
Ä0 = ∅

In this subsection, we analyze some properties of an optimal solution of the problem
IOVMST∞ when Θ0 = ∅ and Ω0 = ∅, then we propose a sufficient and necessary
condition for an optimal solution of the problem IOVMST∞.

If Θ0 = ∅, then wi − λ̂ ≤ ŵi ≤ w ji + λ̂ for ei ∈ T 0, e ji ∈ Θi . Define

⎧
⎨

⎩

EU (ŵ) = {ei ∈ T 0| ŵi = w ji + λ̂, e ji ∈ Θi },
ED(ŵ) = {ei ∈ T 0| ŵi = wi − λ̂},
EM(ŵ) = {ei ∈ T 0| wi − λ̂ < ŵi < w ji + λ̂, e ji ∈ Θi }.

(2.5)

Obviously, ED(ŵ) ∪ EM(ŵ) ∪ EU (ŵ) = T 0. Let NU = |EU (ŵ)|, ND =
|ED(ŵ)|, NM = |EM(ŵ)|. Define

{
γ (ŵ) = min{ŵi − (wi − λ̂)| ei ∈ EM(ŵ)},
η(ŵ) = min{(w ji + λ̂) − ŵi | ei ∈ EM(ŵ)}. (2.6)

In order to explain the meaning of above notations, we give the next example.

Example 2 As shown in Fig. 2, let V = {v1, v2, . . . , v9}, E = {e1, e2, . . . , e15},
w = (1, 4, 5, 3, 4, 3, 1, 5, 5, 3, 4, 5, 5, 3, 4), T 0 = {e2, e3, e4, e8, e9, e12, e13, e15}
(T 0 is denoted by thick lines in Fig. 2), K = 22, ŵ = {3.5, 3.5, 2.5, 2,
6.5, 3.5, 3.5, 3, 5.5, 6.5, 3.5, 2.5, 5.5, 1.5}.

In Example 2 shown in Fig. 2, w(T 0) = 36, and it is easy to check that ŵ is a
feasible solution of problem (2.4) satisfying (2.3) with objective value λ̂ = 2.5.

(1) EU (ŵ) = {e2, e8, e12}. For example, e j2 = e7 and ŵ2 = w7+λ̂, so e2 ∈ EU (ŵ).
(2) ED(ŵ) = {e3, e13, e15}. For example, e j13 = e1 and ŵ13 = w13 − λ̂, so e13 ∈

ED(ŵ).
(3) EM(ŵ) = {e4, e9}. For example, e j9 = e1 and w9 − λ̂ < ŵ9 < w1 + λ̂, so

e9 ∈ EM(ŵ).
(4) γ (ŵ) = min{ŵ4 − (w4 − 2.5), ŵ9 − (w9 − 2.5)} = ŵ9 − (w9 − 2.5) = 0.5,

η(ŵ) = min{(w j4 + 2.5) − ŵ4, (w j9 + 2.5) − ŵ9} = (w j9 + 2.5) − ŵ9 = 0.5.

It is not difficult to see that ŵ is not an optimal solution and EM(ŵ) = {e4, e9} �= ∅
in Example 2.
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Inverse optimal value problem on minimum spanning… 2307

Fig. 2 An example to explain the meanings of ED(ŵ), EM(ŵ), EU (ŵ), γ (ŵ) and η(ŵ)

Next, we use the notations given above to analyze some properties of an optimal
solution.

Theorem 4 Suppose Ω0 = ∅ and Θ0 = ∅. Let ŵ be a feasible solution of problem
(2.4) satisfying (2.3) and λ̂ > δ

2 . If EM(ŵ) �= ∅, then ŵ is not an optimal solution of
(2.4), where EM(ŵ) is defined as in (2.5).

Proof We consider four cases, in which we find a better feasible solution w∗ than
ŵ satisfying λ∗ < λ̂. If EM(ŵ) �= ∅, then η(ŵ) > 0, γ (ŵ) > 0. Let α =
min{η(ŵ), γ (ŵ)}, then α > 0.

Case 1 EU (ŵ) = ∅, ED(ŵ) = ∅.

Then EM(ŵ) = T 0 and λ̂ ≥ α. Next we show that the weight vector w∗ defined
below is a feasible solution of problem (2.4) whose objective value is λ∗ = λ̂−α < λ̂.

w∗
k =

{
ŵk, if ek ∈ T 0,

ŵk − α, if ek /∈ T 0.

For each ei ∈ EM(ŵ), if ek ∈ Ωi , and e ji ∈ Θi , then wk ≥ w ji and ek, e ji /∈ T 0.

w∗
k ≥ w∗

ji = ŵ ji − α = w ji + λ̂ − α

= (w ji + λ̂ − ŵi ) + ŵi − α ≥ η(ŵ) + ŵi − α ≥ ŵi = w∗
i ,

where the first inequality follows from the definition of w∗, ŵ and e ji , the second
inequality follows from the definition of η(ŵ) and the third inequality follows from
the definition of α.

Furthermore, w∗
k = ŵk − α = wk + λ̂ − α ≥ wk for ek /∈ T 0 and

∑
ei∈T 0 w∗

i =∑
ei∈T 0 ŵi = K . Hence, w∗ is a feasible solution of problem (2.4).
Now we calculate the objective value λ∗. Firstly, for each e j /∈ T 0, |w∗

j − w j | =
|w j + λ̂ − α − w j | = |λ̂ − α| = λ∗. Secondly, we show that |w∗

i − wi | ≤ λ∗ for each
ei ∈ T 0 = EM(ŵ). (a)w∗

i −wi ≤ w∗
ji
−wi = w ji + (λ̂−α)−wi ≤ λ̂−α = λ∗; (b)

Notice that ŵi −wi +λ̂ ≥ γ (ŵ). Thenw∗
i = ŵi ≥ wi −λ̂+γ (ŵ) ≥ wi −λ̂+α, hence
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w∗
i − wi ≥ −λ̂ + α = −λ∗. Thus w∗ is a better feasible solution than ŵ satisfying

λ∗ = λ̂ − α < λ̂.
Case 2 EU (ŵ) = ∅, ED(ŵ) �= ∅.

Then 0 < ND < n − 1, EM(ŵ) = T 0\ED(ŵ) and NM = n − ND − 1 > 0. Let

w∗
k =

⎧
⎨

⎩

ŵk + ξ, if ek ∈ ED(ŵ),

ŵk − β, if ek ∈ EM(ŵ),

ŵk − ξ, if ek /∈ T 0,

where ξ, β are solutions of the following equation system

{
ξ · ND = (n − ND − 1) · β,

ξ + β = μ(ŵ) = min{γ (ŵ), η(ŵ), λ̂ − δ
2 }.

Then ξ = n−ND−1
n−1 μ(ŵ), β = ND

n−1μ(ŵ). Notice that β > 0 and ξ > 0 as μ(ŵ) > 0.
For each ei ∈ EM(ŵ), if ek ∈ Ωi , e ji ∈ Θi , then

w∗
k ≥ w∗

ji = ŵ ji − ξ ≥ ŵ ji − η(ŵ) ≥ ŵ ji + ŵi − (w ji + λ̂) = ŵi > ŵi − β = w∗
i ,

where the second inequality follows from 0 < ξ ≤ μ(ŵ) ≤ η(ŵ), the third inequality
follows from the definition of η(ŵ) and the fourth inequality follows from β > 0.

For each ei ∈ ED(ŵ), if ek ∈ Ωi , notice that wi − w ji ≤ δ and ξ < λ̂ − δ
2 , then

w∗
k ≥ w∗

ji = (w ji + λ̂) − ξ ≥ w ji + δ

2
≥ wi − δ

2
≥ wi − (λ̂ − ξ) = w∗

i .

Furthermore,

∑

ei∈T 0
w∗
i = ∑

ei∈ED(ŵ)

w∗
i + ∑

ei∈EM(ŵ)

w∗
i = ∑

ei∈ED(ŵ)

(ŵi + ξ) + ∑

ei∈EM(ŵ)

(ŵi − β)

= ∑

ei∈ED(ŵ)

ŵi + ∑

ei∈EM(ŵ)

ŵi + ξ · ND − β · (n − ND − 1) = ∑

ei∈T 0
ŵi = K .

Then w∗ is a feasible solution of problem (2.4).
Now we show that the objective value λ∗ = λ̂ − ξ < λ̂. Firstly, we show that

|w∗
i −wi | ≤ λ∗ for each ei ∈ EM(ŵ). (a)w∗

i −wi ≤ w∗
ji
−wi = w ji +(λ̂−ξ)−wi ≤

λ̂− ξ = λ∗, (b) Notice that ξ +β ≤ γ (ŵ) ≤ ŵi + λ̂−wi , then ŵi −β −wi ≥ ξ − λ̂.
Hence w∗

i − wi = ŵi − β − wi ≥ −λ̂ + ξ = −λ∗. Secondly, for each ei ∈ ED(ŵ),
|w∗

i − wi | = |wi − λ̂ + ξ − wi | = | − λ̂ + ξ | = λ∗. Thirdly, for each e j /∈ T 0,
|w∗

j − w j | = |w j + λ̂ − ξ − w j | = |λ̂ − ξ | = λ∗.
Case 3 EU (ŵ) �= ∅, ED(ŵ) = ∅.

Then 0 < NU < n − 1, EM(ŵ) = T 0\EU (ŵ) and NM = n − NU − 1 > 0. Let

w∗
k =

⎧
⎨

⎩

ŵk − ξ, if ek ∈ EU (ŵ),

ŵk + β, if ek ∈ EM(ŵ),

ŵk − ξ, if ek /∈ T 0,
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where ξ = n−NU−1
n−1 μ(ŵ) > 0, β = NU

n−1μ(ŵ) > 0 are defined the same as in Case 2.
For each ei ∈ EU (ŵ), if ek ∈ Ωi , we have w∗

k ≥ w∗
ji

= ŵ ji − ξ = ŵi − ξ = w∗
i .

By using the same discussion as in Case 2, we can know that w∗ is a better feasible
solution than ŵ satisfying λ∗ = λ̂ − ξ < λ̂.

Case 4 EU (ŵ) �= ∅, ED(ŵ) �= ∅.

Then 0 < ND < n−1, 0 < NU < n−1−ND , EM(ŵ) = T 0\(ED(ŵ)∪EU (ŵ)),
and NM = n − ND − NU − 1 > 0. Let

w∗
k =

⎧
⎪⎪⎨

⎪⎪⎩

ŵk + τ, if ek ∈ ED(ŵ),

ŵk − ρ, if ek ∈ EU (ŵ),

ŵk, if ek ∈ EM(ŵ),

ŵk − ξ, if ek /∈ T 0,

where ξ = min{τ, ρ}, and τ, ρ are solutions of the following equation system

{
ρ · NU = τ · ND,

ρ + τ = μ(ŵ) = min{γ (ŵ), η(ŵ), λ̂ − δ
2 }.

Then τ = NU
ND+NU

μ(ŵ) > 0, ρ = ND
ND+NU

μ(ŵ) > 0.
For each ei ∈ EM(ŵ), if ek ∈ Ωi , e ji ∈ Θi , then

w∗
k ≥ w∗

ji = ŵ ji − ξ ≥ ŵ ji − η(ŵ) ≥ ŵ ji + ŵi − (w ji + λ̂) = ŵi = w∗
i ,

where the second inequality follows from ξ ≤ τ ≤ μ(ŵ) ≤ η(ŵ) and the third
inequality follows from the definition of η(ŵ).

For each ei ∈ ED(ŵ), if ek ∈ Ωi , notice that wi − w ji ≤ δ, ξ < λ̂ − δ
2 and

τ < λ̂ − δ
2 , then

w∗
k ≥ w∗

ji = w ji + (λ̂ − ξ) ≥ w ji + δ

2
≥ wi − δ

2
≥ wi − (λ̂ − τ) = ŵi + τ = w∗

i .

For each ei ∈ EU (ŵ), if ek ∈ Ωi , then w∗
k ≥ w∗

ji
= ŵ ji − ξ ≥ ŵi − ρ = w∗

i .

Furthermore,

∑

ei∈T 0
w∗
i = ∑

ei∈ED(ŵ)

w∗
i + ∑

ei∈EU (ŵ)

w∗
i + ∑

ei∈EM(ŵ)

w∗
i

= ∑

ei∈ED(ŵ)

(ŵi + τ) + ∑

ei∈EU (ŵ)

(ŵi − ρ) + ∑

ei∈EM(ŵ)

ŵi

= ∑

ei∈T 0
ŵi + τ · ND − ρ · NU = ∑

ei∈T 0
ŵi = K .

Now we show that the objective value λ∗ = λ̂− ξ < λ̂. Firstly, we show that |w∗
i −

wi | ≤ λ∗ for each ei ∈ EM(ŵ). (a)w∗
i −wi ≤ w∗

ji
−wi = (w ji +λ̂−ξ)−wi ≤ λ̂−ξ =

λ∗, (b) notice that ξ ≤ γ (ŵ) ≤ ŵi +λ̂−wi and ŵi = w∗
i , then ŵi −wi ≥ ξ −λ̂, hence

w∗
i −wi ≥ −λ̂+ξ = −λ∗. Then |w∗

i −wi | ≤ λ∗ for each ei ∈ EM(ŵ). Secondly, for
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each ei ∈ ED(ŵ), |w∗
i −wi | = |wi − λ̂+ τ −wi | = |λ̂− τ | ≤ |λ̂− ξ | = λ∗. Thirdly,

for each ei ∈ EU (ŵ), |w∗
i − wi | = |wi + λ̂ − ρ − wi | = |λ̂ − ρ| ≤ |λ̂ − ξ | = λ∗.

Finally, for each e j /∈ T 0, |w∗
j − w j | = |w j + λ̂ − ξ − w j | = |λ̂ − ξ | = λ∗.

Thus w∗ is a better feasible solution than ŵ satisfying λ∗ = λ̂ − ξ < λ̂. �
By using the similar proof as in Case 4 of Theorem 4, we can prove the following

corollary.

Corollary 5 Suppose Ω0 = ∅ and Θ0 = ∅. Let ŵ be a feasible solution of problem
(2.4) satisfying (2.3) and λ̂ > δ

2 . If ED(ŵ) �= ∅ and EU (ŵ) �= ∅, then ŵ is not an
optimal solution of (2.4).

Define

λ1 = w(T 0) − K

n − 1
, λ2 =

K − ∑

ei∈T 0\Θ0,e ji ∈Θi

w ji − ∑

ei∈Θ0
wi

n − 1
. (2.7)

In order to reducew(T 0) to K , we have two possible cases depending on the values
of λ1 and λ2. The first case is to reduce each weight wi of ei ∈ T 0 to wi − λ1. The
second case is to change weight wi to w ji + λ2 if Θi �= ∅ and to wi + λ2 if ei ∈ Θ0,
for each ei ∈ T 0.

Lemma 6 Suppose Ω0 = ∅. If λ1 and λ2 are defined as in (2.7), then λ1 + λ2 ≤ δ.

Proof

λ1 + λ2 = w(T 0) − K

n − 1
+

K − ∑

ei∈T 0\Θ0,e ji ∈Θi

w ji − ∑

ei∈Θ0
wi

n − 1

=

∑

ei∈T 0\Θ0,e ji ∈Θi

(wi − w ji )

n − 1

≤ |T 0\Θ0|
n − 1

· max{wi − w ji |ei ∈ T 0\Θ0, e ji ∈ Θi }

≤ |T 0\Θ0|
n − 1

· δ = (n − 1 − |Θ0|)
n − 1

· δ ≤ δ

The lemma holds. �
Now we prove the sufficient and necessary condition of an optimal solution of

problem (2.4).

Theorem 7 Suppose Ω0 = ∅ and Θ0 = ∅. Let ŵ be a feasible solution of problem
(2.4) which satisfies (2.3). If its objective value is λ̂ > δ

2 , then ŵ is an optimal solution
of problem (2.4) if and only if either ED(ŵ)∪EM(ŵ) = ∅ or EU (ŵ)∪EM(ŵ) = ∅.
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Proof (Necessity) Let ŵ be an optimal solution of problem (2.4) satisfying (2.3) and
λ̂ > δ

2 , then we know that EM(ŵ) = ∅ by Theorem 4, and either ED(ŵ) = ∅ or
EU (ŵ) = ∅ by Corollary 5. Hence, ED(ŵ)∪EM(ŵ) = ∅ or EU (ŵ)∪EM(ŵ) = ∅.

(Sufficiency) Firstly, at least one of ED(ŵ) ∪ EM(ŵ) and EU (ŵ) ∪ EM(ŵ) is

nonempty. Otherwise, T 0 = ∅. Notice that Θ0 = ∅, then λ2 =
K−∑

ei∈T 0,e ji
∈Θi

w ji

n−1
and

∑
ei∈T 0,e ji ∈Θi

w ji + (n − 1)λ2 = K .

Case 1 If ED(ŵ)∪ EM(ŵ) = ∅ and EU (ŵ)∪ EM(ŵ) �= ∅, then T 0 = EU (ŵ)∪
EM(ŵ) ∪ ED(ŵ) = EU (ŵ). Due to the feasibility of ŵ and λ̂ > δ

2 , we have

∑

ei∈T 0

ŵi =
∑

ei∈T 0,e ji ∈Θi

(w ji + λ̂) =
∑

ei∈T 0,e ji ∈Θi

w ji + (n − 1)λ̂ = K . (2.8)

Thus, λ2 = λ̂ > δ
2 and λ1 < δ

2 by definition of λ1, λ2 and Lemma 6.
If ŵ is not an optimal solution of problem (2.4), suppose w∗ is an optimal solution

with λ∗ < λ̂, then ED(w∗) ∪ EM(w∗) = ∅ or EU (w∗) ∪ EM(w∗) = ∅ by the
necessity of Theorem 7.

(a) If EU (w∗) = EM(w∗) = ∅ and ED(w∗) = T 0, then

∑

ei∈T 0

w∗
i =

∑

ei∈T 0

(wi − λ∗) = w(T 0) − (n − 1)λ∗ = K = w(T 0) − (n − 1)λ1.

Hence, λ∗ = λ1, which contradicts that λ∗ ≥ δ
2 > λ1 by Lemma 3.

(b) If ED(w∗) = EM(w∗) = ∅ and EU (w∗) = T 0, then by (2.8) we have

∑

ei∈T 0

w∗
i =

∑

ei∈T 0

(w ji + λ∗) =
∑

ei∈T 0,e ji ∈Θi

w ji + (n − 1)λ∗ = K

=
∑

ei∈T 0,e ji ∈Θi

w ji + (n − 1)λ̂.

Hence, λ∗ = λ̂, which contradicts λ∗ < λ̂.
(c) If ED(w∗) = EM(w∗) = EU (w∗) = ∅, then T 0 = ∅, which is impossible.
Thus, ŵ is an optimal solution of problem (2.4).
Case 2 If ED(ŵ) ∪ EM(ŵ) �= ∅ and EU (ŵ) ∪ EM(ŵ) = ∅, then T 0 = ED(ŵ).

Due to the feasibility of ŵ and λ̂ > δ
2 , we have

∑

ei∈T 0
ŵi = ∑

ei∈T 0
(wi − λ̂) = w(T 0) − (n − 1)λ̂ = K = w(T 0) − (n − 1)λ1.

(2.9)

Thus, λ1 = λ̂ > δ
2 and λ2 < δ

2 by definition of λ1, λ2 and Lemma 6.

Suppose w∗ is an optimal solution of problem (2.4) with λ∗ < λ̂, then ED(w∗) ∪
EM(w∗) = ∅ or EU (w∗) ∪ EM(w∗) = ∅ by the necessity of Theorem 7.
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(a) If EU (w∗) = EM(w∗) = ∅ and ED(w∗) = T 0, then

∑

ei∈T 0

w∗
i =

∑

ei∈T 0

(wi − λ∗) = w(T 0) − (n − 1)λ∗ = K = w(T 0) − (n − 1)λ̂.

Hence, λ∗ = λ̂, which contradicts λ∗ < λ̂.
(b) If ED(w∗) = EM(w∗) = ∅ and EU (w∗) = T 0, then

∑

ei∈T 0

w∗
i =

∑

ei∈T 0

(w ji + λ∗) =
∑

ei∈T 0,e ji ∈Θi

w ji + (n − 1)λ∗ = K

=
∑

ei∈T 0,e ji ∈Θi

w ji + (n − 1)λ2.

Hence, λ∗ = λ2 < δ
2 , which contradicts Lemma 3 that λ∗ ≥ δ

2 .
(c) If ED(w∗) = EM(w∗) = EU (w∗) = ∅, then T 0 = ∅, which is impossible.
Thus, ŵ is an optimal solution of problem (2.4).
Hence, under the conditionΩ0 = ∅,Θ0 = ∅, and λ̂ > δ

2 , if ED(ŵ)∪EM(ŵ) = ∅
or EU (ŵ) ∪ EM(ŵ) = ∅, then ŵ is an optimal solution of problem (2.4). �

2.2 Properties of an optimal solution of the problem IOVMST∞ when20 �= ∅ and
Ä0 = ∅

For the feasible solution ŵ satisfying (2.3) of problem (2.4) with objective
value λ̂, if Θ0 �= ∅, then we define a new weight vector w̃ and three sets
EU (ŵ), ED(ŵ), EM(ŵ).

w̃i =
⎧
⎨

⎩

w ji + λ̂, if ei ∈ T 0\Θ0, e ji ∈ Θi ,

wi + λ̂, if ei ∈ Θ0,

ŵi = wi + λ̂, if ei /∈ T 0,

(2.10)

⎧
⎨

⎩

EU (ŵ) = {ei ∈ T 0|ŵi = w̃i },
ED(ŵ) = {ei ∈ T 0|ŵi = wi − λ̂},
EM(ŵ) = {ei ∈ T 0|wi − λ̂ < ŵi < w̃i }.

(2.11)

Obviously, if λ̂ > δ
2 , then ED(ŵ) ∩ EU (ŵ) = ∅ and T 0 = EM(ŵ).

Theorem 8 Suppose Ω0 = ∅. Let ŵ be a feasible solution of problem (2.4) satisfying
(2.3) with objective value λ̂ > δ

2 . If EM(ŵ) �= ∅, then ŵ is not an optimal solution
of problem (2.4), where EM(ŵ) is defined as in (2.11) and w̃ used as in EM(ŵ) is
defined as in (2.10).

Proof Note that when Θ0 = ∅, the sets ED(ŵ), EM(ŵ), EU (ŵ) defined as in
(2.11) are the same as in (2.5), then the result holds obviously due to Theorem 4.
If Θ0 �= ∅, we can prove similarly by considering four cases depending on the two
sets EU (ŵ), ED(ŵ) empty or not. In each case, we can find a better feasible solution
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w∗ than ŵ with λ∗ < λ̂. Notice that the only difference in the proof of two theorems
is the result related to edges ei ∈ EU (ŵ), for which we should study two different
cases: (i) ei ∈ T 0\Θ0 and (ii) ei ∈ Θ0. Next we only take the proof of Case 4 as an
example and omit the similar proof in the other three cases.

Case 4 EU (ŵ) �= ∅, ED(ŵ) �= ∅, we can get a better feasible solution w∗ with
λ∗ < λ̂.

Let |ED(ŵ)| = ND < n − 1, |EU (ŵ)| = NU < n − 1 − ND , EM(ŵ) =
T 0\(ED(ŵ) ∪ EU (ŵ)), thus |EM(ŵ)| = nM = n − ND − NU − 1 > 0. Let

w∗
k =

⎧
⎪⎪⎨

⎪⎪⎩

ŵk + τ, if ek ∈ ED(ŵ),

ŵk − ρ, if ek ∈ EU (ŵ),

ŵk, if ek ∈ EM(ŵ),

ŵk − ξ, if ek /∈ T 0,

where ξ = min{τ, ρ}, and τ = NU
ND+NU

μ(ŵ) > 0, ρ = ND
ND+NU

μ(ŵ) > 0.
For each ei ∈ EM(ŵ), if ek ∈ Ωi , e ji ∈ Θi , then

w∗
k ≥ w∗

ji = ŵ ji − ξ ≥ ŵ ji − η(ŵ) ≥ ŵ ji + ŵi − (w ji + λ̂) = ŵi = w∗
i .

For each ei ∈ ED(ŵ), if ek ∈ Ωi , notice thatwi −w ji ≤ δ, ξ < λ̂− δ
2 and τ < λ̂− δ

2 ,
then

w∗
k ≥ w∗

ji = w ji + (λ̂ − ξ) ≥ w ji + δ

2
≥ wi − δ

2
≥ wi − (λ̂ − τ) = ŵi + τ = w∗

i .

For each ei ∈ EU (ŵ), (1) if ei ∈ T 0\Θ0, ek ∈ Ωi and e ji ∈ Θi , then w∗
k ≥ w∗

ji
=

ŵ ji − ξ ≥ ŵi − ξ ≥ ŵi − ρ = w∗
i . (2) If ei ∈ Θ0, ek ∈ Ωi , then w∗

k = ŵk − ξ ≥
ŵi − ξ ≥ ŵi − ρ = w∗

i . Furthermore,

∑

ei∈T 0
w∗
i = ∑

ei∈ED(ŵ)

(ŵi + τ) + ∑

ei∈EU (ŵ)

(ŵi − ρ) + ∑

ei∈EM(ŵ)

ŵi

= ŵ(T 0) + τ · ND − ρ · NU = ŵ(T 0) = K .

Now we show that the objective value λ∗ = λ̂ − ξ < λ̂. Firstly, we show that |w∗
i −

wi | ≤ λ∗ for each ei ∈ EM(ŵ). (a)w∗
i −wi ≤ w∗

ji
−wi = (w ji +λ̂−ξ)−wi ≤ λ̂−ξ =

λ∗, (b) Notice that ξ ≤ γ (ŵ) ≤ ŵi +λ̂−wi and ŵi = w∗
i , then ŵi −wi ≥ ξ −λ̂, hence

w∗
i − wi ≥ −λ̂ + ξ = −λ∗. Secondly, for each ei ∈ ED(ŵ), |w∗

i − wi | = |wi − λ̂ +
τ − wi | = |λ̂ − τ | ≤ |λ̂ − ξ | = λ∗. Thirdly, for each ei ∈ EU (ŵ), (1) if ei ∈ T 0\Θ0,
then |w∗

i − wi | = |ŵi − ρ − wi | = |w ji + λ̂ − ρ − wi | ≤ |λ̂ − ρ| ≤ |λ̂ − ξ | = λ∗. (2)
If ei ∈ Θ0, then |w∗

i − wi | = |wi + λ̂ − ρ − wi | = |λ̂ − ρ| ≤ |λ̂ − ξ | = λ∗. Finally,
for each e j /∈ T 0, |w∗

j − w j | = |w j + λ̂ − ξ − w j | = |λ̂ − ξ | = λ∗. �

By using the similar proof as in Theorem 7, we can prove the following theorem.
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Theorem 9 Suppose Ω0 = ∅. Let ŵ be a feasible solution of problem (2.4) satisfying
(2.3) and λ̂ > δ

2 . ŵ is an optimal solution of problem (2.4) if and only if either
ED(ŵ) ∪ EM(ŵ) = ∅ or EU (ŵ) ∪ EM(ŵ) = ∅, where EM(ŵ), EU (ŵ) and
ED(ŵ) are defined as in (2.11) and w̃ used in EM(ŵ) and EU (ŵ) is defined as in
(2.10).

In fact, the results in Theorems 8 and 9 are more general than that in Theorems 4
and 7, since they include the case of Θ0 = ∅. So we omit the condition Θ0 = ∅ in
Theorems 8 and 9.

3 An algorithm for the problem IOVMST∞

In this section, we first propose an algorithm to solve the problem IOVMST∞ when
Ω0 = ∅ and then we propose an algorithm to solve the problem IOVMST∞ when
Ω0 �= ∅.

3.1 An algorithm for the problem IOVMST∞ whenÄ0 = ∅

In this subsection, we first propose an algorithm to solve the problem IOVMST∞
when Ω0 = ∅, then prove its optimality and analyze its time complexity.

The main idea of the algorithm is as follows. Firstly, compute λ1 = w(T 0)−K
n−1 . If

λ1 > δ
2 , then let λ

∗ = λ1, letw∗
i = wi −λ∗ for ei ∈ T 0 andw∗

i = wi +λ∗ for ei /∈ T 0,
and then EU (w∗)∪EM(w∗) = ∅, which meansw∗ is an optimal solution of problem
(2.4) with λ∗ = λ1 by Theorem 9. Otherwise, compute λ2 by (2.7). If λ2 > δ

2 , then
let λ∗ = λ2, let w∗

i = wi + λ∗ for ei ∈ Θ0, w∗
i = w ji + λ∗ for ei ∈ T 0\Θ0, and

w∗
i = wi +λ∗ for ei /∈ T 0, and then ED(w∗)∪ EM(w∗) = ∅, hencew∗ is an optimal

solution of problem (2.4) with λ∗ = λ2 by Theorem 9. Secondly, if max{λ1, λ2} ≤ δ
2 ,

we will consider five cases to present an optimal solution w∗ with optimal objective
value λ∗ = δ

2 .
Next we present Algorithm 1 to solve the problem IOVMST∞ when Ω0 = ∅.
Next we prove w∗ obtained in Algorithm 1 is an optimal solution of problem (2.4).

Theorem 10 Suppose Ω0 = ∅. If max{λ1, λ2} > δ
2 , then the optimal objective value

is max{λ1, λ2}, and w∗ defined by (3.12) in Algorithm 1 is an optimal solution of
problem (2.4).

Proof Ifmax{λ1, λ2} > δ
2 , then atmost oneofλ1 andλ2 is not less than δ

2 asλ1+λ2 ≤ δ

by Lemma 6.
(1) If λ1 = λ∗ > δ

2 , then w∗
i = wi −λ∗ for ei ∈ T 0 and w∗

i = wi +λ∗ for ei /∈ T 0

according to (3.12). Hence, EU (w∗) ∪ EM(w∗) = ∅, then w∗ is an optimal solution
of problem (2.4) with optimal objective value λ1 by Theorem 9.

(2) Ifλ2 = λ∗ > δ
2 , thenw∗

i = wi+λ∗ for ei ∈ Θ0,w∗
i = w ji +λ∗ for ei ∈ T 0\Θ0,

and w∗
i = wi + λ∗ for ei /∈ T 0 according to (3.12). Hence ED(w∗) ∪ EM(w∗) = ∅,

then w∗ is an optimal solution of problem (2.4) with optimal objective value λ2 by
Theorem 9. �
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Algorithm 1 Solve the problem IOVMST∞ when Ω0 = ∅.
Input: A network G = (V , E,w), a given spanning tree

T 0 of G, a given number K .
Output: The optimal value λ∗, an optimal solution w∗.
1: Let w(T 0) := ∑

ei∈T 0 wi , determine the set

Pj for each e j /∈ T 0, and the sets Ωi and

Θi for each ei ∈ T 0. Let Θ0 := {ei ∈ T 0|
Θi = ∅}, and δ := maxei∈T 0 maxe j∈Ωi {wi −
w j }. Let λ1 := w(T 0)−K

n−1 , and λ2 :=

1
n−1

⎛

⎜
⎝K − ∑

ei∈T 0\Θ0,e ji
∈Θi

w ji
− ∑

ei∈Θ0
wi

⎞

⎟
⎠.

2: if max{λ1, λ2} > δ
2 then

3: λ∗ := max{λ1, λ2} is the optimal objective value.
Output an optimal solution w∗ of problem (2.4).

w∗
i :=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

wi − λ∗, if ei ∈ T 0, e ji ∈ Θi , λ
∗ = λ1

w ji
+ λ∗, if ei ∈ T 0, e ji ∈ Θi , λ

∗ = λ2,

wi + λ∗, if ei ∈ Θ0, λ∗ = λ2.

wi + λ∗, if ei /∈ T 0.

(3.12)

4: else
5: Let λ∗ := δ

2 . Let EU
s := {ei ∈ T 0|w ji

+ δ
2 <

wi , e ji ∈ Θi }, EUb := {ei ∈ T 0|w ji
+ δ

2 ≥
wi , e ji ∈ Θi }, and Us := ∑

ei∈EUs (wi − w ji
−

δ
2 ).

6: if Us = w(T 0) − K then
7: output an optimal solution w∗ defined as in

(3.13).

w∗
i :=

⎧
⎪⎨

⎪⎩

w ji
+ δ

2 , if ei ∈ EUs , e ji ∈ Θi ,

wi , if ei ∈ EUb ∪ Θ0,

wi + δ
2 , if ei /∈ T 0.

(3.13)

8: else if Us > w(T 0) − K then
9: let Rest0 := Us − (w(T 0) − K ), Dδ := ∅,

Dd := ∅, EE := EUb ∪ Θ0, Rest := Rest0.
10: while EE �= ∅ and Rest > 0 do
11: take an edge ec ∈ EE .
12: if ec ∈ EUb then
13: if Rest ≤ w jc + δ

2 − wc then
14: output the critical edge ec , the critical

value Rest and w∗ defined as in (3.14).

w∗
i :=

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

wi + Rest, if ei = ec,
wi + δ

2 , if ei ∈ Dδ ,

w ji
+ δ

2 , if ei ∈ EUs ∪ Dd ,

wi , if ei ∈ (EUb ∪ Θ0)
\(Dd ∪ Dδ ∪ {ec})

wi + δ
2 , if ei /∈ T 0.

(3.14)

15: else

16: let Rest := Rest − (w jc + δ
2 − wc),

Dd := Dd ∪ {ec} and EE := EE\{ec}.
17: end if
18: else if Rest ≤ δ

2 then
19: output the critical edge ec , the critical

value Rest and w∗ defined as in (3.14).
20: else
21: let Rest := Rest − δ

2 , Dδ := Dδ ∪ {ec}
and EE := EE\{ec}.

22: end if
23: end while
24: else
25: let Ds := δ

2 · |EUs |.
26: if Ds = w(T 0) − K then
27: output an optimal solutionw∗ defined below.

w∗
i :=

⎧
⎪⎨

⎪⎩

wi − δ
2 , if ei ∈ EUs ,

wi , if ei ∈ EUb ∪ Θ0,

wi + δ
2 , if ei /∈ T 0.

(3.15)

28: else if Ds < w(T 0) − K then

29: let χ := w(T 0)−K−Ds

|EUb∪Θ0 | , then output w∗

defined below.

w∗
i :=

⎧
⎪⎨

⎪⎩

wi − δ
2 , if ei ∈ EUs ,

wi − χ, if ei ∈ EUb ∪ Θ0,

wi + δ
2 , if ei /∈ T 0.

(3.16)

30: else
31: let Rest0 := w(T 0) − K − Us , Dδ := ∅,

EE := EUs , Rest := Rest0.
32: while EE �= ∅ do
33: take an edge ep ∈ EE .
34: if Rest ≤ δ − (wp − w jp ) then

35: break and let EE := EE\{ep} and
output the critical edge ep , the critical
value Rest and w∗ defined as in (3.17).

w∗
i :=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

w ji
+ δ

2 − Rest,
if ei = ep , e ji ∈ Θi ,

wi − δ
2 , if ei ∈ Dδ ,

w ji
+ δ

2 , if e ji ∈ Θi ,

ei ∈ EUs\(Dδ ∪ {ep}),
wi , if ei ∈ EUb ∪ Θ0,

wi + δ
2 , if ei /∈ T 0.

(3.17)

36: else
37: let Dδ := Dδ ∪ {ep} and Rest :=

Rest − (δ − wp + w jp ).

38: end if
39: end while
40: end if
41: end if
42: end if
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Theorem 11 Suppose Ω0 = ∅. If max{λ1, λ2} ≤ δ
2 , then the optimal objective value

of problem (2.4) is λ∗ = δ
2 and w∗ outputted by Algorithm 1 is an optimal solution.

Proof We consider five cases according to lines 4-40 of Algorithm 1. In each case, we
show that w∗ obtained in the algorithm is an optimal solution of problem (2.4) with
objective value δ

2 .
Case 1 IfUs = w(T 0)−K , then we first show thatw∗ defined as in (3.13) satisfies

w∗
k ≥ w∗

i for each ei ∈ T 0 and ek ∈ Ωi .
(1) If ei ∈ EUs , then w∗

k = wk + δ
2 ≥ w ji + δ

2 = w∗
i .

(2) If ei ∈ EUb, then w∗
k = wk + δ

2 ≥ w ji + δ
2 ≥ wi = w∗

i .
(3) If ei ∈ Θ0, then w∗

k = wk + δ
2 ≥ wi + δ

2 > wi = w∗
i .

Notice that
∑

ei∈EUs (w ji + δ
2 ) = ∑

ei∈EUs wi − Us , then
∑

ei∈T 0 w∗
i =

∑
ei∈EUs (w ji + δ

2 ) + ∑
ei∈EUb∪Θ0 wi = ∑

ei∈EUs wi + ∑
ei∈EUb∪Θ0 wi − Us =

w(T 0) −Us = K . Then w∗ is a feasible solution of problem (2.4).
Furthermore, for each ei ∈ EUs , |w∗

i − wi | = |wi − w ji − δ
2 | ≤ δ

2 , and for each
ek /∈ T 0, |w∗

k − wk | = δ
2 .

Hence w∗ is an optimal solution of problem (2.4) with λ∗ = δ
2 .

Case 2 If Us > w(T 0) − K , we first show that w∗ obtained by (3.14) satisfies
w∗
k ≥ w∗

i for each ei ∈ T 0 and ek ∈ Ωi .
(1) If ei = ec. (a) If ec ∈ Θ0, thenw∗

k = wk+ δ
2 ≥ wc+ δ

2 ≥ wc+Rest = w∗
c = w∗

i .
(b) If ec ∈ EUb, notice that Rest ≤ w jc + δ

2 − wc, then w∗
k = wk + δ

2 ≥ w jc + δ
2 =

(w jc + δ
2 − Rest)+ Rest ≥ wc + Rest = w∗

c = w∗
i . Thus, if ei = ec, then w∗

k ≥ w∗
i .

(2) If ei ∈ Dδ , we know that ei ∈ Θ0, then w∗
k = wk + δ

2 ≥ wi + δ
2 = w∗

i .
(3) If ei ∈ EUs ∪ Dd , then ei ∈ T 0\Θ0, and w∗

k = wk + δ
2 ≥ w ji + δ

2 = w∗
i .

(4) If ei ∈ (EUb ∪ Θ0)\(Dδ ∪ Dd ∪ {ec}). (a) If ei ∈ Θ0, then w∗
k = wk + δ

2 ≥
wi + δ

2 > wi = w∗
i . (b) If ei ∈ EUb, then w∗

k = wk + δ
2 ≥ w ji + δ

2 ≥ wi = w∗
i .

Now we show that
∑

ei∈T 0 w∗
i = K . Let ec be the critical edge and Rest be the

critical value outputted by lines 9-23 of Algorithm 1. Then Rest0 = Rest + δ
2 · |Dδ|+∑

ei∈Dd

[(w ji + δ
2 )−wi ] = Us − (w(T 0)−K ). Notice thatUs = ∑

ei∈EUs (wi − (w ji +
δ
2 )), then we have

∑

ei∈EUs

[

wi −
(

w ji + δ

2

)]

− Rest − δ

2
· |Dδ| −

∑

ei∈Dd

[(

w ji + δ

2

)

− wi

]

= w(T 0) − K .

Now we can calculate the value

∑

ei∈T 0

w∗
i =(wc + Rest) +

∑

ei∈Dδ

(

wi + δ

2

)

+
∑

ei∈EUs∪Dd

(

w ji + δ

2

)

+
∑

ei∈(EUb∪Θ0)\((Dδ∪Dd∪{ec})
wi
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= (wc + Rest) +
∑

ei∈Dδ

wi +
∑

ei∈Dδ

δ

2
+

∑

ei∈EUs∪Dd

wi

+
∑

ei∈EUs∪Dd

(w ji + δ

2
− wi ) +

∑

ei∈(EUb∪Θ0)\((Dδ∪Dd∪{ec})
wi

= w(T 0) + {Rest + δ

2
· |Dδ| +

∑

ei∈Dd

[(w ji + δ

2
) − wi ]

−
∑

ei∈EUs

[wi − (w ji + δ

2
)]}

= w(T 0) + (−w(T 0) + K ) = K .

Hence w∗ obtained in Algorithm 1 is a feasible solution of problem (2.4).
Furthermore, (1) If ei = ec, then |wi − w∗

i | = |wc − w∗
c | = Rest ≤ δ

2 . (2) If
ei ∈ Dδ , |wi − w∗

i | = δ
2 . (3) ei ∈ EUs ∪ Dd . If ei ∈ EUs then |wi − w∗

i | =
wi − w ji − δ

2 ≤ δ − δ
2 = δ

2 . If ei ∈ Dd , |wi − w∗
i | = w ji + δ

2 − wi ≤ δ
2 (4) If

ei ∈ (EUb ∪ Θ0)\(Dδ ∪ Dd ∪ {ec}), then |wi − w∗
i | = wi − wi = 0 < δ

2 . (5) If
ei /∈ T 0, then |wi − w∗

i | = δ
2 .

Hence w∗ is an optimal solution of problem (2.4) with λ∗ = δ
2 .

Case 3 If Us < w(T 0) − K and Ds = w(T 0) − K , then we first show that w∗
defined as in (3.15) satisfies w∗

k ≥ w∗
i for each ei ∈ T 0, ek ∈ Ωi . (1) If ei ∈ EUs ,

then w∗
k = wk + δ

2 ≥ w ji + δ
2 ≥ wi − δ

2 = w∗
i . (2) If ei ∈ EUb, then w∗

k = wk + δ
2 ≥

w ji + δ
2 ≥ wi = w∗

i . (3) If ei ∈ Θ0, then w∗
k = wk + δ

2 ≥ wi + δ
2 > wi = w∗

i .
Notice that Ds = δ

2 · |EUs | = w(T 0) − K , then
∑

ei∈T 0
w∗
i = ∑

ei∈EUs (wi − δ
2 ) +

∑
ei∈EUb∪Θ0 wi = w(T 0)− δ

2 ·|EUs | = K .Thenw∗ is a feasible solution of problem
(2.4). Furthermore, |w∗

i − wi | = δ
2 for each ei ∈ EUs , and |w∗

k − wk | = δ
2 for each

ek /∈ T 0. Hence w∗ is an optimal solution of problem (2.4) with λ∗ = δ
2 .

Case 4 If Us < w(T 0) − K and Ds < w(T 0) − K . Using the same analyses as in
Case 1, we can prove that w∗ defined as in (3.16) satisfies w∗

k ≥ w∗
i for each ei ∈ T 0

and ek ∈ Ωi . Notice that χ = w(T 0)−K−Ds

|EUb∪Θ0| and Ds = δ
2 · |EUs |. If χ > δ

2 , then

w(T 0)− K − Ds > δ
2 · |EUb ∪Θ0|, and ∑

ei∈T 0(wi − δ
2 ) > K = ∑

ei∈T 0(wi −λ1),

which means λ1 > δ
2 and contradicts λ1 ≤ δ

2 . Thus, χ ≤ δ
2 . Moreover,

∑

ei∈T 0

w∗
i =

∑

ei∈EUs

(

wi − δ

2

)

+
∑

ei∈EUb∪Θ0

(wi − χ)

= w(T 0) −
(

δ

2
· |EUs | + χ · |EUb ∪ Θ0|

)

= K .

Furthermore, it is obvious that |w∗
i − wi | ≤ δ

2 for each ei ∈ T 0 and |w∗
k − wk | = δ

2
for each ek /∈ T 0. Hence w∗ is an optimal solution of problem (2.4) with λ∗ = δ

2 .
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Case 5 If Us < w(T 0) − K , and Ds > w(T 0) − K , then we can similarly prove
that w∗ defined as in (3.17) satisfies w∗

k ≥ w∗
i for each ei ∈ T 0 and ek ∈ Ωi . Let ep

be the critical edge and Rest be the critical value outputted by Line 35. Then Rest0 =
Rest+ ∑

ek∈Dδ

(δ−wk +w jk ) = Rest− ∑

ek∈Dδ

(wk −(w jk + δ
2 )− δ

2 ) = w(T 0)−K −Us .

Notice that Us = ∑
ei∈EUs (wi − (w ji + δ

2 )), then we have

Rest + δ

2
· |Dδ| +

[

wp −
(

w jp + δ

2

)]

+
∑

ei∈EUs\({ep}∪Dδ)

[

wi −
(

w ji + δ

2

)]

= w(T 0) − K .

Now we can calculate the value

∑

ei∈T 0
w∗
i = (

w jp + δ
2 − Rest

) + ∑

ei∈Dδ

(
wi − δ

2

) + ∑

ei∈EUs\({ep}∪Dδ)

(
w ji

+ δ
2

) + ∑

ei∈EUb∪Θ0
wi

= {wp − [wp − (w jp + δ
2 )] − Rest} + ∑

ei∈Dδ

(
wi − δ

2

)

+ ∑

ei∈EUs\({ep}∪Dδ)

(
wi − [

wi − (
w ji + δ

2

)]) + ∑

ei∈EUb∪Θ0
wi

= w(T 0) − {
Rest + δ

2 · |Dδ| + [
wp − (

w jp + δ
2

)]

+ ∑

ei∈EUs\({ep}∪Dδ)

[
wi − (

w ji + δ
2

)]
}

= w(T 0) − w(T 0) + K = K .

Furthermore, it is obvious that |w∗
i − wi | ≤ δ

2 for each ei ∈ T 0 and |w∗
k − wk | = δ

2
for each ek /∈ T 0. Hence w∗ is an optimal solution of problem (2.4) with λ∗ = δ

2 . �

Finally, we analyze the time complexity of Algorithm 1.

Theorem 12 Suppose Ω0 = ∅, the problem (2.4) can be solved in O(mn) time by
Algorithm 1.

Proof In Algorithm 1, it is clear that line 1 takes O(mn) time. Lines 3–41 take O(m)

time. Thus, Algorithm 1 runs in O(mn) in the worst-case and hence it is a strongly
polynomial time algorithm. �

3.2 An algorithm for IOVMST∞ problemwhenÄ0 �= ∅

In this subsection, we consider the case when Ω0 �= ∅, which means that there is at
least one edge belonging to every spanning tree of G. In this case, the algorithm to
solve problem (2.4) is similar to Algorithm 1 and we only replace Θ0 in Algorithm 1
with Φ0 = Ω0 ∪ Θ0. Hence, we have the following corollary.
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Fig. 3 An example of the IOVMST∞ problem

Corollary 13 If Ω0 = {ei |ei ∈ T 0,Ωi = ∅} �= ∅, w∗ obtained in Algorithm 1 by
replacingΘ0withΦ0 = Ω0∪Θ0 is anoptimal solutionof problem (2.4). Furthermore,
the time complexity is still O(mn).

4 A computational example of IOVMST∞ problem

In this section, we use Example 1 to demonstrate the computing process of seven cases
in Algorithm 1. Notice that in Example 1, Ω0 �= ∅ and Θ0 �= ∅.

Example 3 As shown in Fig. 3, let V = {v1, v2, . . . , v11}, E = {e1, e2, . . . , e17},w =
(3, 4, 3, 3, 4, 3, 1, 5, 5, 3, 4, 5, 5, 3, 4, 4, 1), T 0 = {e1, e2, e3, e4, e8, e9, e12, e13, e15,
e16} (T 0 is denoted by thick lines in Fig. 3).

After running Step 1 of Algorithm 1, we have
(I) w(T 0) = 41; Ω1 = Ω16 = ∅, Ω2 = {e6, e7}, Ω3 = {e5}, Ω4 = {e5, e6, e7},

Ω8 = {e7, e10, e11, e14, e17}, Ω9 = {e10, e11, e14, e17}, Ω12 = {e14, e17}, Ω13 =
{e11, e14, e17}, Ω15 = {e17};

(II) Ω0 = {e1, e16} and Θ0 = {e3}; Θ1 = Θ16 = ∅, Θ2 = {e7}, Θ3 = ∅,
Θ4 = {e7}, Θ8 = {e7, e17}, Θ9 = {e17}, Θ12 = {e17}, Θ13 = {e17}, Θ15 = {e17};

(III) w j2 = w7 = 1, w j4 = w7 = 1, w j8 = w7 = 1, w j9 = w17 = 1, w j12 =
w17 = 1, w j13 = w17 = 1, w j15 = w17 = 1; and δ = w8 − w j8 = w8 − w7 = 4;

(IV) EUs = {e2, e8, e9, e12, e13, e15}, EUb = {e4}.
Seven cases are considered based on K .

λ1 = w(T 0) − K

n − 1
= 41 − K

10
,

λ2 =
K − ∑

ei∈T 0\(Θ0∪Ω0),e ji ∈Θi

w ji − ∑

ei∈Θ0∪Ω0
wi

n − 1
= K − 17

10
.
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Fig. 4 An optimal solution of Example 1 when K = 20, 38, 31, 27

(1) If K = 20. λ1 = 2.1 > δ
2 = 2, λ2 = 0.3 < δ

2 = 2. Then run line 3 of Algorithm
1, obtain w∗ = (0.9, 1.9, 0.9, 0.9, 6.1, 5.1, 3.1, 2.9, 2.9, 5.1, 6.1, 2.9, 2.9, 5.1, 1.9,
1.9, 3.1) and optimal objective value λ∗ = 2.1 (see Fig. 4a).

(2) If K = 38. λ1 = 0.3 < δ
2 = 2, λ2 = 2.1 > δ

2 = 2. Then run line 3 of Algorithm
1, obtain w∗ = (5.1, 3.1, 5.1, 3.1, 6.1, 5.1, 3.1, 3.1, 3.1, 5.1, 6.1, 3.1, 3.1, 5.1, 3.1,
6.1, 3.1) and λ∗ = 2.1 (see Fig. 4b).

(3) If K = 31. λ1 = 1 < δ
2 = 2, λ2 = 1.4 < δ

2 = 2. Then max{λ1, λ2} =
1.4 < 2, and Us = 10 = w(T 0) − K . Run line 7 of Algorithm 1, obtain w∗ =
(3, 3, 3, 3, 6, 5, 3, 3, 3, 5, 6, 3, 3, 5, 3, 4, 3) and λ∗ = 2 (see Fig. 4c).

(4) If K = 27. λ1 = 1.4 < δ
2 = 2, λ2 = 1 < δ

2 = 2, χ = 0.5. Then max{λ1, λ2} =
1.4 < 2, Us = 10 < w(T 0) − K and Ds = 2 · |EUs | = 12 < w(T 0) − K . Run line
27 of Algorithm 1, obtain w∗ = (2.5, 2, 2.5, 2.5, 6, 5, 3, 3, 3, 5, 6, 3, 3, 5, 2, 3.5, 3)
and λ∗ = 2 (see Fig. 4d).

(5) If K = 35. λ1 = 0.6 < δ
2 = 2, λ2 = 1.8 < δ

2 = 2. Then max{λ1, λ2} = 1.8 <

2,Us = 10 > w(T 0) − K = 6. Run line 9-23 of Algorithm 1, obtain Rest = 2, e3 is
critical edge, Dδ = {e1}, Dd = ∅, w∗ = (5, 3, 5, 3, 6, 5, 3, 3, 3, 5, 6, 3, 3, 5, 3, 4, 3)
and λ∗ = 2 (see Fig. 5a).

(6) If K = 29. λ1 = 1.2 < δ
2 = 2, λ2 = 1.2 < δ

2 = 2. Then max{λ1, λ2} = 1.2 <

2, Us = 10 < w(T 0) − K and Ds = 2 · |EUs | = 12 = w(T 0) − K . Run line 27
of Algorithm 1, obtain w∗ = (3, 2, 3, 3, 6, 5, 3, 3, 3, 5, 6, 3, 3, 5, 2, 4, 3) and λ∗ = 2
(see Fig. 5b).

(7) If K = 30. λ1 = 1.1 < δ
2 = 2, λ2 = 1.3 < δ

2 = 2. Then max{λ1, λ2} = 1.3 <

2, Us = 10 < w(T 0) − K and Ds = 2 · |EUs | = 12 > w(T 0) − K . Run line 31-39
of Algorithm 1, obtain Rest = 1, e2 is critical edge, EE = {e8, e9, e12, e13, e15},
Dδ = ∅, w∗ = (3, 2, 3, 3, 6, 5, 3, 3, 3, 5, 6, 3, 3, 5, 3, 4, 3) and λ∗ = 2 (see Fig. 5c).
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Fig. 5 An optimal solution of Example 1 when K = 35, 29, 30

5 Conclusions and further research

In this paper, we consider the inverse optimal value problem on minimum spanning
tree under unit l∞ norm. A sufficient and necessary condition of optimal solutions
of the problem is first obtained, and then a strongly polynomial time algorithm with
running time O(mn) is proposed.

As a future research topic, we will study the inverse optimal value problem on
minimum spanning tree under weighted l∞ norm, l1 norm and Hamming distance. It
is also meaningful to consider inverse optimal value problems on some other network
problems, such as inverse optimal value problems on shortest path, inverse optimal
value problems on network flow, inverse optimal value problems on matching, and
inverse optimal value problems on center location problems under l1, l∞ norm and
Hamming distance.

Acknowledgements Research is supported by National Natural Science Foundation of China (11471073)
and Chinese Universities Scientific Fund (2018B44014).
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