
Optimization Letters (2020) 14:2039–2053
https://doi.org/10.1007/s11590-019-01527-5

ORIG INAL PAPER

Most vital vertices for the shortest s–t path problem:
complexity and Branch-and-Cut algorithm

Youcef Magnouche1 · Sébastien Martin1

Received: 12 December 2018 / Accepted: 23 December 2019 / Published online: 3 January 2020
© Springer-Verlag GmbH Germany, part of Springer Nature 2020

Abstract
In this paper we study the most vital vertices for the shortest s–t path problem. This
problem consists, given a digraph D = (V∪{s, t}, A) and a threshold d ∈ N, in finding
the minimum number of nodes to delete from D in such a way that there does not exist
a s–t path of length less or equal than d. We prove the NP-hardness of this problem and
propose an integer linear program using an exponential number of inequalities. We
investigate the facial structure of the associated polytope. We prove that this polytope
is integer and we derive an efficient Branch-and-Cut algorithm. Finally, we present
and discuss some computational results.

Keywords Blocker · Shortest path · Complexity ·
Integer linear program · Integral polytope · Branch-and-Cut

1 Introduction

Shortest path problem between two specific vertices s and t is a well-known poly-
nomial problem. This problem is called shortest s–t path. In many applications, the
identification of the most critical vertices is a necessity to ensure security. Indeed the
survivability of networks (as communication or transportation networks) is a priority
to prevent failure. One of the most concerning problems is to ensure a connection
(path) between s and t satisfying some special features even if the network is partially
destroyed by the deletion of some nodes. In theoretical computer science, these kind of
problems are known as Network Interdiction Problems or Network Blocker Problems
[1–3].

B Youcef Magnouche
youcef.magnouche@huawei.com

Sébastien Martin
sebastien.martin@huawei.com

1 Huawei Technologies France, 19 Quai du Point du Jour, 92100 Boulogne-Billancourt, France

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s11590-019-01527-5&domain=pdf

2040 Y. Magnouche, S. Martin

Fig. 1 Example MVBSP and
MVVSP

s t

v1

v2

v3

v4 v5

InKhachiyan et al. [2] define theMinimumVertexBlocker to Shortest Path problem
(MVBSP) as follows: let D = (V ∪ {s, t}, A) be a digraph, where D ∪ {s, t} is a
set of nodes with two distinguished nodes s and t , and A is a set of arcs. Given a
nonnegative length l(a) associated to each arc a ∈ A and a threshold k ∈ Z

+, a
vertex blocker is a set of vertices whose removal increases the s–t-distance to at least
k. The objective is to find the smallest vertex blocker i.e. min{|U | | dD[V \U](s, t) ≥
k,U ⊆ V \{s, t}}, where dD(s, t) is the s–t-distance in D (the length of the shortest
path between s and t in D). They prove that it is N P−hard to approximate the size
of the smallest vertex blocker within a factor smaller than 1.36, even in bipartite
graphs. From an integer linear programming point of view, some works are done
to solve interdiction or blocker problems. For instance, in [4] the authors solve the
maximum clique interdiction problem. To the best of our knowledge, the integer linear
programmingwas not investigated for the blocker/interdiction or vital nodes associated
with the shortest path problem.

In this article, we introduce the most vital vertices for the shortest s–t path problem
(MVVSP) defined as follows: given a digraph D = (V ∪{s, t}, A)with a nonnegative
length l(a) associated with every arc a ∈ A and a threshold d > 0, a set of vertices
is vital if its removal ensures that it does not exist a s–t path of length less or equal
than d. The aim is to find the smallest vital set. We suppose that if (st) ∈ A, then
l(st) > d. Otherwise, there is no solution for the problem. A node is called vital, if
it belongs to a vital set. The difference between these two problems is the necessity
for the MVBSP to ensure the existence of a s–t path after removing the blocker set
of vertices instead of MVVSP which consists in breaking all shortest s–t paths with
length less or equal than d by removing the minimum number of nodes. We assume
that there is no direct arc from s to t . Otherwise the problem is trivial. For instance, in
Fig. 1 the best solution for the MVBSP when k = 4 is {v1, v3}, while the best solution
for the MVVSP when d = 3 is {v5}. In the survivability of networks the most critical
vertex is {v5} whereas {v1, v3} are not vital.

The rest of the paper is organized as follows: In Sect. 2, we discuss some related
works. Section 3 presents graph definitions and the NP-hardness of the MVVSP. In
Sect. 4, we introduce the integer linear program thatmodels the problem ofMVVSP. In
Sect. 5, a polyhedral analysis is done to prove the integralty of the associated polytope.
Section 6 deals with experimental results. The conclusion and some future work are
given in Sect. 7.

2 Related works

In [2], the article deals with the minimum vertex blocker to shortest path problem.
The authors prove that it is N P-hard to approximate the size of the smallest vertex

123

Most vital vertices for the shortest s–t path… 2041

(edge resp.) blocker within a factor 1.36 even in bipartite graphs. Moreover, they show
that it is N P-hard to approximate the most vital vertices (edge resp.) problem within
a factor 2 even in bipartite graphs. In [5], authors study the problem of critical edges
for the assignment problem which consists in finding a subset of k edges in a bipartite
graph such that the partial bipartite graph obtained by removing these edges increases
the value of the minimum cost assignment. They also study the dual version which
consists in removing a subset of edges of minimum size so that in the resulting partial
bipartite subgraph, the cost of the minimum assignment is at least a given value. Using
the polynomial reduction given by Hoffman and Markowitz [6] from the shortest path
to the assignment problem, Bazgan et al. [5] extends this reduction to the k most vital
arcs shortest path problem in order to prove that the k most vital edges assignment
problem is N P-hard to approximate within a factor 2 − ε, ∀ε > 0 and the minimum
edge blocker assignment problem is N P-hard to approximate within a factor of 1.36.
They also propose exact algorithms based on graphs to solve these problems.

In [7], authors work on the shortest path most vital edges which aims to find a
subset of at most k edges so that the value of the shortest path in the resulting partial
graph increases by at least b. They prove that this problem is polynomial when b = 1
and it is N P-hard for b ≥ 2 with a reduction from the vertex cover on three-partite
graphs. They also study the problem from a parameterized complexity point of view.

3 Graph properties and complexity

In this section we propose some graph properties to contract the graph or to remove
some vertices without changing the optimal solution of the MVVSP. Firstly, we give
some definitions. We consider digraphs. We denote a digraph by D = (V ∪ {s, t}, A),
where V ∪ {s, t} is the set of vertices and A the set of arcs. We let n = |V | and
m = |A|. Let N+(v) (resp. N−(v)) be the set of all nodes in G adjacent to v such
that v is the first (resp. second) node of the arcs. Given a subset of vertices W ⊆ V ,
if x ∈ R

V then we let x(W) = ∑
v∈W xv . A path P is an ordered set of p distinct

vertices v1, v2, . . . , vp such that for all i ∈ {1, . . . , p−1}, (vi , vi+1) is an arc. Vertices
v2, . . . , vp−1 are called the internal vertices of P . We denote by svt the path given
by the arcs (s, v) and the arcs (v, t).

Paths with three nodes If there is a node v ∈ V such that svt exists with l(svt) ≤ d
then v is obviously a vital node and we must delete it. Hence we can focus on the
subgraph D\{v}. Figure 2 shows an example of the graph reduction. Indeed, the vertex
v1 is a vital node in the graph, hence we can delete it and reduce the size of the graph.

Figure 2 shows another example of the graph reduction. Indeed, the vertices v2 and
v3 cannot belong to any s–t path. Thus we can delete them and reduce the size of the
graph.

Connectivity The digraph D is connected. Indeed, if s and t are in two different
connected components, then the smallest set of vital nodes is empty. Furthermore, if
s and t are in the same connected component, it follows that no vertex of the other
connected component belongs to the smallest set of vital nodes. Thus we can reduce
the graph by deleting them. Clearly, in Fig. 2, the vertices v2 and v3 cannot be vital
then we can delete them.

123

2042 Y. Magnouche, S. Martin

s t
v1

v2 v3

v4

v5

v6

v7 v8
v9

v10
v11

Fig. 2 Example of graph where all lengths are 1

Fig. 3 Example of graph G

v1

v2

v3

v4

Node in a path Each vertex v ∈ V belongs to a path between s and t of length less
than d. Otherwise, v cannot belong to a smallest set of vital nodes, then we can delete
it. For each v ∈ V if the length of the shortest path between s and v plus the length
of the shortest path between v and t is greater than or equal to d then we can remove
the vertex v. In Fig. 2, if d = 8 then v7 and v8 do not belong to a path of length less
than 8.

Minimality of path A path P is said to be minimal if there exists no s–t path
P ′ such that P ′ ⊂ P . For instance, in Fig. 2, if d = 10 then the path P1 =
{s, v4, v5, v6, v7, v8, v9, v10, v11, t} contains the path P2 = {s, v4, v5, v6, v9, v10,
v11, t}, i.e. P2 ⊂ P1, thus P1 is not minimal.

Theorem 1 The MVVSP with only unitary length is NP-hard.

Proof This proof is inspired from the proof given in [2] for the NP-hardness of the
MVBSP. To prove the theorem, we shall use a reduction from the minimum vertex
cover problem. Let G = (V , E) be a graph where V = {v1, . . . , vn}. An example
of such graph is given in Fig. 3. A minimum vertex cover in G is a set of vertices of
minimum cardinality such that each edge of E is incident to at least one vertex of the
set. A minimum vertex cover in G given by the Fig. 3 is {v1, v4}.

Let D = (V ′ ∪ {s, t}, A) be a graph obtained from G as follows:

• V ′ = V ∪ {s, t} ∪ V 1 ∪ · · · ∪ V n where V i = {vi1,1, . . . , vi1,4, . . . , vi1,n, . . . , vi4,n}
for i = 1, . . . , n

• Add n paths Pi = s vi1,1 vi1,2 vi1,3 vi1,4 vi2,1 vi2,2 vi2,3 vi2,4 . . . vin,1 vin,2 vin,3 vin,4 t for
all i ∈ {1, . . . , n}

• For each i = 1, . . . , n, there are arcs (vi , v
j
i,1) and (v

j
i,1, vi), where j ∈ {1, . . . , n}

• For all uv ∈ E we replace it by the arcs (u, v) and (v, u). We denote these arcs by
A[E].

So we have, E ′ = A[E] ∪ C1 ∪ · · · ∪ Cn ∪ A[P1] ∪ · · · ∪ A[Pn] where Ci =
{(vi , v1i,1), . . . , (vi , vni,1)}∪{(v1i,1, vi), . . . , (vni,1, vi)} and A[Pi] is the set of arcs from

123

Most vital vertices for the shortest s–t path… 2043

v1

v2

v3

v4

v11,1 v11,2 v11,3 v11,4 v12,1 v12,2 v12,3 v12,4 v13,1 v13,2 v13,3 v13,4 v14,1 v14,2 v14,3 v14,4

v21,1 v21,2 v21,3 v21,4 v22,1 v22,2 v22,3 v22,4 v23,1 v23,2 v23,3 v23,4 v24,1 v24,2 v24,3 v24,4

v31,1 v31,2 v31,3 v31,4 v32,1 v32,2 v32,3 v32,4 v33,1 v33,2 v33,3 v33,4 v34,1 v34,2 v34,3 v34,4

v41,1 v41,2 v41,3 v41,4 v42,1 v42,2 v42,3 v42,4 v43,1 v43,2 v43,3 v43,4 v44,1 v44,2 v44,3 v44,4

s t

Fig. 4 Graph D obtained from G

the path Pi , for i = 1, . . . , n. Finally, we assign a length 1 for all arcs. Figure 4
represents such reduction for the graph given in Fig. 3.

We will show that the minimum vertex cover in G is equivalent to the most vital
set for the shortest s–t path problem in D where d = 4n.

Note that, the length of paths Pi , i ∈ {1, . . . , n}, are equal to 4n + 1, while for all
other s–t paths the length is less or equal to 4n. Indeed, each s–t path using an arc
(u, w) ∈ A[E] replaces at least four arcs vui,1 vui,2 vui,3 vui,4 vui+1,1 from Pi , u ∈ V and
i ∈ {1, . . . , n}, by only 3 arcs vui,1 vu vw vuj,1, v ∈ V , j ∈ {i + 1, . . . , n}.

First, we observe that every vertex cover of G is vital set of D. Second, sup-
pose that S is a vital set of D but not a vertex cover of G. It follows that |S| < n
and there exists at least one arc viv j where i < j and vi , v j ∈ V \S. Then there
exists an integer a ∈ {0, . . . , n} and a s–t path P of length strictly less than d,
where P = s va1,1 va1,2 va1,3 va1,4 . . . vai,1 vi v j v

a
j,1 vaj,2 vaj,3 vaj,4 . . . van,1 van,2 van,3 van,4 t .

This contradicts the fact that S is a vital set of D. Thus the minimum vertex cover of
G is equivalent to the most vital vertices for the shortest s–t path problem in D.
�

4 Integer linear program

In this section, we propose an integer linear program to solve the MVVSP. Let x ∈
{0, 1}|V | defined by

xv =
{
1 if v is a vital vertex,
0 otherwise,

∀v ∈ V .

The MVVSP is equivalent to the following (P ′):

min
∑

v∈V
xv

(P ′)
∑

v∈P

xv ≥ 1, for all P ∈ P, (1)

123

2044 Y. Magnouche, S. Martin

xv ∈ {0, 1}, for all v ∈ V . (2)

where P is the set of all s–t paths of length less or equal to d. The inequalities (1)
ensure that we interdict at least one node in all paths of length less or equal to d.
Remark that, the length of s–t paths does not appear in the model. Indeed, the length
is in the definition of P .

The inequalities (1) are in exponential number. In order to solve (P ′) using aBranch-
and-cut approach, one needs an efficient algorithm for the separating inequalities (1).

Separation algorithm The separation problem for inequalities (1) consists, given a
solution x∗ ∈ R

|V |, in determining whether x∗ satisfies inequalities (1), and if not in
finding an inequality violated by x∗. The separation problem consists in finding a s–t
path P such that l(P) ≤ d and minimizing the cost function

∑
v∈P x∗

v . We denote
by A(P) the sequence of arcs associated with the path P . In the following, we prove
that the separation problem is NP-hard using a polynomial reduction from the shortest
weight-constrained s–t path problem [8], known to be NP-hard. Given a directed
graph D = (V , A), a cost function c : A ⇒ Z

+, a weight function w : A ⇒ Z
+, a

threshold W ∈ N and two terminal vertices s, t ∈ V , the shortest weight-constrained
s–t path problem consists in finding a s–t path P such that

∑
a∈A(P) w(a) ≤ W and

the cost (
∑

a∈A(P) c(a)) is minimum. Let D′ = (V ′, A′) be the graph obtained from
D by adding, for each arc a = (u, v) ∈ A, a vertex za to V ′ with a cost c(a) and by

replacing arc a by two arcs (u, za) and (za, v), each one with a weight
w(a)

2
. The costs

of u and v are 0. Clearly, the optimal solution given by solving the separation problem
on D′ can be transformed to an optimal solution of the shortest weight-constrained s–t
path problem on D, in a polynomial time. We can deduce that the separation problem
is NP-Hard.

However, if we consider a separation with an integer vector x∗ ∈ N
|V | then the

separation becomes polynomial. This case consists in finding a s–t path P such that
l(P) ≤ d and

∑
v∈P x∗

v < 1, and since the vector x∗ is integer, then we search a
shortest s–t path on the graph without any vertex v ∈ V satisfying x∗

v = 1.

5 Polyhedral analysis

Let P(D, d) = conv(x ∈ {0, 1}|V ||x satisfies (1)) be the polytope of vital vertices
sets for a length d in graph D = (V , A).

Given an inequality ax ≤ b, where a ∈ R
V , the support graph of ax ≤ b is

the subgraph induced by the vertices corresponding to variables having a non-zero
coefficient in the inequality.

Theorem 2 P(D, d) is full-dimensional.

Proof We need to exhibit |V | + 1 subsets of vertices such that their incidence vectors
are affinely independent. Let S0 = V . Clearly S0 is a vital vertices set of D. For each
v ∈ V , let Sv = V \{v}. Indeed, in Sect. 3, we supposed that D does not contain any s–t

123

Most vital vertices for the shortest s–t path… 2045

path of length 2. It follows that Sv is a vital vertices set. This constitutes a set of n + 1
vital sets of D. Moreover, their incidence vectors are clearly affinely independent.
�

For a path P between s and t , let a be the vertex of P adjacent to s and b the vertex
in P adjacent to t .

Theorem 3 For a path P ∈ P , inequality (1) defines a facet of P(D, d) if and only if
P is minimal.

Proof (⇐) If there exists a path P ′ ∈ P such that P ′ ⊂ P , then inequality (1)
associated with P can be obtained by summing inequality (1) associated with P ′ and
inequalities xv ≥ 0 for all v ∈ P\P ′.

(⇒)We need to exhibit |V | subsets of vital vertices such that their incidence vectors
are affinely independent. For v ∈ P , let Sv

0 = (V \P) ∪ {v}, Sv
0 is a vital vertices set

of D since P is minimal. For each w ∈ V \P , let S′
w = Sa0\{w} if w is adjacent to t

and S′
w = Sb0\{w} otherwise. Since D does not contain any s–t path of length 2 (see,

Sect. 3), it follows that S′
w is a vital vertices set. This constitutes a set of n vital vertices

sets of D. Moreover, their incidence vectors are clearly affinely independent.
�
Theorem 4 The polytope given by (1) and trivial inequalities is integer.

Proof We suppose that (1) and trivial inequalities are not enough to characterize com-
pletely the MVVSP polytope and we prove that there is a contradiction. The MVVSP
polytope is not integer means that there exists a fractional extreme point x∗ ∈ [0, 1]V
that is the unique solution of the following linear system of equalities A :

∑

v∈P

x∗
v = 1 ∀P ∈ P ′, (3)

x∗
v = 1 ∀v ∈ V1, (4)

x∗
v = 0 ∀v ∈ V2. (5)

Such that P ′ ⊆ P , V1, V2 ⊆ V and |P ′| + |V1| + |V2| = |V |. We suppose that D
is minimum (i.e., for any graph (V ′ ∪ T ′, E ′) with |V ′| < |V | the polytope given by
inequalities (1) and trivial inequalities is integer).

By the following propositions we prove that x∗ cannot exist.
For v ∈ V , let the v-contracted graph D′

v be the graph obtained from D by adding
an arc (ab), for each path avb of length l(av) + l(vb) and then deleting vertex v.
If (ab) already exists, we do not add a double arc. We update the length of (ab) by
min(l(ab), l(av) + l(vb)) and we delete v.
�
Proposition 1 If P ∈ P is a s–t path in D containing path avb then P\{v} is a path
in D′

v such that l(P\{v}) ≤ l(P).

Proof Trivial.
�
Proposition 2 For all s–t path P ′ in D′

v containing arc (ab), there exists a s–t path
P in D containing v such that P\{v} = P ′

123

2046 Y. Magnouche, S. Martin

Proof Trivial.
�
Proposition 3 x∗

v > 0 for all v ∈ V (i.e., V2 = ∅).
Proof Let us assume the contrary. Let v be a vertex of V such that x∗

v = 0. Let D′
v be the

v-contracted graph of D. Let x be the restriction of x∗ on V \{v}. From Propositions 1
and 2, we have the following claims.
�
Claim 1 x ∈ P(D′

v, d).

Proof Suppose that x /∈ P(D′
v, d). It follows that there exists an inequality (1) violated

by x . Let P ′ be the s-t path in D′
v associated with this inequality. We distinguish three

cases

• P ′ does not contain arc (ab) : it follows that P ′ is a s-t path in D and x∗ violated
the inequality (1) associated with P ′.

• P ′ contains arc (ab) and (ab) does not exists in D : let P ′′ be the s-t- path in
D obtained from P ′ by replacing the arc (ab) by the path avb. Since x∗

v = 0, it
follows that x∗ violates inequality (1) associated with P ′′.

• P ′ contains arc (ab) and (ab) exists in D : P ′ is also a s-t- path in D and x∗
violates its associated inequality (1).

This contradicts the fact that x∗ ∈ P(D, d).
Let A′ be the linear system obtained from A by deleting equality x∗

v = 0 and
variable x∗

v from all equalities.
�
Claim 2 The support graph of each non-trivial equality of A′ represents a s-t path in
D′

v .

Proof By definition, the support graph of each non-trivial equality of A represents a
s–t path in D. Moreover, from Proposition 1, for each path P of those support graphs,
P\{v} is a path of D′

v of a maximum length d which ends the proof.

Corollary 1 From Claims (1) and (2), it follows that x is an extreme point of P(D′
v, d).

Corollary 1 contradicts the fact that D is minimum. It follows that x∗
v > 0 for all

v ∈ V .
�
Proposition 4 There exists at least one node a ∈ N+(s) and b ∈ N−(t) such that x∗

a
and x∗

b are fractional.

Proof From Proposition 3, each variable x∗
v > 0 for all v ∈ V . For instance, suppose

that all variables associated with the vertices of N+(s) are equal to 1. Since x∗ is
fractional, there must exists a vertex v ∈ V \N+(s) such that x∗

v is fractional. We
distinguish two cases

• x∗
v does not appear in any equality (3), let x ′ ∈ [0, 1]V be the solution such that
x ′
u = x∗

v for all u ∈ V \{v} and x ′
v = 1. Clearly, x ′ is another feasible solution

for A′ and this contradicts the fact that x∗ is a unique solution of A′ and x∗ is an
extreme point of P(D, d).

123

Most vital vertices for the shortest s–t path… 2047

Fig. 5 Example

s t

v1

v2

v3

• x∗
v appears in at least one equality (3). Since the right hand side of this equality is
1 and all variables associated with the vertices of N+(s) are equal to 1, it follows
that x∗

v = 0. Contradiction with the fact that x∗
v is fractional.

Therefore, the proposition holds.
�

Proposition 5 For each inequality (3), the associated s–t path P contains exactly one
vertex from N+(s) and one vertex from N−(t).

Proof Suppose that P contains at least two vertices of N+(s) (the proof is similar for
N+(t)). It follows that there exists another s–t path P ′ included in P intersecting once
N+(s). From Proposition 3, inequality (1) associated with P cannot be tight and then
it cannot belongs to A.
�

Let x ∈ [0, 1]V be a solution obtained from x∗ by the following operations

• xv = x∗
v for all v ∈ V \N+(s) ∪ N−(t).

• xv = x∗
v for all v ∈ N+(s) ∪ N−(t) such that x∗

v is integer.
• xv = x∗

v + ε for all v ∈ N+(s) such that x∗
v is fractional.

• xv = x∗
v − ε for all v ∈ N−(t) such that x∗

v is fractional.

Clearly each path of P contains one vertex of N+(s) and one vertex of N−(t).
There exists a small ε > 0 such that x satisfies the linear system A. Contradiction
with the fact that x∗ is an extreme point of P(D, d).
�
Proposition 6 The polytope given by inequalities I subset of inequalities (1) and trivial
inequalities is not always integer.

Proof An example is sufficient to show the proposition.
Let D be the graph in Fig. 5 and d = 3. The set of s–t paths P in D contains the

following paths:

• p1 : s − v1 − v3 − t
• p2 : s − v2 − t
• p3 : s − v2 − v3 − t
• p4 : s − v1 − v2 − t

Let P ′ = P\{p2} be a subset of s–t paths in P . The inequalities (1) associated with
P ′ are the following :

123

2048 Y. Magnouche, S. Martin

xv1 + xv3 ≥ 1,

xv2 + xv3 ≥ 1,

xv1 + xv2 ≥ 1,

0 ≤ xv1 ≤ 1,

0 ≤ xv2 ≤ 1,

0 ≤ xv3 ≤ 1.

Clearly, xv1 = 0.5, xv2 = 0.5, xv3 = 0.5 is a feasible solution of the above linear
system.Moreover, it represents an extreme point of P(D, d) (there are 3 variables and
3 linear inequalities satisfied to equality, that are linearly independents). Moreover,
the inequality associated to p2 permits to cut the fractional extreme point.
�

6 Experimental results

We developed a Branch-and-Cut algorithm to solve the MVVSP. As mentioned in the
Sect. 4, the integer linear program has an exponential number of inequalities (1). In
our Branch-and-Cut, we separate only the integer solutions by separating inequalities
(1) using Dijkstra algorithm for solving the shortest s–t path problem.

We now describe the framework of our algorithm. To start the optimization, we
consider the linear program only with the trivial inequalities. The actually optimal
solution x∗ ∈ R

V of this relaxation of the MVVSP is feasible for the problem if
x∗ is an integer vector that satisfies all inequalities (1). Usually, the solution x∗ is
either fractional or not feasible for the MVVSP. In each iteration of the Branch-and-
Cut algorithm, if x∗ is fractional, one has to branch on a fractional variable xi by
generating two child nodes, one with an additional constraint xi = �xi� and the other
one with xi = �xi�. However, when x∗ is integer but not feasible, it is necessary to
generate further inequalities (1) violated by the current solution x∗. For this, one has to
solve the so-called separation problem. This consists, given a class of inequalities, in
deciding whether the current solution x∗ satisfies all the inequalities of this class, and
if not, in finding an inequality that is violated by x∗. An algorithm solving this problem
is called a separation algorithm. The Branch-and-Cut algorithm uses only inequalities
(1). In our implementation, the solver Cplex is used to handle the branching tree and
solving the linear programs.

Computational results are obtained using Cplex 12.6 and Lemon 1.3.1. Two sets of
instances were used, the DIMACS and random instances. The DIMACS instances are
composed by 50 instances originally proposed for Maximum Clique, Graph Coloring,
and Satisfiability in the second DIMACS challenge [9]. However, these instances are
designed to be a challenge for combinatorial problems. The required CPU time is
measured in seconds. We limit to 3600 seconds the algorithm running time for each
instance, by using at most 8 GB of RAM and a processor Intel Core i5-3340M CPU
of 2.70GHz × 4.

The integer linear program is tested on the following proposed benchmark of
instances. The graph density is equal to 2, 10, 25, 50 and 75 percent. For each instance,

123

Most vital vertices for the shortest s–t path… 2049

Table 1 Average of CPU time

|V | Density d Nodes CPU #cuts Size blocker

16,000 2 3 1 9.61 7 7

16,000 2 4 1 1136.42 857 334

16,000 2 5 1 1267.29 871 335

19,000 2 3 1 16.35 7 7

19,000 2 4 1 2482.30 1110 360

6000 10 3 1 64.24 77 77

8000 10 3 1 138.77 83 83

8000 10 4 1 Time limit 2759 780

1500 25 3 1 15.19 87 87

1500 25 4 1 175.03 1293 365

2000 25 3 1 44.44 130 130

2000 25 4 1 490.33 1816 515

2500 25 3 1 50.73 148 148

2500 25 4 1 955.44 2333 610

1500 50 3 1 110.14 376 376

1500 50 4 1 297.69 1672 753

2000 50 3 1 161.38 468 468

2000 50 4 1 521.51 2406 967

2500 50 3 1 351.03 648 648

2500 50 4 1 1765.47 2722 1258

1500 75 3 1 169.87 844 844

1500 75 4 1 218.69 1812 1111

2000 75 3 1 444.06 1144 1144

2000 75 4 1 817.83 2470 1496

2500 75 3 1 1451.76 1389 1389

2500 75 4 1 1567.47 2622 1826

we consider all different values of d, between sp + 1 and disc where sp is equal to
the length of the shortest s–t path and disc is the minimum value for d for which the
smallest vital set disconnects s and t . The next tables provide the following informa-
tions:

• |V |, the number of vertices;
• density, the density of D;
• d, the bound of remaining shortest s–t paths (all shortest s–t path must be strictly
greater than d);

• Nodes, the number of nodes in the branching tree;
• CPU, Computational time (limited to 1 h);
• #cuts, the number of inequalities (1) added in the Branch-and-Cut algorithm;
• Size Blocker, the size of the blocker for this instance.

123

2050 Y. Magnouche, S. Martin

Table 2 Computational results from DIMACS instances

Name |V | Density d Nodes CPU #cuts Size blocker

anna 138 5 3 1 0.001 1 1

david 87 10 3 1 0.001 1 1

david 87 10 10 1 0.001 3 2

huck 74 11 1 1 0.000 0 0

inithx.i.1 864 2 1 1 0.004 0 0

inithx.i.2 645 3 3 1 0.039 23 23

inithx.i.3 621 3 3 1 0.010 4 4

inithx.i.3 621 3 64 10 0.128 75 24

jean 80 8 5 1 0.000 1 1

le450_5a 450 2 3 1 0.006 4 4

le450_5a 450 2 47 1 0.042 55 24

le450_5b 450 2 3 1 0.005 4 4

le450_5b 450 2 47 1 0.055 74 29

le450_5c 450 4 3 1 0.005 3 3

le450_5c 450 4 47 1 0.072 66 35

le450_5d 450 4 3 1 0.007 5 5

le450_5d 450 4 47 1 0.101 100 42

le450_15a 450 4 3 1 0.002 1 1

le450_15a 450 4 47 1 0.093 68 33

le450_15b 450 4 3 1 0.005 2 2

le450_15b 450 4 47 1 0.042 40 22

le450_15c 450 8 3 1 0.043 21 21

le450_15c 450 8 47 1 0.256 147 69

le450_15d 450 8 3 1 0.062 25 25

le450_15d 450 8 47 1 0.355 193 84

le450_25a 450 4 3 1 0.003 2 2

le450_25a 450 4 47 1 0.110 110 45

le450_25b 450 4 3 1 0.003 2 2

le450_25b 450 4 47 1 0.008 8 6

le450_25c 450 8 3 1 0.015 7 7

le450_25c 450 8 47 1 0.282 146 55

le450_25d 450 8 3 1 0.030 15 15

le450_25d 450 8 47 1 0.188 56 39

miles250 128 4 3 1 0.000 2 2

miles500 128 14 3 1 0.002 6 6

miles500 128 14 14 16 0.021 79 17

123

Most vital vertices for the shortest s–t path… 2051

Table 2 continued

Name |V | Density d Nodes CPU #cuts Size blocker

miles750 128 25 5 1 0.001 2 1

miles750 128 25 16 7 0.011 20 6

mulsol.i.1 197 10 3 1 0.003 3 3

mulsol.i.1 197 10 21 1 0.017 39 23

mulsol.i.2 188 11 1 1 0.000 0 0

mulsol.i.3 184 11 3 1 0.002 2 2

mulsol.i.3 184 11 20 1 0.034 73 19

mulsol.i.4 185 11 3 1 0.005 14 14

Table 3 Computational results from DIMACS instances

Name |V | Density d Nodes CPU #cuts Size blocker

mulsol.i.4 185 11 20 1 0.012 38 23

mulsol.i.5 186 11 3 1 0.008 18 18

myciel3 11 18 3 1 0.000 2 2

myciel3 11 18 3 1 0.000 2 2

myciel3 11 18 4 1 0.001 4 4

myciel4 23 14 3 1 0.000 1 1

myciel4 23 14 4 1 0.000 7 4

myciel5 47 10 3 1 0.000 3 3

myciel5 47 10 6 1 0.002 24 12

myciel6 95 8 3 1 0.001 8 8

myciel6 95 8 11 1 0.003 26 16

myciel7 191 6 3 1 0.002 3 3

myciel7 191 6 21 1 0.008 18 10

queen7_7 49 40 3 1 0.001 5 5

queen7_7 49 40 6 1 0.006 34 18

queen8_8 64 36 3 1 0.001 9 9

queen8_8 64 36 8 1 0.007 43 23

queen8_12 96 30 3 1 0.004 8 8

queen8_12 96 30 11 1 0.018 62 29

queen9_9 81 32 3 1 0.002 5 5

queen9_9 81 32 10 1 0.008 44 24

queen10_10 100 29 3 1 0.004 10 10

queen10_10 100 29 12 1 0.018 71 33

queen11_11 121 27 3 1 0.004 6 6

queen11_11 121 27 14 1 0.023 64 30

queen12_12 144 25 3 1 0.004 7 7

queen12_12 144 25 16 1 0.046 90 35

123

2052 Y. Magnouche, S. Martin

Table 3 continued

Name |V | Density d Nodes CPU #cuts Size blocker

queen13_13 169 23 3 1 0.005 5 5

queen13_13 169 23 18 1 0.063 76 36

queen14_14 196 21 3 1 0.011 6 6

queen14_14 196 21 21 1 0.110 96 41

queen15_15 225 20 3 1 0.011 8 8

queen15_15 225 20 24 1 0.098 91 42

queen16_16 256 19 3 1 0.022 12 12

queen16_16 256 19 27 1 0.143 106 53

school1 385 12 3 1 0.058 27 27

school1 385 12 40 58 0.867 569 93

school1_nsh 352 11 3 1 0.049 24 24

school1_nsh 352 11 37 1 0.403 296 97

zeroin.i.1 211 9 1 1 0.001 0 0

zeroin.i.2 211 7 3 1 0.002 2 2

zeroin.i.2 211 7 23 1 0.040 78 24

zeroin.i.3 206 8 3 1 0.006 7 7

zeroin.i.3 206 8 22 1 0.029 56 24

In Table 1, we consider random instances. Note that all these instances are solved
in the root node even for the large graphs. Furthermore, we solved all the instances in
less than 1 h. Notice that, when d is equal to sp + 1 then the number of cuts and the
size blocker are equals. This is not true when d is equal to disc. Our Branch-and-Cut
algorithm can solve instances with 2500 vertices in less than 30min. We remark that
the density and the d impact the efficiency of our algorithm. In most of instances we
note that sp + 1 = disc − 1, except when the density is 2%, there is an instance with
sp + 1 = disc − 2.

InTables 2 and3,we consider someDIMACS instances.Note that all these instances
are solved in less than 1 second. For these instances, 4 instances are not solved to the
root node, when d = disc. Furthermore, for all these DIMACS instances the number
of generated cut is less than 600 explaining the good performances given by our
algorithm. Remark that, when d = sp + 1, only for one instance (miles750), the
number of cuts is greater than the size blocker, otherwise the number of cut is equal
to the size blocker when d = sp + 1.

7 Conclusion

In this paper we considered the most vital vertices shortest s–t path problem. We
studied the complexity of this problem and we proposed an integer linear model to
solve it. We showed that the associated polytope is integer. Since the problem is NP-
hard we deduce that the separation problem, when the vector is fractional, is NP-hard

123

Most vital vertices for the shortest s–t path… 2053

but we showed that the problem becomes polynomial when the vector is integer. Based
on this result we proposed an efficient Branch-and-cut algorithm.

References

1. Israeli, E., Wood, P.K.: Shortest-path network interdiction. Networks 40(2), 97–111 (2002)
2. Khachiyan, L., Boros, E., Borys, K., Elbassioni, K., Gurvich, V., Rudolf, G., Zhao, J.: On short paths

interdiction problems: total and node-wise limited interdiction. Theory Comput. Syst. 43, 204–233
(2008)

3. Song, Y., Shen, S.: Risk averse shortest path interdiction. INFORMS J. Comput. 23(3), 527–539 (2016)
4. Furini, F., Ljubić, I., Martin, S., Segundo, P.S.: The maximum clique interdiction problem. Eur. J. Oper.

Res. 43, 112–127 (2019)
5. Bazgan, C., Toubaline, S., Vanderpooten, D.: Critical edges for the assignment problem: complexity

and exact resolution. Oper. Res. Lett. 41, 685–689 (2013)
6. Hoffman, A.J., Markowitz, H.: A note on shortest path, assignment and transportation problems. Nav.

Res. Logist. Q. 10(1), 375–379 (1963)
7. Bazgan, C., Nichterlein, A., Niedermeier, R.: A rened complexity analysis of finding the most vital

edges for undirected shortest paths. In: Conference CIAC 2015, pp. 47–60 (2015)
8. Garey, M.R., Johnson, D.S.A.: Computers and Intractability: A Guide to the Theory of NP-

Completeness. W. H. Freeman & Co., New York (1979)
9. Johnson, D.S., Trick, M.A.: Cliques, Coloring, and Satisfiability: Second DIMACS Implementation

Challenge,October 11–13, 1993, vol. 26.AmericanMathematical Society (1996). http://archive.dimacs.
rutgers.edu/Challenges/

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

123

http://archive.dimacs.rutgers.edu/Challenges/
http://archive.dimacs.rutgers.edu/Challenges/

	Most vital vertices for the shortest s–t path problem: complexity and Branch-and-Cut algorithm
	Abstract
	1 Introduction
	2 Related works
	3 Graph properties and complexity
	4 Integer linear program
	5 Polyhedral analysis
	6 Experimental results
	7 Conclusion
	References

