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Abstract
In this paper, we study complexity results of sparse optimization problems and reverse
convex optimization problems. These problems are very important subjects of opti-
mization problems. We prove that the complexity result of the sparsity constraint
problem and sparse solution problem are all NP-hard in the strong sense and even
testing feasibility of the sparsity constraint is NP-complete in the strong sense. Then
the sparse optimization problem is NP-hard in the strong sense. We also prove that the
reverse convex problem is NP-hard in the strong sense by transforming the sparsity
constraint into a reverse convex constraint.

Keywords Sparsity constraint · Sparsity constraint · Sparse solution ·
Reverse convex · Complexity · Strongly NP-hard

1 Introduction

In this paper, we mainly consider complexity of sparsity constraint problems, sparse
solution problems, and reverse convex optimization problems. The sparsity constraint
problems and sparse solution problems are called sparse optimization problems. A
sparsity constraint problem is given as follows:

(SCP) min f (x)

s.t. x ∈ X ,

‖x‖0 ≤ K ,
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where f : Rn → R is the objective function, X is a set constructed by constraint
functions, and ‖x‖0 denotes the �0-(quasi) norm which is defined as the number
of nonzero entries in x . The sparsity constraint ‖x‖0 ≤ K with 1 ≤ K < n is
also called cardinality constraint. If the objective function and constraint set are both
convex, then the problem is called sparsity constraint convex problem. The sparsity
constraint problem is applied to portfolio selection [5,10,14,25,30,33], subset selection
inmultivariate regression [2,20], signal processing and compressed sensing [6]. A very
important special case is the sparsity constraint linear problem (SCLP) given by

(SCLP) min f (x) = cT x

s.t. Ax ≤ b,

‖x‖0 ≤ K ,

where x = (x1, x2, . . . , xn)T ∈ Rn , A ∈ Rm×n , c ∈ Rn , b ∈ Rm , and K is a positive
integer. The SCLP is used in robust optimization by [4], and also used to handle the
uncertainty in health care management by [1].

It has been shown in [5] that the problem (SCP) and (SCLP) are both NP-hard, and
that testing feasibility of SCLP is already NP-complete even when A has three rows.

Finding the sparsest solutions of linear systems (SLS) is a very important sparse
optimization problem, which has beenwidely used in signal and image processing (see
[6,8,9,16,18,19,26,32], and the references therein). The problem can be described as
follows:

(SLS) min ‖x‖0
s.t. Ax = b,

x ≥ 0.

The complexity result of SLS problem is NP-hard [22].
The l p minimization problem (min ‖x‖p

p s.t .{Ax = b, x ≥ 0}) and the uncon-
straint l2 − l p minimization problem (min f (x) := ‖Ax − b‖22 + λ‖x‖p

p) are used as
regularization methods to find sparse solutions to the equation systems (Ax = b). The
two problems are both NP-hard in the strong sense for p ∈ (0, 1) ([16], [11]). The
regularized sparse minimization problem, which involves general loss functions and a
nonconvex sparsity penalty function,was proved to beNP-hard in the strong sense [12].

The reverse convex problem (RP) can be describe as follows:

(RP) min f (x)

s.t. hi (x) ≤ 0, i = 1, . . . ,m,

g(x) ≥ 0,

where f (x), hi (x), g(x) : Rn → R are all convex functions on Rn . The reverse convex
problems have been studied actively over the last four decades (see, e.g., [13,17,21,
28,29] and their references), and Saad and Jacobsen [24] show that the complexity
result of the reverse convex problem is NP-hard. The reverse convex problem (RP) is

123



The complexity results of the sparse optimization problems… 2151

applied to telecommunication, mechanics, engineering design, economics, and other
fields (see [3,7,27,31], and the references therein).

In this paper, we provide a new theoretical insight to these problems to prove that
their complexity results are all NP-hard in the strong sense. From complexity theory
perspective, there are no polynomial time algorithm for an NP-hard optimization
problem with a polynomially bounded objective function , and there are even no a
pseudo polynomial time algorithm for a strongly NP-hard optimization problem with
a polynomially bounded objective function, unless P=NP [15].

2 Main results

Theorem 1 The sparsity constraint linear program(SCLP) is NP-hard in the strong
sense.

Proof Firstly we describe a polynomial reduction from an instance of the 3-partition
problem to an instance of (SCLP). The 3-partition problemcan be described as follows:

Given a set S = {a1, . . . , a3m} with ∑3m
i=1 ai = mB and B/4 < ai < B/2 for each

ai , where ai and B are all positive integers, is there a partition {A1, . . . , Am} with∑
ai∈Ak

ai = B for k = 1, . . . ,m?
Complexity of the 3-partition problem is NP-complete in the strong sense [15].
Let xi . = (xi,1, xi,2, . . . , xi,3m)T for i = 1, . . . ,m, x. j = (x1, j , x2, j , . . . , xm, j )

T

for j = 1, . . . , 3m and x = (xT1., . . . , x
T
m.)

T . Given the 3-partition problemmentioned
above, we construct the following SCLP problem

(P1) min
3m∑

j=1

m∑

i=1

xi j a j

s.t.
3m∑

j=1

xi, j a j ≥ B, i = 1, . . . ,m,

0 ≤ xi j ≤ 1, i = 1, . . . ,m, j = 1, . . . , 3m,

m∑

i=1

xi, j ≤ 1, j = 1, . . . , 3m,

‖x‖0 ≤ 3m

In the following, we prove that the optimal value of problem (P1) is mB if and only
if the 3-partition problem has an solution. It is not difficult to see that the lower
bound of the objective function of problem (P1) is mB due to

∑3m
j=1 xi, j a j ≥ B for

i = 1, . . . ,m.
Suppose the 3-partition problem has a solution satisfying

Ai = {a3i−2, a3i−1, a3i }
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and a3i−2 + a3i−1 + a3i = B for i = 1, . . . ,m. Let x̃ be a point with x̃i,3i−2 =
x̃i,3i−1 = x̃i,3i = 1 for i = 1, . . . ,m, and the other elements of x̃ be 0. Then
∑3m

j=1
∑m

i=1 x̃i, j a j = mB and

3m∑

j=1

x̃i, j a j = B, i = 1, . . . ,m,

0 ≤ x̃i j ≤ 1, i = 1, . . . ,m, j = 1, . . . , 3m,

m∑

i=1

x̃i, j = 1, j = 1, . . . , 3m,

‖x̃‖0 = 3m.

So x̃ is the optimal solution to problem (P1).
Suppose problem (P1) has an optimal solution. We show next that the optimal

solution is also a solution to the 3-Partition problem.
From 0 ≤ xi j ≤ 1,

∑3m
j=1 xi j a j ≥ B and B/4 ≤ ai ≤ B/2, we can conclude that

‖xi .‖0 ≥ 3 for i = 1, . . . ,m. Combining ‖x‖0 ≤ 3m, we can infer that ‖xi .‖0 = 3
and ‖x‖0 = 3m.

Nextweprove that the optimal solution of problem (P1)must be binary, i.e., xi, j = 0
or 1. By controversy, suppose there exists an optimal solution x̄ which is not binary,
to problem (P1).

Without loss of generality, suppose 0 < x̄1,1 < 1. From
∑3m

j=1 xi, j a j ≥ B, i =
1, . . . ,m, we can get

∑3m
j=1

∑m
i=1 x̄i j a j ≥ mB. Moreover,

3m∑

j=1

m∑

i=1

x̄i j a j = a1

(

x̄1,1 +
m∑

i=2

x̄i,1

)

+ a2

m∑

i=1

x̄i,2 + · · · + ak

m∑

i=1

x̄i,k

+ · · · + a3m

m∑

i=1

x̄i,3m .

We discuss the conditions of
∑m

i=2 x̄i,1 as follows.
If

∑m
i=2 x̄i,1 > 0, then ‖x̄.1‖0 > 1. Thus there must exist i ′ > 1 such that ‖x̄.i ′ ‖0 =

0 because of ‖x̄‖0 ≤ 3m. Then

3m∑

j=1

m∑

i=1

x̄i j a j = a1

(

x̄1,1 +
m∑

i=2

x̄i,1

)

+ a2

m∑

i=1

x̄i,2 + · · · + a3m

m∑

i=1

x̄i,3m

≤ a1 + a2 + · · · + 0ai ′ + · · · + a3m
< mB,

which contradicts to the feasibility of Problem (P1).
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There must be
∑m

i=2 x̄i,1 = 0. Then

3m∑

j=1

m∑

i=1

x̄i j a j = a1

(

x̄1,1 +
m∑

i=2

x̄i,1

)

+ a2

m∑

i=1

x̄i,2 + · · · + a3m

m∑

i=1

x̄i,3m

= a1(x̄1,1) + a2

m∑

i=1

x̄i,2 + · · · + a3m

m∑

i=1

x̄i,3m

≤ a1(x̄1,1) + a2 + · · · + ak + · · · + a3m
< mB

which contradicts to
∑3m

j=1
∑m

i=1 x̄i j a j ≥ mB. Therefore, the optimal solution of
problem (P1) must be binary.

Let x∗ be an optimal solution to problem (P1). Then x∗ must be binary, ‖x∗
i .‖0 = 3

and ‖x∗‖0 = 3m. Without loss of generality, suppose x∗
i,3i−2 = x∗

i,3i−1 = x∗
i,3i = 1

for i = 1, . . . ,m, and the other elements of x∗ are all zero. Then, we have a3i−2 +
a3i−1 + a3i ≥ B for i = 1, . . . ,m. Based on

∑3
i=1 mai = mB, we can get that

a3i−2 + a3i−1 + a3i = B for i = 1, . . . ,m. Thus, we get a solution of the 3-partition
problem. Therefore, we have proved that the complexity result of SCLP problem is
NP-hard in the strong sense [15]. 	

Theorem 2 The sparsity constraint problem(SCP) is NP-hard in the strong sense.

Proof Based on the 3-partition problem, we construct the following sparsity constraint
problems:

(P2) min
3m∑

j=1

m∑

i=1

xNi j a j

s.t.
3m∑

j=1

xMi, j a j ≥ B, i = 1, . . . ,m,

0 ≤ xi j ≤ 1, i = 1, . . . ,m, j = 1, . . . , 3m,

m∑

i=1

xi, j ≤ 1, j = 1, . . . , 3m,

‖x‖0 ≤ 3m,

where N and M are both positive integers. If N = M = 1, problem (P2) is equivalent
to problem (P1), i.e., problem (P1) is a special case of problem (P2). Then we can get
that the complexity result of problem (P2) is NP-hard in the strong sense. If N and
M are different integers, problem (P2) have different characteristics. We prove in the
following that no matter what integers N and M are, the problem (P2) is still NP-hard
in the strong sense. If both N and M are even numbers, then we have a special case
of sparsity constraint convex problem with a convex objective function and convex
constraint functions. If N and M are odd, then we build a special case of sparsity
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constraint problems with non-convex objective functions and non-convex constraint
functions. If one of N and M is even, and the other one is odd, then we build a special
case of sparsity constraint problems with either the objective function or constraint
functions is convex and the other is non-convex.

Now, we prove that any feasible solution to problem (P2) is binary.
Suppose x is feasible to problem (P2). From

∑3m
j=1 x

M
i j a j ≥ B, we can get that

m∑

i=1

3m∑

j=1

xMi j a j ≥ B (1)

From 0 ≤ xi j ≤ 1,
∑3m

j=1 x
M
i j a j ≥ B and B/4 ≤ ai ≤ B/2, we can conclude that

‖xi .‖0 ≥ 3 for i = 1, . . . ,m. Combining ‖x‖0 ≤ 3m, we can infer that ‖xi .‖0 = 3
and ‖x‖0 = 3m.

Next we prove that x must be binary, i.e., xi, j = 0 or 1. By controversy, suppose
there exists a non binary feasible solution x̄ to problem (P2).

Without loss of generality, suppose 0 < x̄1,1 < 1. From
∑3m

j=1 x
M
i, j a j ≥ B, for

i = 1, . . . ,m, we can get

3m∑

j=1

m∑

i=1

x̄ Mi j a j ≥ mB,

and

3m∑

j=1

m∑

i=1

x̄ Mi j a j = a1

(

x̄ M1,1 +
m∑

i=2

x̄ Mi,1

)

+ a2

m∑

i=1

x̄ Mi,2 + · · · + ak

m∑

i=1

x̄ Mi,k

+ · · · + a3m

m∑

i=1

x̄ Mi,k .

If
∑m

i=2 x̄
M
i,1 > 0, then ‖x̄.1‖0 > 1. Thus there must exist at least one L with

2 ≤ L ≤ 3m such that ‖x̄.L‖ = 0 due to ‖x̄‖0 = 3m. Therefore,

3m∑

j=1

m∑

i=1

x̄ Mi j a j = a1

(

x̄ M1,1 +
m∑

i=2

x̄ Mi,1

)

+ a2

m∑

i=1

x̄ Mi,2 + · · · + aL

m∑

i=1

x̄ Mi,L

+ · · · + a3m

m∑

i=1

x̄ Mi,3m

= a1

(

x̄ M1,1 +
m∑

i=2

x̄ Mi,1

)

+ a2

m∑

i=1

x̄ Mi,2 + · · · + aL−1

m∑

i=1

x̄ Mi,L−1

+ aL+1

m∑

i=1

x̄ Mi,L+1 + · · · + a3m

m∑

i=1

x̄ Mi,3m
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≤ a1 + · · · + aL−1 + aL+1 + · · · + a3m
< mB,

which contradicts with
∑3m

j=1
∑m

i=1 x̄
M
i j a j ≥ mB.

Thus there must be
∑m

i=2 x̄
M
i,1 = 0. So,

3m∑

j=1

m∑

i=1

x̄ Mi j a j = a1

(

x̄ M1,1 +
m∑

i=2

x̄ Mi,1

)

+ a2

m∑

i=1

x̄ Mi,2 + · · · + a3m

m∑

i=1

x̄ Mi,k

= a1(x̄
M
1,1) + a2

m∑

i=1

x̄ Mi,2 + · · · + a3m

m∑

i=1

x̄ Mi,k

≤ a1(x̄
M
1,1) + a2 + · · · + a3m

< mB

which contradicts to
∑3m

j=1
∑m

i=1 x̄
M
i j a j ≥ mB. So feasible solutions of problem

(P2) must be binary. Then, problem (P2) is equivalent to problem (P1) because∑3m
j=1 x

M
i, j a j = ∑3m

j=1 xi, j a j , for x is binary. We can get that problem (P2) has the
optimal solutions if and only if the 3-partition problemhas a solution based on the proof
of Theorem 1. Therefore, we have proved that the complexity result of the cardinality
constraint problem is NP-hard in the strong sense. 	

Theorem 3 Testing the feasibility of the sparsity constraint problem(SCP) is NP-
complete in the strong sense.

Proof It is easy to confirm that the problem of testing the feasibility of the sparsity
constraint is in NP. Then we prove that there is a feasible solution to problem (P2) if
and only if there is a solution to the 3-partition problem.

Suppose the 3-partition problem has a solution such that

Ai = {a3i−2, a3i−1, a3i }

and a3i−2 + a3i−1 + a3i = B for i = 1, . . . ,m. Let x be a point with xi,3i−2 =
xi,3i−1 = xi,3i = 1 for i = 1, . . . ,m , and the other elements of x being 0. Then,

3m∑

j=1

xMi, j a j = B, i = 1, . . . ,m, (2)

0 ≤ xi j ≤ 1, i = 1, . . . ,m, j = 1, . . . , 3m, (3)
m∑

i=1

xi, j = 1, j = 1, . . . , 3m, (4)

‖x‖0 = 3m. (5)

Therefore, x is a feasible solution to problem (P2).
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First, suppose x is a feasible solution to problem (P2), we want to get a solution to
the 3-partition problem:

3m∑

j=1

xMi, j a j ≥ B, i = 1, . . . ,m, (6)

0 ≤ xi j ≤ 1, i = 1, . . . ,m, j = 1, . . . , 3m, (7)
m∑

i=1

xi, j ≤ 1, j = 1, . . . , 3m, (8)

‖x‖0 ≤ 3m (9)

From (6), we get
∑m

i=1
∑3m

j=1 x
M
i, j a j ≥ mB. From (8) and

∑3m
i=1 ai = mB, we can

conclude
∑m

i=1
∑3m

j=1 x
M
i, j a j ≤ mB. Then, there must be

m∑

i=1

3m∑

j=1

xMi, j a j = mB

and
∑3m

j=1 x
M
i, j a j = B for i = 1, . . . ,m.Based on the proof of Theorem 2, x is binary.

Then, we get a solution to the 3-partition problem. When M = 1, we have proved
that testing the feasibility of sparsity constraint linear problem is NP-complete in the
strong sense. When M > 1, we have proved that testing the feasibility of the other
cases of sparsity constraint problem is NP-complete in the strong sense. 	

Theorem 4 The sparsest solutions of the linear system problem (SLS) is NP-hard in
the strong sense.

Proof Based on the 3-partition problem mentioned above, we construct a sparsest
solutions of linear system problem (SLP) as follows:

(P3) min ‖x‖0
s.t.

3m∑

j=1

xi, j a j = B, i = 1, . . . ,m,

m∑

i=1

xi, j = 1, j = 1, . . . , 3m,

xi j ≥ 0, i = 1, . . . ,m, j = 1, . . . , 3m.

Next we prove that there exist a solution of problem (P3) x̃ with ‖x̃‖0 ≤ 3m if and
only if the 3-partition has a solution.

Suppose the 3-partition problem has a solution satisfying

Ai = {a3i−2, a3i−1, a3i }
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and

a3i−2 + a3i−1 + a3i = B

for i = 1, . . . ,m. Let x̃ be x̃i,3i−2 = x̃i,3i−1 = x̃i,3i = 1 for i = 1, . . . ,m , and
the other elements of x̃ equal 0. Then if j = 3i − 2,

∑m
i=1 x̃i, j = x̃i,3i−2 = 1;

if j = 3i − 1,
∑m

i=1 x̃i, j = x̃i,3i−1 = 1; if j = 3i ,
∑m

i=1 x̃i, j = x̃i,3i = 1, for
j = 1, . . . , 3m. Therefore

m∑

i=1

x̃i, j = 1, j = 1, . . . , 3m,

and

3m∑

j=1

x̃i, j a j = a3i−2 + a3i−1 + a3i = B, i = 1, . . . ,m,

Thus x̃ is feasible to problem (P3) and ‖x̃‖0 = 3m.
Suppose there is a solution to problem (P3) x̃ with ‖x̃‖0 ≤ 3m. Then,

‖x̃‖0 ≤ 3m (10)
3m∑

j=1

x̃i, j a j = B, i = 1, . . . ,m, (11)

m∑

i=1

x̃i, j = 1, j = 1, . . . , 3m (12)

x̃i j ≥ 0, i = 1, . . . ,m, j = 1, . . . , 3m. (13)

From (12) and (13), we can get 0 ≤ x̃i j ≤ 1. From (11) and (12), we have

3m∑

j=1

m∑

i=1

x̃i j a j = mB

Then x̃ is a feasible solution to problem (P1). Based on the proof of Theorem 1, x̃ is
also an optimal solution to problem (P1). Thus, we get a solution of the 3-partition
problem. 	


The sparsity constraint problem (SCP), sparsity constraint linear problem (SCLP),
and the sparsest solutions of linear systems (SLS) are all special cases of sparse opti-
mization problem. Then based onTheorem1, 2, and 4,we can get the following results:

Theorem 5 The sparse optimization problem is NP-hard in the strong sense.

Nextly we discuss the reverse convex problem.
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Theorem 6 The reverse convex program is NP-hard in the strong sense, even if the
objective function is linear and the constraint set except the reverse convex constraint
is a polytope.

Proof Wepresent a transformation from the sparsity constraint to a reverse convex con-
straint to prove the theorem. Let x[i] denote the i-th largest entry of x = (x1, . . . , xn)T .
Then it is easy to see that ‖x‖0 ≤ K is equivalent to x[K+1] ≤ 0 because of x ≥ 0.
Note that

x[K+1] =
K+1∑

i=1

x[i] −
K∑

i=1

x[i] = SK+1(x) − SK (x),

where SK (x) = ∑K
i=1 x[i] for K = 1, . . . , n.

Because of x ≥ 0, SK+1(x) − SK (x) ≤ 0 is equivalent to x[i] = 0 for i =
K + 1, . . . , n. And SK+1(x) − SK (x) ≤ 0 is equivalent to

∑n
i=1 xi − SK (x) ≤ 0 for

the same reason. Then, the cardinality constraint ‖x‖0 ≤ K is equivalent to

SK (x) −
n∑

i=1

xi ≥ 0

Therefore, problem (SCLP) can be equivalently transformed into the following
problem:

(P4) min cT x

s.t. Ax ≤ b,

SK (x) −
n∑

i=1

xi ≥ 0,

x ≥ 0,

Since SK (x) is a convex function [23], SK (x) − ∑n
i=1 xi is a convex function. Thus,

the constraint SK (x)−∑n
i=1 xi ≥ 0 is reverse convex. Therefore, we transformed the

cardinality constraint linear problem into a reverse convex constraint linear problem,
which means that the complexity result of the reverse convex problem is NP-hard in
the strong sense even though the objective function is linear and constraint sets except
the reverse convex constraint is a polytope [15]. 	


3 Conclusions

Weproved that the sparse optimization problems and reverse convex problems are NP-
hard in the strong sense in this paper. We gave a transformation from the 3-partition
problem to prove that the sparsity constraint problem is NP-hard in the strong sense.
And testing the feasibility of the sparsity constraint problem is NP-complete in the
strong sense.We also prove that the sparse solution optimization problem isNP-hard in
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the strong sense. We then equivalently transformed the sparsity constraint to a reverse
convex constraint.Basedon this result and the stronglyNP-hard result of the cardinality
constraint problem, we present that the complexity of reverse convex problem is NP-
hard in the strong sense even the objective function is linear and constraint set is a
polytope except the reverse constraint.
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