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Abstract
In this paper, a necessary and sufficient condition, such as the Pontryagin’s maxi-
mum principle for a fractional optimal control problem with concentrated parameters,
is given by the ordinary fractional differential equation with a coefficient in weighted
Lebesgue spaces. We discuss a formulation of fractional optimal control problems
by a fractional differential equation in the sense of Caputo fractional derivative. The
statement of the fractional optimal control problem is studied by using a new version
of the increment method that essentially uses the concept of an adjoint equation of the
integral form.

Keywords Fractional optimal control problem · Initial value problem · Caputo
fractional derivative · Weighed Lebesgue spaces · Pontryagin’s maximum principle

1 Introduction

It is known that fractional optimal control problems described by ordinary fractional
differential equations can be regarded as a generalization of classic optimal control
problems. In the last time, fractional calculus plays an essential role in the various
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field of mathematics, physics, electronics, fluid filtration, control processing, signal
processing, stochastic systems, engineering and many others (see, [4,5,11,16–19,22–
24,27–29]). Development of fractional optimal control theory led to its application to
practical problems such as a fractional order controlled objects, fractional optimization
of dynamical systems and others. Many of these optimal control problems the solution
of which the subject of numerous works, described fractional ordinary differential
equations. The problem of optimal control of systems with concentrated parameters
has numerous applications. For details, see [6].

The Pontryagin maximum principle is a fundamental result of the theory of nec-
essary optimality conditions of the first order, which initially was proved in [25] for
optimal control problems described by ordinary differential equations. The later works
were dedicated to obtaining the necessary conditions for optimality in more com-
plex control problems with concentrated and distributed parameters. The necessity
of controlling the systems described by non-integer order models has led to devel-
oping fractional order control techniques. The Pontryagin maximum principle for
fractional optimal control problems was proved in [3,12]. In the papers [1,2,13] a
general formulation and a new solution scheme was given for a class of fractional
optimal control problems for those systems. Recently, the optimal control problem in
the processes described by the Goursat problem for a hyperbolic equation in variable
exponent Sobolev spaces with dominating mixed derivatives was studied in [7] (see,
also [8,20]). In [26] was considered a fractional order optimal control problems in
which the dynamic control system involves integer and fractional order derivatives
and the terminal time is free.

The present work is devoted to obtaining of necessary and sufficient condition such
as the maximum principle of Pontryagin for a fractional optimal control problem with
concentrated parameters described by an ordinary differential equationwith coefficient
in weighted Lebesgue spaces.

In this paper, the optimal control problem is investigated for an ordinary fractional
differential equation with a coefficient in Lebesgue spaces and with initial value prob-
lem. The statement of optimal control problem is studied by using a new version of
the increment method that essentially uses the concept of the adjoint equation of the
integral form. The method also includes the case where the coefficients of the equation
are non-smooth functions from weighted Lebesgue spaces. In this paper, it is shown
that such a fractional optimal control problem can be investigated with the help of a
new concept of the adjoint equation, which can be regarded as an auxiliary equation
for determination of Lagrange multipliers. These fractional optimal control problems
actually describe more complex control processes, which are very important in the
theory of optimal processes.

The paper is organized as follows. Section 2 contains some preliminaries alongwith
the standard ingredients used in the proofs. In Sect. 3, we give the problem statement,
and in Sect. 4, we show the construction of an adjoint equation of the considered
optimal control problem. In Sect. 5, we give the proof of the main result.
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2 Preliminaries

Let R denote the set of real line and let 1 ≤ p ≤ ∞. Suppose that T > 0 is a fixed
number.We say that v : (0, T ) �→ R is a weight function, if it is Lebesguemeasurable,
a.e. a positive and locally integrable function on (0, T ). We denote by L p,v(0, T ) the
space of Lebesgue measurable functions u on (0, T ) such that

‖u‖L p,v(0,T ) = ‖u‖p,v =
(∫ T

0
|u(t)|pv(t) dt

) 1
p

< ∞.

For p = ∞ we will use convention ‖u‖L∞,v(0,T ) = ‖u‖∞ = ess sup
0<t<T

|u(t)|.

Theorem 1 [9,21] Let 1 ≤ p ≤ ∞. Then the space L p,v(0, T ) is a Banach space.

Theorem 2 [9,21] Let 1 ≤ p < ∞ and let 1
p + 1

q = 1. Then for every bounded linear
functional � on L p,v(0, T ) there is a unique g ∈ Lq,v(0, T ) such that

�( f ) =
∫ T

0
f (x)g(x)v(x)dx, for all f ∈ L p,v(0, T ).

Moreover ‖�‖Lq,v(0,T ) = ‖g‖Lq,v(0,T ).

We need the following definition.

Definition 1 [10] Let v be a weight function on (0, T ). We say that a weight function
v satisfies doubling condition, is there exists a constant C ≥ 1 such that

∫ x+2t

x−2t
v(y)dy ≤ C

∫ x+t

x−t
v(y)dy

for all x, t ∈ (0, T ).

Let N be the set of natural numbers and n ∈ N. Suppose AC(0, T ) is the space
of absolutely continuous functions on (0, T ). By ACn(0, T ) we denote the space of
real-valued functions u which have continuous derivatives up to order n− 1 on (0, T )

such that u(n−1) ∈ AC(0, T ). It is obvious that AC1(0, T ) = AC(0, T ) (see, [16]).
There are several definitions of a fractional derivative. In this section, we present

a review of some definitions and preliminary facts which are particularly relevant for
the results of this paper [16,24,27].

Definition 2 Let f ∈ L1(0, T ). For almost all t ∈ (0, T ) and α > 0, the left and right
Riemann–Liouville fractional integrals of order α are defined by

I α
0+ f (t) := 1

�(α)

t∫
0

(t − τ)α−1 f (τ )dτ,
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and

I α
0− f (t) := 1

�(α)

T∫
t

(τ − t)α−1 f (τ )dτ,

respectively, where � is the Euler gamma function.

Definition 3 Let f ∈ ACn(0, T ). For almost all t ∈ (0, T ) and α > 0, the left and
right Riemann–Liouville fractional derivatives of order α are defined by

RL Dα
0+ f (t) := dn

dtn
(
I n−α
0+ f (t)

) = 1

�(n − α)

(
d

dt

)n t∫
0

(t − τ)n−α−1 f (τ )dτ,

and

RL Dα
0− f (t) := dn

dtn
(
I n−α
0− f (t)

) = 1

�(n − α)

(
− d

dt

)n T∫
t

(τ − t)n−α−1 f (τ )dτ,

respectively, where n ∈ N is such that n − 1 < α ≤ n.

Definition 4 Let f ∈ ACn(0, T ). For almost all t ∈ (0, T ) and α > 0, the left and
right Caputo fractional derivatives are defined by

C Dα
0+ f (t) := I n−α

0+
dn

dtn
f (t) = 1

�(n − α)

t∫
0

(t − τ)n−α−1 f (n)(τ )dτ,

and

C Dα
0− f (t) := I n−α

0−
(

− d

dt

)n

f (t) = (−1)n

�(n − α)

T∫
t

(τ − t)n−α−1 f (n)(τ )dτ,

respectively, where n ∈ N is such that n − 1 < α ≤ n.

Remark 1 Let α be a whole number. Then the Riemann–Liouville and Caputo frac-

tional derivatives coincides with the classical derivative
dn f (t)

dtn
.

It is obvious that the Caputo fractional derivative of a constant is equal to
zero. This is not the case with the Riemann–Liouville fractional derivative. Indeed,
if c 	= 0, then by the definition of Riemann–Liouville fractional derivative
RL Dα

0+c = c

�(n − α + 1)
tn−α.
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Theorem 3 Let α > 0 and let f ∈ C (n)(0, T ), n = [α] + 1. Then,

C Dα
0+ I α

0+ f (t) = f (t), C Dα
0− I α

0− f (t) = f (t),

and

I α
0+C Dα

0+ f (t) = f (t) − f (0), I α
0−C Dα

0− f (t) = f (T ) − f (t),

f ′(0) = · · · = f (n−1)(0) = f ′(T ) = · · · = f (n−1)(T ) = 0.

The Laplace transform F(s) of a function f (t) for t > 0 is defined as

F(s) = L[ f (t)] =
∫ ∞

0
e−st f (t)dt .

We need the following lemma.

Lemma 1 [14] Let α > 0 and let n − 1 < α ≤ n, n ∈ N. Suppose f ∈
ACn(0, T ), f (t) = 0 for t ≥ T and let lim

t→T− f (�)(t) = 0, � = 0, 1, . . . , n − 1.

Then the Laplace transform of the Caputo fractional derivatives of order α of a func-
tion f has the form

L
[
C Dα

0+ f (x)
]

= sn F(s) − sn−1 f (0) − sn−2 f ′(0) − · · · − f (n−1)(0)

sn−α
.

Definition 5 Let 1 ≤ p < ∞ and let n = [α] + 1. By W̃ (α)
p,v(0, T ) we define the

following space of functions as

W̃ (α)
p,v(0, T ) :=

{
u : u ∈ L p,v(0, T ) ∩ ACn(0, T ), C Dα

0+u ∈ L p,v(0, T )
}

.

It is obvious that the expression

‖u‖
W̃ (α)

p,v (0,T )
= ‖u‖p,v +

∥∥∥C Dα
0+u

∥∥∥
p,v

< ∞

defines a norm in W̃ (α)
p,v(0, T ).

Lemma 2 Let 1 ≤ p < ∞. Then, the space W̃ (α)
p,v(0, T ) is a Banach space.

The proof of Lemma 2 immediately implies from the definition of this space.

3 Problem statement

Throughout this paper, we assume that 0 < α < 1. Let the controlled object be
described by the equation

(Vαu) (t) ≡ C Dα
0+u(t) + a(t)u(t) = ϕ (t, ν(t)) , (3.1)
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the following initial value condition

V0u ≡ u(0) = ϕ0 (3.2)

wherea(t) ∈ L p,v(0, T ) andϕ0 ∈ R.Let ν(t) = (ν1(t), . . . , νm(t))bem-dimensional
control vector function and ϕ (t, ν(t)) be a given function defined on (0, T )×R

m and
satisfying Caratheodory condition on (0, T ) × R

m :

(1) ϕ(t, ν(t)) is measurable by t in (0, T ) for all ν ∈ R
m;

(2) ϕ(t, ν(t)) is continuous by ν in Rm for almost all t ∈ (0, T );
(3) for any δ > 0 there exists ϕ0

δ (t) ∈ L p,v(0, T ) such that |ϕ (t, ν(t))| ≤ ϕ0
δ (t) for

almost all t ∈ (0, T ) and ‖ν‖ = ∑m
i=1 |νi | ≤ δ.

Since the coefficient of theEq. (3.1) is non-smooth,wemean the solution of problem
(3.1), (3.2) in the weak sense. Let a vector function ν(t) be measurable and bounded
on (0, T ) and for almost every t ∈ (0, T ) it takes its value from the given set	 ⊂ R

m .

Then a vector function ν(t) is called admissible controls. The set of all admissible
controls is denoted by 	∂.

Now consider the following optimal control problem: Find an admissible control
ν(t) from 	∂, for which the solution of the problem (3.1), (3.2) u ∈ W̃ (α)

p,v(0, T ) that
minimizes the multi-point functional

F(ν) =
N∑

k=1

αku (tk) → min, (3.3)

where tk ∈ (0, T ] are the given fixed points, αk ∈ R are the given real numbers and
N is a positive integer.

4 The construction of adjoint equation

To obtain the necessary and sufficient conditions for optimality, first we find the incre-
ment of the functional (3.3). Let ν(t) and ν(t)+�ν(t) be different admissible controls,
u(t) and u(t) + �u(t) solution of the problem (3.1), (3.2) in the space W̃ (α)

p,v(0, T ),

respectively. Then the increment of the functional (3.3) is of the form

�F(ν) =
N∑

k=1

αk�u (tk) . (4.1)

Obviously, in this case the function �u ∈ W̃ (α)
p,v(0, T ) is the solution of the equation

Vα�u(t) = �ϕ(t), (4.2)

satisfying trivial conditions
V0�u = 0, (4.3)
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where �ϕ(t) = ϕ (t, ν(t) + �ν(t)) − ϕ (t, ν(t)) . The operator V = (Vα, V0) :
W̃ (α)

p,v(0, T ) �→ Ep,v = L p,v(0, T ) × R generated by the problem (3.1), (3.2) is
bounded by the above mentioned assumptions.

The integral representation of functions in W̃ (α)
p,v(0, T ) has the form

u(t) = u(0) + 1

�(α)

t∫
0

(t − τ)α−1 C Dα
0+u(τ )dτ. (4.4)

Next, we show that the operator V has an adjoint operator V � = (ωα, ω0) , which
acts in the spaces Eq,v = Lq,v(0, T ) × R and satisfy the condition (4.2). Using the
general form of a continuous linear functional on Eq,v, (see, [9,21]) we have

f (Vu) =
∫ T

0
fα(t) (Vαu) (t)v(t)dt + f0 (V0u)

=
∫ T

0
fα(t)v(t)

[
C Dα

0+u(t) + a(t)u(t)
]
dt + f0u(0).

By (4.4), we get

f (Vu) =
∫ T

0
fα(t)v(t)

⎡
⎣C Dα

0+u(t) + a(t)

⎛
⎝u(0) + 1

�(α)

t∫
0

(t − τ)α−1 C Dα
0+u(τ )dτ

⎞
⎠

⎤
⎦ dt

+ f0u(0) =
∫ T

0
(ωα f ) (t) C Dα

0+u(t)v(t)dt + ω0 f u(0) = (
V ∗ f

)
(u), (4.5)

where f = ( fα(t), f0) ∈ Eq,v is an arbitrary linear bounded functional on

Ep,v, u(t) ∈ W̃ (α)
p,v(0, T ) and

1

p
+ 1

q
= 1. Expressions for the ωα f and ω0 f is given

as follows:

(ωα f ) (t) ≡ fα(t) + 1

�(α)

∫ T

t
(τ − t)α−1a(τ ) fα(τ )dτ = fα(t) + I α

0− (a fα) (t),

ω0 f ≡
∫ T

0
fα(t)a(t)v(t) dt + f0.

We need a following theorem.

Theorem 4 Let 1 < p < ∞ and let a(t) ∈ L p,v(0, T ) and fα(t) ∈ Lq,v(0, T ).

Suppose v : (0, T ) �→ (0,∞) is a weight function satisfying the condition

B(v, α, q) = sup
0<τ<T

1

v(τ)

(∫ τ

0
(τ − t)q(α−1)v(t) dt

)1/q

< ∞.
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Then

‖ωα f ‖q,v ≤
(
1 + B(v, α, q)

�(α)
‖a‖p,v

)
‖ fα‖q,v

and

|ω0 f | ≤ ‖a‖p,v ‖ fα‖q,v + | f0| .

Proof Obviously,
‖ωα f ‖q,v ≤ ‖ fα‖q,v + ∥∥I α

0− (a fα)
∥∥
q,v

.

Let (a, b) be a subset of (0, T ). We denote by χ(a,b)(τ ) the characteristic function of
(a, b). Applying the generalized Minkowski inequality, we have

∥∥Iα0− (a fα)
∥∥
q,v

= 1

�(α)

(∫ T

0

∣∣∣∣∣
∫ T

t
(τ − t)α−1a(τ ) fα(τ)dτ

∣∣∣∣∣
q

v(t)dt

)1/q

= 1

�(α)

(∫ T

0

∣∣∣∣∣
∫ T

0
(τ − t)α−1a(τ ) fα(τ)v(t)

1
q χ(t,T )(τ )dτ

∣∣∣∣∣
q

dt

)1/q

≤ 1

�(α)

∫ T

0

(∫ T

0
(τ − t)q(α−1) ∣∣a(τ ) fα(τ)χ(t,T )(τ )

∣∣q v(t) dt

)1/q

dτ

= 1

�(α)

∫ T

0
|a(τ )| | fα(τ)|

(∫ τ

0
(τ − t)q(α−1)v(t) dt

)1/q
dτ

= 1

�(α)

∫ T

0
|a(τ )| | fα(τ)| v(τ)

1

v(τ)

(∫ τ

0
(τ − t)q(α−1)v(t) dt

)1/q
dτ

≤ B(v, α, q)

�(α)

∫ T

0
|a(τ )| | fα(τ)| v(τ)dτ.

Applying the Hölder inequality, we get

∫ T

0
|a(τ )| | fα(τ )| v(τ)dτ =

∫ T

0
|a(τ )| | fα(τ )| v(τ)

1
p + 1

q dτ

=
∫ T

0

(
|a(τ )|v(τ)

1
p

) (
| fα(τ )| v(τ)

1
q

)
dτ

≤
∥∥∥av

1
p

∥∥∥
p

∥∥∥ fαv
1
q

∥∥∥
q

= ‖a‖p,v ‖ fα‖q,v .

Therefore, we get

∥∥I α
0− (a fα)

∥∥
q,v

≤ B(v, α, q)

�(α)
‖a‖p,v ‖ fα‖q,v .
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Thus,

‖ωα f ‖q,v ≤
(
1 + B(v, α, q)

�(α)
‖a‖p,v

)
‖ fα‖q,v .

Again using Hölder inequality, it is easy to show that

|ω0 f | ≤ ‖a‖p,v ‖ fα‖q,v + | f0| .

This completes the proof of Theorem 4. ��
By Theorem 4 we conclude that V � = (ωα, ω0) is a bounded operator from

Lq,v(0, T ) to Eq,v and satisfies the condition (4.2). Indeed,

∥∥V � f
∥∥
Eq,v

= ‖ωα f ‖q,v + |ω0 f | .

Thus, by Theorem 4, we get

∥∥V � f
∥∥
Eq,v

≤
(
1 +

(
1 + B(v, α, q)

�(α)

)
‖a‖p,v

)
‖ fα‖q,v + | f0|

≤ 2max

{(
1 +

(
1 + B(v, α, q)

�(α)

)
‖a‖p,v

)
‖ fα‖q,v , | f0|

}
.

Now in (4.5) instead of u(t) substitute the solution of the problem (4.2), (4.3). Then,
the equality

f (V�u) =
∫ T

0
fα(t)�ϕ(t) v(t)dt

=
∫ T

0
(ωα f ) (t) C Dα

0+�u(t) v(t)dt ≡ (
V � f

)
(�u) (4.6)

holds for all f ∈ Eq,v. In other words,

−
∫ T

0
fα(t)�ϕ(t) v(t)dt +

∫ T

0
(ωα f ) (t) C Dα

0+�u(t) v(t)dt = 0. (4.7)

Therefore the function�u(t) as an element of W̃ (α)
p,v(0, T ) satisfies the condition (4.3).

Using the integral representation (4.4), we have

αk�u (tk) =
∫ T

0
Bk(t)

C Dα
0+�u(t)dt, k = 1, . . . , N ,

where

Bk(t) =
{ 1

�(α)
αk (tk − t)α−1 , t < tk

0, t ≥ tk .
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Therefore, the increment (4.1) of the functional (3.3) can be represented as

�F(ν) =
∫ T

0

N∑
k=1

Bk(t)
C Dα

0+�u(t)dt,

or

�F(ν) =
∫ T

0
B(t) C Dα

0+�u(t)dt, (4.8)

and

B(t) =
N∑

k=1

Bk(t).

By (4.7) the increment (4.8) can be represented in the form

�F(ν) =
∫ T

0
[B(t) + (ωα f ) (t) v(t)] C Dα

0+�u(t)dt −
∫ T

0
fα(t)�ϕ(t) v(t)dt .

(4.9)

Since ωα depends only on fα, equality (4.9) holds for all fα(t) ∈ Lq,v(0, T ). The
adjoint equation corresponding to the optimal control problem (3.1)–(3.3) has the form

(ωα fα) (t) v(t) + B(t) = 0, t ∈ (0, T ). (4.10)

As the function of fα(t) we take the solution of the Eq. (4.10) in Lq,v(0, T ). Then
equality (4.9) has the simple form

�F(ν) = −
∫ T

0
fα(t)�ϕ(t) v(t) dt .

5 Main result

Now, for afixed τ ∈ (0, T )weconsider the followingneedle variationof the admissible
control ν(t):

�νε(t) =
{

ν̂ − ν(t), t ∈ Gε

0, t ∈ (0, T )\Gε,

where ν̂ ∈ 	∂, ε > 0 is a sufficiently small parameter and Gε = (
τ − ε

2 , τ + ε
2

) ⊂
(0, T ).The control νε(t) defined by the equality νε(t) = ν(t)+�νε(t) is an admissible
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control for all sufficiently small ε > 0 and all ν̂ ∈ 	∂ called a needle perturbation
given by the control ν(t), where τ ∈ (0, T ) is some fixed point. Obviously,

F (νε) − F(ν) = −
∫ T

0
fα(t)ϕ (t, ν(t) + �νε(t)) v(t) dt +

∫ T

0
fα(t)�ϕ(t) v(t) dt

= −
∫ T

0
fα(t) [ϕ (t, ν̂(t)) − ϕ (t, ν(t))] v(t)dt

= −
(∫

Gε

fα(t) [ϕ (t, ν̂(t)) − ϕ (t, ν(t))] v(t)dt

+
∫

(0,T )\Gε

fα(t) [ϕ (t, ν̂(t)) − ϕ (t, ν(t))] v(t)dt

)
.

Let t ∈ (0, T )\Gε. Since ν̂(t) = ν(t), it follows that

F (νε) − F(ν) = −
∫
Gε

fα(t) [ϕ (t, ν̂(t)) − ϕ (t, ν(t))] v(t)dt . (5.1)

Since the optimal control problem is linear, the following theorem follows from
(5.1).

Theorem 5 Let 1 < p < ∞ and let fα(t) ∈ Lq,v(0, T ) be a solution of the adjoint
equation (4.10). Suppose v : (0, T ) �→ (0,∞) is a weight function satisfies doubling
condition. Then for the optimality of the admissible control ν(t), it is necessary and
sufficient that for almost all t ∈ (0, T ) it satisfy the Pontryagin maximum condition

max
ν̂∈	∂

H (t, fα(t), ν̂) = H (t, fα(t), ν) ,

where H (t, fα(t), ν) = fα(t) · ϕ(t, ν) is the Hamilton–Pontryagin function.

Proof Suppose that a control ν(t) ∈ 	∂ gives the minimum value of the functional
(3.3). Then by (5.1), we have

−
∫
Gε

[H (t, fα(t), ν̂) − H (t, fα(t), ν(t))] v(t)dt ≥ 0. (5.2)

Dividing the both sides of (5.2) by
∫
Gε

v(t) dt and passing to the limit as ε → +0, for
almost all τ ∈ (0, T ) and using the analog of the Lebesgue differentiation theorem in
L p,v(0, T ) (see, [10]) for all ν ∈ 	∂, we get

H (τ, fα(τ ), ν(τ )) − H (τ, fα(τ ), ν̂) ≥ 0. (5.3)

Thus, for optimal control ν(t) ∈ 	∂, it is necessary to satisfy the condition (5.3).
Besides, the equality

�F(ν) = −
∫ T

0
�H (t, fα(t), ν(t)) v(t)dt
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shows that this condition is also sufficient for optimal control ν(t),where�H (t, fα, ν)

= H (t, fα(t), ν + �ν) − H (t, fα(t), ν(t)) .

This completes the proof. ��
Remark 2 Theorem 5 shows that for the solvability of the optimal control problem
(3.1)–(3.3), it is sufficient to find a solution fα(t) ∈ Lq,v(0, T ) of the integral equation
(4.10). Then the optimal control ν(t) can be found as an element of the 	∂, which
gives the maximum value to the functional H (t, fα(t), ν(t)) in	∂ with respect to the
function ν.

Remark 3 Note that similarly results can be proved for optimal control problem (3.1)–
(3.3) without restriction 0 < α < 1.

For power weight function we have the following corollary.

Corollary 1 Let 1 < p < ∞ and let v(t) = tβ, max

{
1

p
,
β + 1

p

}
< α < 1 and

−1 < β ≤ p− 1. Suppose that fα ∈ Lq, tβ (0, T ) is a solution of the adjoint equation
(4.10). Then for the optimality of the admissible control ν(t), it is necessary and
sufficient that for almost all t ∈ (0, T ) satisfy the Pontryagin maximum condition

max
ν̂∈	∂

H (t, fα(t), ν̂) = H (t, fα(t), ν) ,

where H (t, fα(t), ν) = fα(t) · ϕ(t, ν) is the Hamilton–Pontryagin function.

Example 1 Let a(t) = 0 in the left hand side of Eq. (3.1). Then the adjoint equation
(4.10) has the simple form

fα(t) + B(t) = 0, a.e. t ∈ (0, T ).

Thus, fα(t) = −B(t). The case B(t) = 0 is trivial, so we can assume B(t) 	= 0. By
definition of the Hamilton–Pontryagin function, we have

H (t, fα(t), ν) = −B(t) ϕ(t, ν).

By Theorem 5, we get

max
ν̂∈	∂

H (t, fα(t), ν̂) = max
ν̂∈	∂

[−B(t)ϕ (t, ν̂)] .

Thus, in this case, the Pontryagin maximum principle is expressed by ϕ(t, ν(t)) =
C Dα

0+u(t).

Example 2 Let a(t) = 1 in the left hand side of Eq. (3.1). Then the adjoint equation
(4.10) has the form

fα(t) + I α
0− ( fα) + B(t) = 0, a.e. t ∈ (0, T ).
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By definition of the Hamilton–Pontryagin function, we have

H (t, fα(t), ν) = − (
I α
0− ( fα) + B(t)

)
ϕ(t, ν).

By Theorem 5, we get

max
ν̂∈	∂

H (t, fα(t), ν) = max
ν̂∈	∂

[− (
I α
0− ( fα) + B(t)

)
ϕ(t, ν)

]
.

Let ν(t) be a fixed control and let u(t) =
{
u(t), 0 < t < T ,

0, t ≥ T .

Let us consider the problem

{
C Dα

0+u(t) + u(t) = ϕ(t, ν(t)), a.e. t ∈ (0,∞),

u(0) = ϕ0.

It is well known that the Mittag–Leffler function with two parameters is defined as
(see, [16])

Eβ,γ (t) =
∞∑
k=0

tk

�(kβ + γ )
,

where β, γ > 0. Applying Lemma 1, similarly as in [15], we can prove that

u(t) = ϕ0Eα,1
(−tα

) +
∫ t

0
(t − τ)α−1Eα,α(−(t − τ)α)ϕ(τ, ν(τ ))dτ. (5.4)

Thus, in this case, the Pontryagin maximum principle is expressed by (5.4).
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