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Abstract
Time-varying network flows (also called dynamic network flows) generalize stan-
dard network flows by introducing an element of time. In this paper, we consider the
dynamic version of the minimum cost multicommodity flow problem with storage
at intermediate nodes. This problem is known to be NP-hard. By using of the flow
decomposition theorem in network flows, we propose an efficient model based on
dynamic path flows for this problem. For some special structures of the path-flow
formulation, we provide an algorithm based on decomposition principle, for solving
the proposed model. In the end, the efficiency of the proposed approach is evaluated
through a number of experimental tests.

Keywords Minimum cost flow problem · (Dynamic) multicommodity flows ·
Combinatorial optimization · Decomposition principle

1 Introduction

Classical (static) network flow models have been well known as valuable tools for
many applications (see, e.g., [1,11]). However, they fail to capture a crucial element
of many routing problems in real-world applications: routing occurs over time such
as routing in logistics and transportation, wireless sensor networks, airline, location
and layout of facilities, traffic planning, telecommunications, social and biological
networks, and other fields. A static flow can not properly consider the evolution of a
system over time. The time here is an essential component, either because the flows
of some commodity take time to pass from one location to another, or because the
topology of the network changes over time. Various interesting examples can be found
in the survey articles of [2,15,20,21]. This class of network flows was first introduced
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by Ford and Fulkerson [12]. Ford and Fulkerson introduced flows over time (also
called dynamic flows) and considered the problem of sending the maximal possible
amount of flow from a source node s to a sink node t on the networks with only transit
times within a given time horizon T . They shown that this problem can be solved in
polynomial time by using one min-cost flow computation on the given network [12].
Since then, a large number of authors have studied different features of time varying
networks (see, e.g., [6,7,10,14,16–18]).

Flows over time are meaningfully harder than their static counterparts. Whenever
some network parameters such as cost, capacity, and supply/demand vary with time,
Klinz and Woeginger shown that both minimum cost s−t-flows over time and multi-
commodity flows over time are NP-hard, even for very simple series-parallel network
flows or to the case of only two commodity [17]. Traditionally, flows over time are
computed in time-expanded networks that contains one copy of the original network
for each discrete time point (building a time layer). A discrete flow over time in the
given network can be interpreted as a static flow in the corresponding time-expanded
network. While this method makes available the whole algorithmic toolbox devel-
oped for static flows, its main and often serious drawback is the enormous size of
the time-expanded network. However, the time complexity of such algorithms are
pseudo-polynomial in time-expanded networks and thus dose not directly lead to effi-
cient algorithms for computing flows over time.

Fleischer and Skutella introduced a condensed variant of time-expanded network
that leads to network whose size is polynomially bounded in the input size. They gave
approximation algorithms for various variants of the network flows problem over time
[8–10]. Also, Hall et al. [13] presented efficient algorithms under certain assumptions
on the transit times of arcs and the network topology.

In the network flows, themulticommodity flowproblem consists of shipping several
different commodities from their respective sources to their sinks through a given
network so that the total flow going through each arc does not exceed its bundle
capacity. The multicommodity network flow problem requires to find the minimum
cost flow of a set of commodities through a network, where the arc flows satisfied the
network requirements.

The multicommodity network flow problems are significantly harder than their
single-commodity counterparts. For example, the only known polynomial-time algo-
rithms for static multicommodity flow computations are general linear programming
(for short, LP) techniques (e.g., the ellipsoid or interior point methods) [1]. The
dynamic multicommodity flow problem is the generalization of the static multicom-
modity flow problem in which cost and bundle capacity on arcs or supply/demand
values are time-varying in a time horizon T .

While dynamic minimum cost flow problem has been known to be NP-hard, the
complexity of the dynamic multicommodity flow problem has been open for many
years until Hall and et al. [13] have shown that this problem is NP-hard, even for
series-parallel networks or to the case of only two commodity.

Fleischer an Skutella shown that for single commodity problems, storage at inter-
mediate nodes is unnecessary [9]. Hall et al. proved that storage of flow at intermediate
nodes can be useful in the multicommodity flow problems. They shown that the mul-
tiple commodity flow over time problem with simple paths solutions and forbidding
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flow at intermediate nodes is strongly NP-hard. Of course, this problem can be solved
in pseudo-polynomial time in the time-expanded network. The best result for the
multicommodity flow problem is 2-approximation algorithm for the quickest multi-
commodity flow problem (provided by Fleischer and Skutella [10]).

Also, Hall et al. presented efficient algorithms under certain assumptions on the
transit times of arcs and the network topology. In fact, they assumed that all paths
between everyfixedpair of nodes have the same transit time.They shown that under this
assumption the size of the time-expanded network corresponding to many flow over
time problems is polynomial. Also, Lozovanu, and Fonoberova solved this problem by
time-expanded network that contains one copy of the original network for each discrete
time step. Its main drawback is the enormous size of the time-expanded network [19].
Contribution of this paper Motivated by the above results and hardness of multi-
commodity flows variation over time, we are interested in the dynamic version of the
minimum cost multicommodity flow problem on networks with storage at interme-
diate nodes and fixed transit time on arcs. We assume that cost and bundle capacity
defined on arcs and capacity storage on nodes are time-varying. This problem can
be solved in pseudo-polynomial time in the time-expanded network. This method is
never effective for large-scale networks. By using of the flow decomposition theorem
in network flows [1], we propose an efficient model based on dynamic path flows and
show that the size of this model is smaller than the arc-flow based model. Since, the
number of dynamic paths, is usually very large, attempting to explicitly finding all
the dynamic paths, and explicitly solving the proposed model is a very difficult task.
We want to find an optimal solution of this problem without explicitly enumerating
all the dynamic paths. According to the special structure of the proposed model, we
solve it based on a technique of decomposition principle (inspired by revised simplex
method) that find an optimal solution of this problem without explicitly enumerating
all the dynamic paths.

The rest of this paper is organized as follows. In Sect. 2, model of static multi-
commodity flow problem based on arc-flow formulation and its path-flow formulation
counterpart are presented. The dynamic multicommodity flow problem with storage
at intermediate nodes is proposed in Sect. 3. In Sect. 4, a solution methodology based
on decomposition principle is presented. In Sect. 5, the efficiency of the proposed
approach is evaluated through a number of experimental tests. Finally, the paper ends
with some conclusions in Sect. 6.

2 Multicommodity flows and decomposition principle

LetG = (N , A) be a directed networkwith node set N (|N | = n), arc set A (|A| = m),
and set of commodities K = {1, 2, . . . , h} that must be routed through the same
network. Every commodity k ∈ K has only one source s+

k ∈ N and one sink s−
k ∈ N

and Rk is the amount of supply or demand of commodity k ∈ K . Each arc (i, j) ∈ A
has a capacity ui j that restricts the total flow of all commodities on that arc. For
commodity k, let xk = (xki j )(i, j)∈A, dk = (dki )i∈N , and ck = (cki j )(i, j)∈A present the
flow vector, supply/demand vector, and per unit cost vector. Using defined notations,
the multicommodity flow (for short, MCF) problem can be formulated as follows:
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MCF : min
h∑

k=1

∑

(i, j)∈A

cki j x
k
i j (2.1)

s.t.
h∑

k=1

xki j ≤ ui j , ∀(i, j) ∈ A, (2.2)

∑

{ j :(i, j)∈A}
xki j −

∑

{ j :( j,i)∈A}
xkji = dki , ∀i ∈ N , k ∈ K , (2.3)

xki j ≥ 0, ∀(i, j) ∈ A, k ∈ K , (2.4)

where

dki =

⎧
⎪⎨

⎪⎩

Rk if i = s+
k

−Rk if i = s−
k

o o.w.

The objective function (2.1) minimizes the total cost of the multicommodity flow.
Constraints (2.2) implement the bundle constraint on each arc (i, j) ∈ A. Constraints
(2.3) are separate flow conservation constraints for each commodity k ∈ K . Con-
straints (2.4) are the continuous restrictions on the decision variables. This formulation
is an LP model with |A||K | continuous variables and |K ||N | + |A| constraints. Since
the MCF model is an LP, it can be solved in polynomial time by using of general LP
techniques for example the ellipsoid method or interior point methods [1]. In prac-
tice, the MCF problem is too large. It usually contains many thousands of rows and a
seemingly unlimited number of columns and some method must be applied to convert
the problem into one or more smaller problems of desirable size. The decomposition
principle does exactly this. The decomposition principle is a procedure that separate
the original problem into one with general structure and one with special structure
where an efficient method can be applied.

Due to the fact that the constraints (2.2) have a special structure (block diagonal),
it can be solved by decomposition principle. The block diagonal form of the MCF
model is as follows:

min c1x1 + c2x2 + · · · + chxh

s.t.
A1x1 + A2x2 + · · · + Ahxh ≤ u,

D1x1 = d1,
D2x2 = d2,
. . .

...

Dhxh = dh,
x1, x2, . . . , xh ≥ 0,

where A1 = · · · = Ah = Im×m , D1 = · · · = Dh = Dn×m .
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Matrix Im×m is the identitymatrix of sizem×m and Dn×m is the node-arc incidence
matrix of a network that has exactly one +1 and one −1 in each column, and a zero
elsewhere. Note that D ∈ R

n×m and rank(D) = n − 1. This model can be solved by
the classical Wolfe-Dantzig decomposition method [1].

According to the flow decomposition theorem, we can reformulate the MCF prob-
lem using path-cycle flows instead of arc flows. The path-cycle flow formulation of
the MCF problem has a simple constraint structure than the block diagonal form. In
our study of the MCF problem, we will impose below assumption.

Assumption 2.1 (Non-negative cost condition) For every commodity, the underlying
network does not contain a negative cycle (i.e., a directed cycle with negative length).

Assumption 2.1 implies that in some optimal solution, the flow on each cycle is
zero. Therefore, with Assumption 2.1, we can delete the cycle flow variables.

For each commodity k, let Pk denote the collection of all paths from the source
node s+

k to the sink node s−
k in the network G = (N , A). In the path-flow formulation,

each decision variable f (p) is the flow on some path p and for the kth commodity,
we define this variable for every path p ∈ Pk .

For each commodity k and every path p ∈ Pk , arc-path indicator variable δi j (p)
is defined as follows:

δi j (p) =
{
1, if (i, j) ∈ p

0, o.w.

By using of the flow decomposition theorem in the network flows (withAssumption
2.1), we can obtain the following equivalent path-flow (for short, PF) formulation of
the MCF problem:

PF : min
h∑

k=1

∑

p∈Pk

ck(p) f (p) (2.5)

s.t.
h∑

k=1

∑

p∈Pk

δi j (p) f (p) ≤ ui j , ∀(i, j) ∈ A, (2.6)

∑

p∈Pk

f (p) = Rk, ∀k ∈ K , (2.7)

f (p) ≥ 0, ∀k ∈ K , p ∈ Pk . (2.8)

The PF formulation of the MCF problem has a single constraint (2.6) for each arc
(i, j) ∈ A which indicates that the sum of the path flows passing through the arc (i, j)
is at most ui j . Also, for each commodity k, the model has a single constraint (2.7)
which indicates that the total flow on all the paths from the source node s+

k to the sink
node s−

k must be equal the demand of the commodity k. The PF formulation of the
MCF problem can be solved in polynomial time [22].
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It isworth noting that thePF formulation contains |A|+|K | constraints and therefore
any LP basis for the PF formulation will contains |A|+|K | basic variables (because at
least one basic variable must be in each of the |K | constraints (2.7), that is, in any basis
at least one path must carry a positive flow for every commodity k = 1, 2, . . . , h).
Also, the arc-flow formulation contains |K ||N | + |A| constraints and therefore any
LP basis for the arc flow formulation or block diagonal structure formulation of the
MCF will contains |K ||N | + |A| basic variables. So, the PF formulation of the MCF
problem has a simple constraint and it can efficiently be solved by decomposition
principle (inspired by the revised simplex method of LP [3]).

In the next section, we describe the MCF problem on dynamic network flows.

3 Dynamic multicommodity flow problemwith storage at
intermediate nodes

We consider a directed network G = (N , A, K , c, u, τ, T )with set of nodes |N | = n,
set of arcs |A| = m, and set of commodities K = {1, 2, . . . , h} that must be routed
through the same network. We consider the discrete time model, in which all times
are integral and bounded by time horizon T , which defines the set T = {0, 1, . . . , T }
of time moments. We define cki j (t) and cki (t) as the cost for sending one unit of flow
kth on arc (i, j) in time t and the cost for storing one unit of flow kth at node i from
time t − 1 to t , respectively. Moreover, ui j (t), uki (t), and τi j (t) are an upper bound on
the amount of flow that can enter to arc (i, j) at time t ∈ T , an upper bound on the
amount of flow that can be stored in node i from time t − 1 to t , and positive transmit
time on arc (i, j) at time t ∈ T , respectively.

Time is measured in discrete steps, so that if one unit of flow of commodity k leaves
node i at time t , one unit of flow arrives at node j at time t+τi j (t). For commodity k, let
xk = (xki j (t))(i, j)∈A denote the dynamic flow vector and flow variables xki j (t) present
the flow of the commodity k on arc (i, j) at time t . We assume that the flow variables
xki j (t) have no individual flowbounds; that is, each uki j (t) = +∞. For commodity k, let

yk = (yki (t))i∈N denote the storage vector and yki (t) gives the amount of commodity
flow k stored at node i from time t − 1 to t .

Using this notations, the discrete dynamicmulticommodity flow (for short, DDMF)
problem with storage at intermediate nodes can be modeled as follows:

DDMF : min
T∑

t=0

⎛

⎝
∑

k∈K

∑

(i, j)∈A

cki j (t)x
k
i j (t) +

∑

k∈K

∑

i∈N
cki (t)y

k
i (t)

⎞

⎠ (3.1)

s.t.
∑

k∈K
xki j (t) ≤ ui j (t), ∀(i, j) ∈ A, t ∈ T (3.2)

∑

{ j :(i, j)∈A}
xki j (t) −

∑

{ j :( j ,i)∈A}

∑

{t ′:t ′+τ j i (t ′)=t}
xkji (t

′)+

yki (t) − yki (t − 1) = 0, ∀k ∈ K , i ∈ N − {s+k , s−k }, t ∈ T (3.3)
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T∑

t=0

⎛

⎜⎝
∑

{ j :(i, j)∈A}
xki j (t) −

∑

{ j :( j ,i)∈A}

∑

{t ′:t ′+τ j i (t ′)=t}
xkji (t

′)

⎞

⎟⎠ = dki , ∀i ∈ N , k ∈ K , (3.4)

xki j (t) ≥ 0, 0 ≤ yki (t) ≤ uki (t), ∀(i, j) ∈ A, i ∈ N , k ∈ K , t ∈ T , (3.5)

where

dki =

⎧
⎪⎨

⎪⎩

Rk if i = s+
k

−Rk if i = s−
k

o o.w.

The objective function (3.1) minimizes the total cost of the dynamic flow vector xk

and storage flow vector yk in time horizon T . Constraints (3.2) implement the bundle
constraint on each arc (i, j) ∈ A at any time step t . For commodity k, constraints (3.3)
indicate the flow conservation constraints and amount of stored flow at intermediate
node i in each time step t . For commodity k, constraints (3.4) indicate the flow con-
servation constraints in time horizon T . That is, after all the time steps have passed,
the dynamic flow vectors xk, ∀k ∈ K should be satisfy the supply/demand of every
commodity and there are no additional flows in the intermediate nodes. Constraints
(3.5) indicate capacity constraint and storage capacity constraint for dynamic flow
vectors xk, ∀k ∈ K and storage vectors yk, ∀k ∈ K , respectively. However, in the
DDMF problem we want to find a dynamic flow vector xk, ∀k ∈ K and a storage
vector yk, ∀k ∈ K such that satisfy the constraints (3.2)–(3.5) and minimize the total
cost (3.1).

The DDMF model can be solved by the typical approach called time-expanded
network technique. As mentioned earlier, the size of the time-expanded network is
linear in time horizon T . Thus, any polynomial time algorithm for solving minimum
cost flow problem on the time-expanded network will yield a pseudo-polynomial time
algorithm for the DDMF problem. In the next section, we reformulate the DDMF
problem (with storage at intermediate nodes) with dynamic path flows and solve it by
a decomposition approach inspired by revised simplex method.

4 Solutionmethod

4.1 Reformulation with dynamic path flows

Let G = (N , A, K , c, u, τ, T ) be a directed dynamic network with set of com-
modities K = {1, 2, . . . , h} that must be routed through the same network, time
varying cost vector ck = (cki j (t))(i, j)∈A, fixed transit time vector ø = (τi j )(i, j)∈A,
time varying capacity vector u = (ui j (t))(i, j)∈A, time varying capacity storage vector
uk = (uki (t))(i)∈N , and discrete time steps T = {0, 1, . . . , T }. We suppose that the
storage of flow at intermediate nodes is allowed and transit time on arcs fixed assumed.
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Below, we present the path-flow formulation corresponding to the DDMF prob-
lem with storage at intermediate nodes. Before stating the path-flow formulation, we
indicate some definitions.

In the following, we refer to (i, α) of N × T as a node-time pair (for short, NTP)
(i.e., a node in a arbitrary time step). For an arc (i, j) ∈ A, we say that the NTP (i, α)

is arc-inked to the NTP ( j, β) if β = α + τi j . Also, we say that the NTP (i, α) is
node-linked to the NTP ( j, β) if i = j and α �= β.

Definition 4.1 In the dynamic network G, for a commodity k, a dynamic path from
node s+

k with departure time α to node s−
k is a sequence of distinct NTPs (arc-inked

or node-linked) as follows:

pα : (s+
k , α) = (i1, t1), (i2, t2), . . . , (ir , tr ) = (s−

k , β).

For each commodity k, let Pk denote the collection of dynamic paths from the
source node s+

k to the sink node s−
k in the dynamic network G on time horizon T with

a fixed departure time. It is worth noting that for any dynamic path p ∈ Pk , we have
T − τp dynamic path (paths) pα with departure times α = 0, 1, . . . , T − τp where we
let τp = ∑

(i, j)∈p τi j be the total transit time of p. In the path-flow formulation, each
decision variable f (pα) is the flow on some dynamic path p with departure time α

from node s+
k . For the kth commodity, we define this variable for every dynamic path

p ∈ Pk with departure times α = 0, 1, . . . , T − τp. In fact, decision variables f (pα)

are not defined for α > T − τp. For the convenience of work, we assume f (pα) = 0
for α > T − τp.

For a given dynamic path p ∈ Pk with departure time α in the form of

pα : (s+
k , α) = (i1, t1), (i2, t2), . . . , (ir , tr ) = (s−

k , β),

arc-path indicator variable δi j (pα, t) for t ≥ α and (i, j) ∈ A is defined as follows:

δi j (p
α, t) =

{
1 if (i, t) is arc-linked to ( j, t + τi j ) on dynamic path pα

0 o.w.

and node-path indicator variable γi (pα, t) for t ≥ α and i ∈ N is defined as follows:

γi (p
α, t) =

{
1 if (i, t) is node-linked to (i, t + 1) on dynamic path pα

0 o.w.

Without loss of generality, we assume δi j (pα, t) = γi (pα, t) = 0 for t < α.

Definition 4.2 For commodity k, the cost of a dynamic path

pα : (s+
k , α) = (i1, t1), (i2, t2), . . . , (ir , tr ) = (s−

k , β),
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is defined as

ck(pα) =
∑

(ir ,ir+1)∈pα,ir �=ir+1

ckir ,ir+1
(tr ) +

∑

(ir ,ir+1)∈pα,ir=ir+1

ckr (tr )

=
T∑

t=0

∑

(i, j)∈A

δi j (p
α, t)cki j (t) +

T∑

t=0

∑

i∈N
γi (p

α, t)cki (t).

Definition 4.3 For commodity k, given a dynamic flow vector xk and flow storage
vector yk , a path pα is said to be dynamic shortest path from NTP (s+

k , α) to NTP
(s−

k , β), if ck(pα) ≤ ck(p′α) for all dynamic paths p′ ∈ Pk from NTP (s+
k , α) to NTP

(s−
k , β).

Definition 4.4 According to the flow decomposition theorem of network flows (with
considering the Assumption 2.1), for commodity k in time step t , arc flows xki j (t) and

storage flows yki (t) can be calculated as follows:

xki j (t) =
∑

p∈Pk

T−τp∑

α=0

δi j (p
α, t) f (pα),

yki (t) =
∑

p∈Pk

T−τp∑

α=0

γi (p
α, t) f (pα).

By considering the above definitions, the objective function (3.1) can be rewritten
as follows:

T∑

t=0

∑

k∈K

( ∑

(i, j)∈A

cki j (t)x
k
i j (t) +

∑

i∈N
cki (t)y

k
i (t)

)

=
T∑

t=0

∑

k∈K

⎛

⎝
∑

(i, j)∈A

cki j (t)

( ∑

p∈Pk

T−τp∑

α=0

δi j (p
α, t) f (pα)

)

+
∑

i∈N
cki (t)

( ∑

p∈Pk

T−τp∑

α=0

γi (p
α, t) f (pα)

)⎞

⎠

=
∑

k∈K

∑

p∈Pk

f (pα)

T−τp∑

α=0

⎛

⎝
T∑

t=0

∑

(i, j)∈A

δi j (p
α, t)cki j (t) +

T∑

t=0

∑

i∈N
γi (p

α, t)cki (t)

⎞

⎠

=
∑

k∈K

∑

p∈Pk

T−τp∑

α=0

ck(pα) f (pα).

This observation shows that we can express the cost of any dynamic solution as
either the cost of dynamic arc-flows or the cost of dynamic path flows.

123
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By substituting the path-flow variables in the DDMF formulation, we obtain the
following equivalent dynamic path flow formulation (hereafter, we call DPF problem)
of the DDMF problem:

DPF : min
∑

k∈K

∑

p∈Pk

T−tp∑

α=0

ck(pα) f (pα) (4.1)

s.t.

∑

k∈K

∑

p∈Pk

T−tp∑

α=0

δi j (p
α, t) f (pα) ≤ ui j (t), ∀(i, j) ∈ A, t ∈ T ,

(4.2)

∑

p∈Pk

T−tp∑

α=0

f (pα) = Rk, ∀k ∈ K , (4.3)

∑

p∈Pk

T−tp∑

α=0

γi (p
α, t) f (pα) ≤ uki (t), ∀i ∈N − {s+

k , s−
k }, k∈K , t ∈T ,

(4.4)

f (pα) ≥ 0, ∀ p ∈ Pk, k ∈ K , α = 0, 1, . . . , T − tp. (4.5)

Note that the DPF formulation of the DDMF problem has a very simple constraint
structure. The problem has Tm constraints (4.2) for each arc (i, j)which state that the
sum of dynamic path flows passing through the arc (i, j) at time t is at most ui j (t).
Moreover, the problem has a single constraint (4.3) for each commodity k which states
that the sum of dynamic path flows connecting the source node s+

k and sink node s−
k of

commodity k must be equal the demand Rk for this commodity on time horizon T . For
every NTP (i, t) and commodity k, the problem has a constraint (4.4) which states that
the sum of dynamic path flows passing through the node i at time t is at most uki (t).
In other words, this constraint shows that the capacity storage for the commodity k
in time t at intermediate node i is at most uki (t). The constraints (4.5) guarantee that
f (pα) = 0 for all t /∈ {0, 1, . . . , T − tp}. In fact, in order to one unit of flow reach to
its destination after time horizon T , it must leave its source before a certain time.

For a network with n nodes,m arcs, and h commodities, the DPF problem contains
mT + nhT + h constraints. In contrast, the arc formulation DDMF contains mT +
nhT +nh constraints since it contains one mass balance constraint for every node and
commodity combination.

Since, the number of dynamic paths, is usually very large, attempting to explicitly
finding all the dynamic path, and explicitly solving the DPF problem very difficult
task. However, we expect that only very few of the dynamic paths will carry flow
in the optimal solution to the DPF problem. In fact, from LP theory, at most mT +
nhT + h dynamic paths carry positive flow in some optimal solution. We want to find
an optimal solution of this problem without explicitly enumerating all the dynamic
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paths. Therefore, it is useful to design an algorithm based on decomposition principle
for the DPF problem (inspired by revised simplex method).

4.1.1 Optimality conditions

The revised simplex method determines a basis at every step, and using this basis
finds a vector of dual variables for the constraints. Suppose that the dual variables
corresponding to constraints (4.2)–(4.4) are wi j (t), σ k , and vki (t), respectively. With
respect to these dual variables, the reduced cost cw,v,σ

pα for commodity k and dynamic

path pα from NTP (s+
k , α) to NTP (s−

k , β) (corresponding to the dynamic path flow
variable f (pα)) is defined as follows:

cw,v,σ
pα = −σ k +

∑

(ir ,ir+1)∈pα,ir �=ir+1

(
wir ,ir+1(tr ) + ckir ,ir+1

(tr )
)

+
∑

(ir ,ir+1)∈pα,ir=ir+1

(
vkir (tr ) + ckir (tr )

)
.

Dynamic path flow complementary slackness conditions The dynamic path flows
f (pα) are optimal in the DDMF formulation of the dynamic multicommodity flow
problem if and only if for some dual variables wi j (t), σ k , and vki (t), the following
complementary slackness conditions are established

(1) wi j (t)

( ∑

k∈K

∑

p∈Pk

T−tp∑

α=0

δi j (p
α, t) f (pα) − ui j (t)

)
= 0, ∀(i, j) ∈ A, t ∈ T ,

(2) vki (t)

( ∑

p∈Pk

T−tp∑

α=0

γi (p
α, t) f (pα) − uki (t)

)
= 0,

∀k ∈ K , i ∈ N − {s+
k , s−

k }, t ∈ T ,

(3) cw,v,σ
pα ≥ 0, ∀ k ∈ K , p ∈ Pk, α = 0, 1, . . . , T − tp,

(4) f (pα)cw,v,σ
pα = 0, ∀ k ∈ K , p ∈ Pk, α = 0, 1, . . . , T − tp.

These optimality conditions are useful in several respects. Condition (1) states that
the dual variable wi j (t) of arc (i, j) on time period t is zero if the optimal dynamic
solution f (pα) does not use all of the capacity ui j (t) of the arc in time point t . Also,
condition (2) states that the dual variable vki (t) on time period t is zero if the optimal
dynamic solution f (pα) for commodity k ∈ K does not use all of the capacity uki (t).
For a given dynamic path p ∈ Pk with departure time α in the form of

pα : (s+
k , α) = (i1, t1), (i2, t2), . . . , (ir , tr ) = (s−

k , β),

the reduced cost cw,v,σ
pα is just the cost of that dynamic pathwith respect to themodified

costswir ,ir+1(tr )+ckir ,ir+1
(tr )+vkir (tr )+ckir (tr )minus the dual value σ k . So, condition
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(3) states that the modified dynamic path cost

∑

(ir ,ir+1)∈pα,ir �=ir+1

(
wir ,ir+1(tr ) + ckir ,ir+1

(tr )
)

+
∑

(ir ,ir+1)∈pα,ir=ir+1

(
vkir (tr ) + ckir (tr )

)
,

for each dynamic path pα of commodity k must be at least as large as the dual value σ k .
The condition (4) implies that reduced cost cw,v,σ

pα must be zero for any dynamic path
pα with f (pα) > 0. Therefore, conditions (3) and (4) imply the following lemma.

Lemma 4.1 (Dynamic shortest path optimality conditions) In the optimal solution,
every dynamic path pα from NTP (s+

k , α) to NTP (s−
k , β) with f (pα) > 0 must be

a shortest dynamic path with respect to the modified costs and the dual value σ k is
the shortest dynamic path distance with respect to the modified costs.

Proof Suppose that an optimal solution of the DPF problem is given. This optimal
solution must satisfy the complementary slackness conditions (1–4). From condition
(3) and by using of the definition of the reduced cost cw,v,σ

pα ,

∑

(ir ,ir+1)∈pα,ir �=ir+1

(
wir ,ir+1(tr ) + ckir ,ir+1

(tr )
)

+
∑

(ir ,ir+1)∈pα,ir=ir+1

(
vkir (tr ) + ckir (tr )

)
≥ σ k .

Thus, σ k is a lower bound on the length of any dynamic path pα from NTP (s+
k , α)

to NTP (s−
k , β) with respect to the modified costs and therefore is a lower bound on

the dynamic shortest distance between these NTPs. On the other hand, from condition
(4), every dynamic path pα from NTP (s+

k , α) to NTP (s−
k , β) in the form of

pα : (s+
k , α) = (i1, t1), (i2, t2), . . . , (ir , tr ) = (s−

k , β),

with f (pα) > 0 implies that cw,v,σ
pα = 0, i.e.,

∑

(ir ,ir+1)∈pα,ir �=ir+1

(
wir ,ir+1 (tr ) + ckir ,ir+1

(tr )
)
+

∑

(ir ,ir+1)∈pα,ir=ir+1

(
vkir

(tr ) + ckir (tr )
)

= σ k .

Therefore, σ k is the dynamic shortest path length pα from NTP (s+
k , α) to NTP

(s−
k , β) with respect to the modified costs

wir ,ir+1(tr ) + ckir ,ir+1
(tr ) + vkir (tr ) + ckir (tr ).

	


In the next section, we propose a method based on the decomposition principle for
solving the DPF problem by using of Lemma 4.1 and the revised simplex method.
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4.1.2 Decomposition principle procedure

The revised simplex method, at every step, maintains a basic matrix. Then, using the
fact that the reduced cost of every variable in the basis is zero, we can compute the
dual variables wi j (t), σ k and vki (t). In other words, if the dynamic path pα from NTP
(s+

k , α) to NTP (s−
k , β) for commodity k to form

pα : (s+
k , α) = (i1, t1), (i2, t2), . . . , (ir , tr ) = (s−

k , β),

is one of the basic variables, then cw,v,σ
pα = o. Thus, by using of matrix computations,

the dual variables wi j (t), σ k and vki (t) can be calculated via the following equations:

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

∑
(ir ,ir+1)∈pα,ir �=ir+1

(
wir ,ir+1(tr ) + ckir ,ir+1

(tr )
)

+ ∑
(ir ,ir+1)∈pα,ir+ir+1

(
ckir (tr ) + vkir (tr )

)
= σ k,

for every dynamic path pα in the basis.

From revised simplex method, for a some basis, it always satisfies the complemen-
tary slackness conditions (1), (2), and (4). Therefore, it is optimal if satisfies condition
(3). The question that arises is how this condition can be checked? In other words,
how can we check the following condition:

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

cw,v,σ
pα = ∑

(ir ,ir+1)∈pα,ir �=ir+1

(
wir ,ir+1(tr ) + ckir ,ir+1

(tr )
)

+ ∑
(ir ,ir+1)∈pα,ir+ir+1

(
ckir (tr ) + vkir (tr )

)
− σ k ≥ 0,

∀k ∈ K , p ∈ Pk and departure timesα = 0, 1, . . . , T − tp.

To check this condition, we can solve the following subproblems (i.e., a dynamic
shortest path problem for each commodity k):

Zk = min
∑

(ir ,ir+1)∈pα,ir �=ir+1

(
wir ,ir+1(tr ) + ckir ,ir+1

(tr )
)

(4.6)

+
∑

(ir ,ir+1)∈pα,ir+ir+1

(
ckir (tr ) + vkir (tr )

)

s.t .

k ∈ K , p ∈ Pk and departure times α = 0, 1, . . . , T − tp.

In other words, to check the complementary slackness condition (3), we solve a
dynamic shortest path problem for each commodity k. In fact, subproblems (4.6)
indicate that if for all commodity k, the length of the dynamic shortest path is at least
as large as dual value σ k (i.e., Zk ≥ σ k, ∀k ∈ K ), the complementary slackness
condition (3) is satisfied. In this case, the current basis is optimal. Otherwise, if for
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some commodity k and dynamic shortest path F with departure time α′, Zk < σ k ,
i.e.,

∑

(ir ,ir+1)∈Fα′
,ir �=ir+1

(
wir ,ir+1(tr ) + ckir ,ir+1

(tr )
)

+
∑

(ir ,ir+1)∈Fα′
,ir+ir+1

(
ckir (tr ) + vkir (tr )

)
− σ k < 0,

then, cw,v,σ

Fα′ < 0. Hence, the dynamic path F with departure time α′ is eligible to
enter the basis. The simplex method introduces dynamic path F with departure time
α′ into basis and determines one dynamic path to remove from the basis (by using
of the minimum ratio test). After pivoting, a new set of dual variables wi j (t), vki (t),
and σ k (a new modified dynamic shortest path distance for each commodity k) are
determined. Then, we transfer these dual variables into subproblems (4.6). We solve
the subproblem corresponding to each commodity (by solving a dynamic shortest path
problem) and see whether any dynamic path has a shorter length than σ k . If is not
such dynamic path, the optimal solution is reached. Otherwise, we introduce this path
into basis and continue the revised simplex method.

5 Computational experiments

In this section, in order to demonstrate the effectiveness of the DPF model and the
solution technique, computational results are presented on different classes of ran-
domly generated instances. To achieve these objectives, we considered 12 classes of
instances. For each class, 100 instances were generated (i.e., a total of 1200 instances)
according to the methodology proposed by Erdös and Rényi [4], where it was assumed
that there was a link from node i to node j with probability p = 0.5. Therefore, the
number of arcs in a graph with n nodes is a random variable with expected value(
n

2

)
× p. Depending on the class of generated instances, the time horizon and the

number of commodities are chosen from sets {20, 60, 180, 520} and {4, 8, 16, 32},
respectively. The classes of generated instances are summarized in Table 1.

For each class instance, we simply decided to test our solution process on nominal
data. Nominal data are generated randomly using the random distributions specified
in Table 2. In the set of experiments, the amount of demand of each commodity k ∈ K
is randomly generated between 50 and 150. For each arc (i, j) ∈ A, the linear cost
and bundle capacity (increasing or decreasing) functions with random coefficients are
defined. Similarly, for each node i ∈ N , the linear cost and storage capacity (increasing
or decreasing) functions with random coefficients are considered.

All the test instances are carried out on a Core i5-4670 and 3.40 GHz computer
with 8.00 GB RAM. The proposed model and algorithm are coded in GAMS 24.9.1
and CPLEX (version 12.3) is used as an optimization solver for solving the LP model
[5]. It is worth noting that the default setting is used in our runs.
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Table 1 Class of instances Class n (number of nodes) |K | T

1 200 4 20

2 200 8 60

3 200 16 180

4 200 32 540

5 500 4 20

6 500 8 60

7 500 16 180

8 500 32 540

9 1000 4 20

10 1000 8 60

11 1000 16 180

12 1000 32 540

Table 2 The random parameters
used in this work

Parameters Corresponding
random values

Rk Unif(50, 150)

cki j (t) Hk
i j + Zk

i j t

Hk
i j Unif(0, 50)

Zk
i j Unif(0, 50)

cki (t) hki + zki t

hki Unif(0, 20)

zki Unif(0, 20)

ui j (t) Wi j + Si j t

Wi j and Si j Unif(0.1, 0.5) ×
max
k∈K (Rk )

uki (t) wk
i + ski t

wk
i and ski Unif(0, 0.5) × Rk

In order to show the importance of the DPF model and the solution technique, two
scenarios are considered in our computational results. In the first scenario, the arc-flow
based formulation DDMF is directly implemented on time-expanded network with LP
solver CPLEX (“TEN” in Table 3). In the second scenario, the path-flow formulation
DPF is implemented by proposed algorithm (“Proposed algorithm” in Table 3). In
Table 3, the average computational times in seconds (on 1200 instances) are reported.
It is worth noting that we imposed a time limit of 200s on the computation times. In this
table, columns 2 and 3 refer to the average computational times for proposed algorithm
and the time expanded network with LP solver CPLEX, respectively. By imposing the
time limit of 200s, there are some instances in some classes had not been solved up
to optimality after 200s of the CPU time. For these classes, we report the average
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Table 3 Computational results

Class CPU times (in secs.) Timeout (%)

Proposed algorithm TEN Proposed algorithm TEN

1 2.0325 0.4018 0 0

2 2.4009 1.0009 0 0

3 3.0931 15.1610 4 28

4 26.2060 86.3118 21 55

5 3.4596 63.4306 0 18

6 12.5208 98.0026 8 23

7 96.6182 186.0018 12 78

8 100.4226 NI* 39 100

9 64.9602 113.1402 10 46

10 79.4205 194.0022 26 91

11 158.7401 NI 49 100

12 NI NI 100 100

*NI None of the instances of this class was solved within the time limit by the corresponding method

computational times just for the instances that were solved up to optimality within the
time limit of 200s. Also, columns 4 and 5 refer to the percentage of instances for each
class that passed the time limit of 200s (“Timeout (%)” in Table 3) for the proposed
algorithm and the time-expanded network with LP solver CPLEX, respectively. In
some rows of Table 3, phrase “NI” illustrates that none of the instances of this class
were solved within the time limit of 200 seconds.

From Table 3, we observe that almost in all instances except for small-scale
instances in classes 1 and 2, the computational times of our proposed algorithm are
smaller than that of the LP solver CPLEX for the time-expanded network. On the
other hand, performance of the DDMF problem on the time-expanded network with
LP solver CPLEX is more effected by the size of instances and especially by the value
of the time horizon T (time horizon equal to 540). According to columns 3 and 5 of
Table 3, none of the instances in classes 8, 11, and 12 were solved within the time
limit by TEN technique. From columns 2 and 4 of Table 3, only the instances in Class
12 was not solved within the time limit by proposed algorithm (dense networks with
1000 nodes and time horizon equal to 540). In other words, instances with T = 540
and n = 1000 are the hardest instances for proposed algorithm. In particular, from two
last columns of Table 3, the average of percentages of unsolved instances within the
time limit by proposed algorithm and TEN technique are roughly 22.42 and 53.25%,
respectively.

6 Conclusions

In this research, we have provided an LP formulation based on dynamic paths for
the dynamic minimum cost multicommodity network flow problem. In this problem,
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we assumed that the storage at intermediate nodes was allowed and cost and bundle
capacity defined on arcs and capacity storage on nodes were time-varying. According
to the special structure of the proposed model, we solved it based on technique of
decomposition principle. To assess the performance of proposed model and the solu-
tion technique, computational results have presented on different classes of randomly
generated instances. The computational times of the proposed approach and the time-
expanded network with LP solver CPLEX have been compared. We observe that the
proposed method, in general, presents good results compared with the time expanded
network with LP solver CPLEX. Also, we observe that the performance of the DDMF
problem on the time expanded-network with LP solver CPLEX compared with our
proposed method is more depended to the size of the time horizon T .
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