
Optimization Letters (2020) 14:229–247
https://doi.org/10.1007/s11590-019-01509-7

ORIG INAL PAPER

Projective splitting with forward steps only requires
continuity

Patrick R. Johnstone1 · Jonathan Eckstein1

Received: 19 September 2018 / Accepted: 18 November 2019 / Published online: 23 November 2019
© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Abstract
A recent innovation in projective splitting algorithms formonotone operator inclusions
has been the development of a procedure using two forward steps instead of the
customary resolvent step for operators that are Lipschitz continuous. This paper shows
that the Lipschitz assumption is unnecessary when the forward steps are performed
in finite-dimensional spaces: a backtracking linesearch yields a convergent algorithm
for operators that are merely continuous with full domain.

Keywords Operator splitting · Convex optimization · Monotone operators

1 Introduction

For a collection of real Hilbert spaces {Hi }n
i=0, consider the problem of finding z ∈ H0

such that

0 ∈
n∑

i=1

G∗
i Ti (Gi z), (1)

where Gi : H0 → Hi are linear and bounded operators, and Ti : Hi → 2Hi are
maximal monotone operators. We suppose that Ti is continuous with dom(Ti) = Hi

for each i in some subset IF ⊆ {1, . . . , n}. A key special case of (1) is

min
x∈H0

n∑

i=1

fi (Gi x), (2)

B Patrick R. Johnstone
patrick.r.johnstone@gmail.com

Jonathan Eckstein
jeckstei@business.rutgers.edu

1 Department of Management Sciences and Information Systems, Rutgers Business School Newark
and New Brunswick, Rutgers University, Piscataway, NJ, USA

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s11590-019-01509-7&domain=pdf

230 P. R. Johnstone, J. Eckstein

where every fi : Hi → R is closed, proper and convex, with some subset of the
functions also being Fréchet differentiable everywhere. Under appropriate constraint
qualifications, (1) and (2) are equivalent.

A relatively recently proposed class of operator splitting algorithms which can
solve (1) is projective splitting [1–4]. In [5], we showed that it is possible for projec-
tive splitting to process Lipschitz-continuous operators using a pair of forward steps
rather than the customary resolvent (backward, proximal, implicit) step. In general,
the stepsize must be bounded by the inverse of the Lipschitz constant, but a back-
tracking linesearch procedure is available when this constant is unknown. See also [6]
for a similar approach to using forward steps in a more restrictive projective splitting
context, without backtracking.

The purpose of this work is to show that this Lipschitz assumption is unneces-
sary. It demonstrates that, when the Hilbert spaces Hi in (1) are finite dimensional
for i ∈ IF, the two-forward-step procedure with backtracking linesearch yields weak
convergence to a solution assuming only simple continuity and full domain of the oper-
ators Ti .1 A new argument is required beyond those in [5] since the stepsizes resulting
from the backtracking linesearch are no longer guaranteed to be bounded away from
0.

Theoretically, this result aligns projective splitting with two related monotone oper-
ator splitting and variational inequality methods which utilize (at least) two forward
steps per iteration, backtracking, and only require continuity in finite dimensions.
These are the forward–backward–forward method of Tseng [7] and the extragra-
dient method of Korpelevich [8], along with its later extensions [9,10]. Tseng’s
method applies to the special case of Problem (1) with n = 2, IF = {1}, and
G1 = G2 = I , while the extragradient method applies to a more restrictive variational
inequality setting. Tseng’s method was also extended in [11] to include more general
problems such as (3) by applying it to the appropriate primal–dual product space
inclusion.

All of thesemethods can be viewed in contrast with the classical forward–backward
splitting algorithm [12,13]. This method utilizes a single forward step at each itera-
tion but requires a cocoercivity assumption which is in general stricter than Lipschitz
continuity. Also disadvantageous is that the choice of stepsize depends on knowledge
of the cocoercivity constant and no backtracking linesearch is known to be available.
Progress was made in a very recent paper [14] which modified the forward–backward
method so that it can be applied to (locally) Lipschitz continuous operators with back-
tracking for unknownLipschitz constant. The locally Lipschitz continuous assumption
is stronger than the mere continuity assumption considered here and in [7,9,10], and
for known Lipschitz constant the stepsize constraint is more restrictive.

As in [5], we will work with a slight restriction of problem (1), namely

0 ∈
n−1∑

i=1

G∗
i Ti (Gi z) + Tn(z). (3)

1 We still speak of weak convergence because the spaces Hi may be infinite dimensional for i /∈ IF. If
Hi is infinite dimensional for i ∈ IF, we can instead require Ti to be Cauchy continuous for all bounded
sequences.

123

Projective splitting with forward steps only requires… 231

In terms of problem (1), we are simply requiring that Gn be the identity operator and
thus that Hn = H0. This is not much of a restriction in practice, since one could
redefine the last operator as Tn ← G∗

n ◦ Tn ◦ Gn , or one could simply append a new
operator Tn with Tn(z) = {0} everywhere.

The rest of the paper is organized as follows: in Sect. 2, we precisely state the
projective splitting algorithm and our assumptions, and collect some necessary results
from [5]. Section 3 proves the main result. Finally, Sect. 4 provides some numerical
examples on the fused L p regression problem.

Notation Define IB � {1, . . . , n}\IF, the set of indices of operators for which our
algorithm will utilize resolvents. We will use a boldface w = (w1, . . . , wn−1) for
elements ofH1 ×· · ·×Hn−1. To ease the presentation, we use the following notation
throughout, where I denotes the identity operator:

Gn : Hn → Hn � I (∀ k ∈ N) wk
n � −

n−1∑

i=1

G∗
i w

k
i . (4)

For a maximal monotone operator Ti we use the following notation JTi � (I + Ti)
−1

for the corresponding resolvent map (also know as the proximal, backward, or implicit
step). Note that computing JTi (a) is equivalent to finding the unique (x, y) ∈ gra Ti

s.t. x + y = a [15, Props. 23.2 and 23.10].

2 Algorithm, principal assumptions, and preliminary analysis

2.1 Separator-projectionmethods

Let H = H0 × H1 × · · · × Hn−1 and Hn = H0. In this primal–dual space, our
algorithm produces a sequence of iterates denoted by pk = (zk, wk

1, . . . , w
k
n−1) ∈ H.

Define the extended solution set or Kuhn–Tucker set of (3) to be

S �
{

(z,w) ∈ H
∣∣∣wi ∈ Ti (Gi z), i = 1, . . . , n − 1,−

n−1∑

i=1

G∗
i wi ∈ Tn(z)

}
. (5)

Clearly z ∈ H0 solves (3) if and only if there exists w ∈ H1 × · · · × Hn−1 such that
(z,w) ∈ S.

Our algorithm is a special case of a general seperator-projection method for finding
a point in a closed and convex set. At each iteration the method constructs an affine
function ϕk : Hn → R which separates the current point from the target set S defined
in (5). In other words, if pk is the current point in H generated by the algorithm,
ϕk(pk) > 0, and ϕk(p) ≤ 0 for all p ∈ S. The next point is then the projection of pk

onto the hyperplane {p : ϕk(p) = 0}, subject to a relaxation factor βk . What makes
projective splitting an operator splitting method is that the hyperplane is constructed
through individual calculations on each operator Ti , either resolvent calculations or
forward steps.

123

232 P. R. Johnstone, J. Eckstein

The hyperplane is defined in terms of the following affine function:

ϕk(z, w1, . . . , wn−1) �
n−1∑

i=1

〈Gi z − xk
i , yk

i − wi 〉 +
〈

z − xn
i , yn

i +
n−1∑

i=1

G∗
i wi

〉

=
n∑

i=1

〈Gi z − xk
i , yk

i − wk
i 〉. (6)

To derive (6), we used the notational conventions in (4). See [5, Lemma 4] for the
relevent properties of ϕk . This function is parameterized by points (xk

i , yk
i) ∈ gra Ti

for i = 1, . . . , n. These points must be chosen in such a way that projection of pk onto
the hyperplane {p : ϕk(p) = 0} makes sufficient progress towards the solution set S
that one can guarantee overall convergence. Our work in [5] makes this choice using a
two-forward-step procedure in the case of Lipschitz-continuous operators, whereas all
prior work on the topic employed only resolvent-based calculations. In this work, we
show that the two-forward-step procedure, combined with backtracking, works with
Lipschitz continuity relaxed to mere continuity.

As in [5], we use the following inner product and norm for H, for an arbitrary
scalar γ > 0:

〈
(z1,w1), (z2,w2)

〉

γ
� γ 〈z1, z2〉 +

n−1∑

i=1

〈w1
i , w2

i 〉

‖(z,w)‖2γ � 〈(z,w), (z,w)〉γ .

Note that with this inner product it was shown in [5, Lemma 4] that

∇ϕk =
(
1

γ

(
n−1∑

i=1

G∗
i yk

i + yk
n

)
, xk

1 − G1xk
n , xk

2 − G2xk
n , . . . , xk

n−1 − Gn−1xk
n

)
.

(7)

The scalar γ > 0 controls the relative emphasis on the primal and dual variables in
the projection update in lines 37–38.

2.2 The algorithm

Algorithm 1 presents the algorithm analyzed in this paper. It is essentially the
block-iterative and asynchronous projective splitting algorithm as in [5], but directly
incorporating a backtracking linesearch procedure. It has the following parameters:

– For each iteration k ≥ 1, a subset Ik ⊆ {1, . . . , n} of activated operators to be
processed.

– For each k ≥ 1 and i = 1, . . . , n, a positive scalar stepsize ρk
i . For i ∈ IF, ρk

i is
the initial stepsize tried in the backtracking linesearch, while ρ̂k

i is the accepted

123

Projective splitting with forward steps only requires… 233

stepsize returned by the linesearch. Note that ρ̂k
i on line 22 is not actually used

within the algorithm, but is defined to simplify the notation in the analysis to come.
The stepsizes ρ̃

(j,k)
i are the intermediate stepsizes tested during iteration j of the

linesearch.
– A constant Δ > 0 for the backtracking linesearch and a constant ν ∈ (0, 1)
controlling howmuch the stepsize is decreased at each iteration of the backtracking
linesearch.

– For each iteration k ≥ 1 and i = 1, . . . , n, a delayed iteration index d(i, k) ∈
{1, . . . , k} which allows the subproblem calculations to use outdated information.

– For each iteration k ≥ 1, an overrelaxation parameter βk ∈ [β, β] for some

constants 0 < β ≤ β < 2.

We remark that the exact resolvent computation on lines 5–7 of the algorithm may
be relaxed to an inexact calculation satisfying a relative error criterion. This technique
was introduced in [2,4] and is also used in [5,16,17]. To simplify the analysis in this
paper, we only consider exact resolvent computations here. The reader may refer to
[2,4,5,16,17] for a detailed treatment of employing inexact computation of resolvents
within projective splitting.

There are many ways in which Algorithm 1 could be implemented in various
parallel computing environments. We refer to [5] for a more thorough discussion.
The delay parameters d(i, k) might seem confusing. Of course one can always sim-
ply set d(i, k) = k which corresponds to a fully synchronous implementation,
but we allow for d(i, k) ≤ k so that we can model asynchronous block-iterative
(incremental) implementations. Conditions on these delays are given in the next
section.

The advantage of separating the linear operators from each Ti in (3) is clear from
lines 5–7 of the algorithm, at least for i ∈ IB. For these i , even when the resolvent of
Ti has a simple closed form or is otherwise computationally feasible, computing the
resolvent of G∗

i ◦ Ti ◦ Gi is often difficult. Algorithm 1 does not require this resolvent
and only computes resolvents of Ti and matrix multiplies by Gi and G∗

i .
On the other hand, for i ∈ IF, the advantage of separating Ti and Gi is less

obvious, since a forward evaluation G∗
i ◦ Ti ◦ Gi has essentially the same complexity

as performing the matrix multiplies and forward evaluations of Ti separately. However
there are a number possible advantages: first, in our previous work [5] we showed that
if Ti is Li -Lipschitz continuous, then the stepsize constraint is ρi < 1/Li and is
unaffected by the linear operator norm ‖Gi‖ (unlike some primal–dual methods [11]).
If instead forward evaluations were to be applied to G∗

i ◦ Ti ◦ Gi , then the norm of Gi

would effect the stepsize constraint, possibly leading to smaller stepsizes and more
backtracking (when it is necessary).

Second, the operators Gi do not appear within the backtracking loop on lines 15–
21 of the algorithm, so separating Ti and Gi keeps matrix multiplications from being
needed within the backtracking procedure; if we were to replace Ti with G∗

i ◦ Ti ◦ Gi ,
backtracking would have to perform such multiplications.

Finally, if Gi is a “wide matrix” with fewer rows than columns, then the dimension
of (xk

i , yk
i) would be smaller than zk . Thus splitting up the problem in this way would

lead to a smaller memory footprint. Ultimately, the decision on how to split up the

123

234 P. R. Johnstone, J. Eckstein

problemwill depend on the details of the implementation and projective splitting offers
fairly unparalleled flexibility in this respect.

In [17, Sec. 9] we considered some simple special cases of Algorithm 1 in which
n = 1 and there is no asynchrony or block-iterativeness (i.e. Ik ≡ {1, . . . , n} and
d(i, k) ≡ 0), which may be of interest to the reader. In the special case of n = 1 ∈
IB, we showed that projective splitting reduces to the proximal point method [15,
Thm. 23.41]. If n = 1 ∈ IF, then the method essentially reduces to the backtracking
variant of the extragradient method proposed in [9].

2.3 Main assumptions and preliminary analysis

Our main assumptions regarding (3) are as follows:

Assumption 1 Problem (3) conforms to the following:

1. H0 = Hn and H1, . . . ,Hn−1 are real Hilbert spaces.
2. For i = 1, . . . , n the operators Ti : Hi → 2Hi are monotone.
3. For all i in some subset IF ⊆ {1, . . . , n},Hi is finite-dimensional, the operator Ti

is continuous with respect to the metric induced by ‖ · ‖ (and thus single-valued),
and dom(Ti) = Hi .

4. For i ∈ IB � {1, . . . , n}\IF, the operator Ti is maximal monotone and the map
JρTi : Hi → Hi can be computed.

5. Each Gi : H0 → Hi for i = 1, . . . , n − 1 is linear and bounded.
6. The solution set S defined in (5) is nonempty.

Our assumptions regarding the parameters of Algorithm 1 are as follows, and are
the same as used in [4,5,16].

Assumption 2 For Algorithm 1, assume:

1. For some fixed integer M ≥ 1, each index i in 1, . . . , n is in Ik at least once every
M iterations, that is,

⋃ j+M−1
k= j Ik = {1, . . . , n} for all i = 1, . . . , n and j ≥ 1.

2. For some fixed integer D ≥ 0, we have k − d(i, k) ≤ D for all i, k with i ∈ Ik .

We also use the following additional notation from [16]: for all i and k, define

S(i, k) = { j ∈ N : j ≤ k, i ∈ I j } s(i, k) =
{
max S(i, k), when S(i, k) �= ∅
0, otherwise.

Essentially, s(i, k) is themost recent iteration up to and including k inwhich the index-i
information in the separator was updated. Assumption 2 ensures that 0 ≤ k−s(i, k) <

M . For all i = 1, . . . , n and iterations k, also define l(i, k) = d(i, s(i, k)), the iteration
in which the algorithm generated the information zl(i,k) and w

l(i,k)
i used to compute

the current point (xk
i , yk

i). Regarding initialization, we set d(i, 0) = 0; note that the
initial points (x0i , y0i) are arbitrary. We formalize the use of l(i, k) in the following
Lemma from [5]:

123

Projective splitting with forward steps only requires… 235

Algorithm 1: Asynchronous algorithm for solving (3).

Input: (z1,w1) ∈ H, (x0i , y0i) ∈ H2
i for i = 1, . . . , n, 0 < β ≤ β < 2, γ > 0, ν ∈ (0, 1), Δ > 0.

1 for k = 1, 2, . . . do
2 for i = 1, 2, . . . , n do
3 if i ∈ Ik then
4 if i ∈ IB then

5 a = Gi zd(i,k) + ρ
d(i,k)
i w

d(i,k)
i

6 xk
i = J

ρ
d(i,k)
i Ti

(a)

7 yk
i = (ρ

d(i,k)
i)−1

(
a − xk

i

)

8 else

9 ρ̃
(1,k)
i ← ρ

d(i,k)
i

10 θk
i = Gi zd(i,k)

11 ζ k
i = Ti θ

k
i

12 if ζ k
i = w

d(i,k)
i then

13 ρ̂
d(i,k)
i ← ρ̃

(j ,k)
i , xk

i ← θk
i , yk

i ← ζ k
i

14 else
15 for j = 1, 2, . . . do

16 x̃(j ,k)
i = θk

i − ρ̃
(j ,k)
i (ζ k

i − w
d(i,k)
i)

17 ỹ(j ,k)
i = Ti x̃(j ,k)

i

18 if Δ‖θk
i − x̃(j ,k)

i ‖2 − 〈θk
i − x̃(j ,k)

i , ỹ(j,k)
i − w

d(i,k)
i 〉 ≤ 0 then

19 ρ̂
d(i,k)
i ← ρ̃

(j ,k)
i , xk

i ← x̃(j ,k)
i , yk

i ← ỹ(j,k)
i

20 break

21 ρ̃
(j+1,k)
i = νρ̃

(j ,k)
i

22 ρ̂
d(i,k)
i ← ρ̃

(j ,k)
i , xk

i ← x̃(j ,k)
i , yk

i ← ỹ(j,k)
i

23 else
24 (xk

i , yk
i) = (xk−1

i , yk−1
i)

25 uk
i = xk

i − Gi xk
n , i = 1, . . . , n − 1,

26 vk = ∑n−1
i=1 G∗

i yk
i + yk

n

27 πk = ‖uk‖2 + γ −1‖vk‖2
28 if πk > 0 then
29 Choose some βk ∈ [β, β]
30 ϕk (pk) = 〈zk , vk 〉 + ∑n−1

i=1 〈wk
i , uk

i 〉 − ∑n
i=1〈xk

i , yk
i 〉

31 αk = βk
πk

max
{
0, ϕk (pk)

}

32 else
33 if ∪k

j=1 I j = {1, . . . , n} then
34 return zk+1 ← xk

n , wk+1
1 ← yk

1 , . . . , wk+1
n−1 ← yk

n−1

35 else
36 αk = 0

37 zk+1 = zk − γ −1αkvk

38 wk+1
i = wk

i − αkuk
i , i = 1, . . . , n − 1,

39 wk+1
n = −∑n−1

i=1 G∗
i wk+1

i

123

236 P. R. Johnstone, J. Eckstein

Lemma 1 Suppose Assumption 2(1) holds. For all iterations k ≥ M if Algorithm 1
has not already terminated, the updates can be written as

(∀i ∈ IB) xk
i + ρ

l(i,k)
i yk

i = Gi z
l(i,k) + ρ

l(i,k)
i w

l(i,k)
i yk

i ∈ Ti xk
i (8)

(∀i ∈ IF) xk
i = Gi z

l(i,k) − ρ̂
l(i,k)
i

(
Ti Gi z

l(i,k) − w
l(i,k)
i

)
yk

i = Ti xk
i . (9)

Proof Theproof follows from the definition of l(i, k) and s(i, k). After M iterations, all
operators must have been in Ik at least once. Thus, after M iterations, every operator
has been updated at least once using either the resolvent step on lines 5–7 or the
backtracking forward step on lines 9–22 of Algorithm 1. Recall the variables defined
to ease mathematical presentation, namely Gn = I and wk

n defined in (4) and line 39.
��

Since Algorithm 1 is a projectionmethod, it satisfies the following lemma, identical
to [5, Lemmas 2 and 6]:

Lemma 2 Suppose Assumptions 1 and 2(1) hold. Then for Algorithm 1

1. The sequences {pk} = {zk, wk
1, . . . , w

k
n−1} and wk

n = −∑n−1
i=1 G∗

i w
k
i generated

by Algorithm 1 are bounded.
2. If Algorithm 1 runs indefinitely, then pk − pk+1 → 0.
3. Lines 37 and 38 may be written as

pk+1 = pk − βk max{ϕk(pk), 0}
‖∇ϕk‖2γ

∇ϕk

where ϕk is defined in (6).

The stepsize assumptions differ from [5,17] for i ∈ IF in that we no longer assume
Lipschitz continuity nor that the stepsizes are bounded by the inverse of the Lipschitz
constant. However, the initial trial stepsize for the backtracking linesearch at each
iteration is assumed to be bounded from above and below:

Assumption 3 In Algorithm 1,

ρ � min
i=1,...,n

{
inf
k≥1

ρk
i

}
> 0 ρ � max

i=1,...,n

{
sup
k≥1

ρk
i

}
< ∞.

3 Main analysis

3.1 Finite termination of backtracking

The following lemma establishes that the backtracking linesearch in Algorithm 1
always terminates in a finite number of iterations. This result does not follow from [5]
as we no longer have a Lipschitz continuity assumption for Ti , i ∈ IF.

123

Projective splitting with forward steps only requires… 237

Lemma 3 Suppose Assumptions 1–3 hold. Then for all k ∈ N and i ∈ Ik such that
Algorithm 1 has not yet terminated, the backtracking linesearch on lines 9–22 termi-
nates in a finite number of iterations.

Proof For k ≥ M , consider any i ∈ IF ∩ Ik and assume that Ti Gi zl(i,k) �= w
l(i,k)
i ,

since backtracking otherwise terminates immediately at line 13. Using the definitions
of s(i, k) and l(i, k) and some algebraic manipulation, the condition for terminating
the backtracking linesearch given on line 18 may be written as:

〈Gi zl(i,k) − x̃ (j,s(i,k))
i , ỹ(j,s(i,k))

i − w
l(i,k)
i 〉

‖Gi zl(i,k) − x̃ (j,s(i,k))
i ‖2

≥ Δ. (10)

For brevity, let ρ � ρ̃
(j,s(i,k))
i > 0. Using lines 10, 11, 16 and 17, the left-hand side

of (10) may be written

〈
Ti Gi zl(i,k) − w

l(i,k)
i , Ti

(
Gi zl(i,k) − ρ(Ti Gi zl(i,k) − w

l(i,k)
i)

) − w
l(i,k)
i

〉

ρ‖Ti Gi zl(i,k) − w
l(i,k)
i ‖2

. (11)

The numerator of this fraction may be expressed as

〈
Ti Gi z

l(i,k) − w
l(i,k)
i , Ti

(
Gi z

l(i,k) − ρ(Ti Gi z
l(i,k) − w

l(i,k)
i)

) − Ti Gi z
l(i,k)

〉

+‖Ti Gi z
l(i,k) − w

l(i,k)
i ‖2.

Substituting this expression into (11) and applying the Cauchy–Schwarz inequality to
the inner product yields that the left-hand size of (10) is lower bounded by

‖Ti Gi zl(i,k) − w
l(i,k)
i ‖ − ∥∥Ti (Gi zl(i,k) − ρ

(
Ti Gi zl(i,k) − w

l(i,k)
i)

) − Ti Gi zl(i,k)
∥∥

ρ‖Ti Gi zl(i,k) − w
l(i,k)
i ‖.

(12)

The continuity of Ti implies that the second term in the numerator of the above
expression converges to 0 as ρ → 0. Since the first term in the numerator is positive
and independent of ρ, the limit of the numerator is positive and bounded away from
0. On the other hand, the denominator is positive and converges to 0. Therefore the
above expression tends to +∞ as ρ → 0. Since ρ̃

(j,k)
j decreases geometrically to 0

with j on line 21, it follows that (10) must eventually hold. ��

3.2 The key to weak convergence

The following Lemma is the key to establishing weak convergence to a solution.

Lemma 4 Suppose Assumptions 1–3 hold, Algorithm 1 produces an infinite sequence
of iterates, and both

123

238 P. R. Johnstone, J. Eckstein

1. Gi zl(i,k) − xk
i → 0 for all i = 1, . . . , n

2. yk
i − w

l(i,k)
i → 0 for all i = 1 . . . , n.

Then the sequence {(zk ,wk)} generated by Algorithm 1 converges weakly to some point
(z̄,w) in the extended solution set S of (3) defined in (5). Furthermore, xk

i ⇀Gi z̄ and

yk
i ⇀wi for all i = 1, . . . , n − 1, xk

n⇀z̄, and yk
n⇀ − ∑n−1

i=1 G∗
i wi .

Proof First, note that w
l(i,k)
i − wk

i → 0 for all i = 1, . . . , n and zl(i,k) − zk → 0
[5, Lemma 9]. Combining zk − zl(i,k) → 0 with point (1) and the fact that Gi is
bounded, we obtain that Gi zk − xk

i → 0 for i = 1, . . . , n. Similarly, combining

w
l(i,k)
i − wk

i → 0 with point (2) we have yk
i − wk

i → 0. The proof is now identical to
part 3 of the proof of [5, Theorem 1]. ��

Lemma 4 can be understood intuitively as follows. For each k ≥ 0, define

εk � max
i=1,...,n

max
{‖yk

i − wk
i ‖, ‖Gi z

k − xk
i ‖}.

UsingAssumption 2 it can be shown that k−l(i, k) < M+D (see [5, Lemma 8]). Then
using Lemma 2(2) it follows that wk

i − w
l(i,k)
i → 0 and zk − zl(i,k) → 0. Therefore

Lemma 4 implies that εk → 0. For all k ≥ M , (xk
i , yk

i) ∈ graph(Ti). If εk = 0 then
wk

i = yk
i ∈ Ti xk

i = Ti Gi zk and since
∑n

i=1 G∗
i w

k
i = 0, it follows that (zk,wk) ∈ S

and zk solves (3). Thus εk can be thought of as a “residual” measuring how far the
algorithm is from finding a point in S and a solution to (3). In finite dimensions, it is
straightforward to show that if εk → 0, (zk,wk) must converge to some element of
S. This can be shown using Fejér monotonicity [15, Theorem 5.5] combined with the
fact that the graph of a maximal-monotone operator in a finite-dimensional Hilbert
space is closed [15, Proposition 20.38]. However, in the general Hilbert space setting
the proof is more delicate, since the graph of a maximal-monotone operator is not in
general closed in the weak-to-weak topology [15, Example 20.39]. Nevertheless, the
overall result was established in the general Hilbert space setting in part 3 of Theorem
1 of [5], which is a special case of [3, Proposition 2.4] (see also [15, Proposition 26.5]).

3.3 Two technical lemmas

Next we include two technical Lemmas that are essentially the same as lemmas 12–13
and parts 1–2 of Theorem 1 of [5]. For completeness, we include somewhat condensed
proofs. In these proofs we need the following definitions: φk � ϕk(pk) and

(∀i = 1, . . . , n) ψik � 〈Gi z
l(i,k) − xk

i , yk
i − w

l(i,k)
i 〉, ψk �

n∑

i=1

ψik . (13)

Lemma 5 Suppose Assumptions 1–3 hold and that Algorithm 1 produces an infinite
sequence of iterates with {xk

i } and {yk
i } being bounded. Then, for all i = 1, . . . , n, it

holds that Gi zl(i,k) − xk
i → 0.

123

Projective splitting with forward steps only requires… 239

Proof Using (7)

‖∇ϕk‖2γ = γ −1

∥∥∥∥∥

n−1∑

i=1

G∗
i yk

i + yk
n

∥∥∥∥∥

2

+
n−1∑

i=1

‖xk
i − Gi xk

n‖2. (14)

By assumption, {xk
i } and {yk

i } are bounded sequences, therefore {‖∇ϕk‖γ } is bounded;
let ξ1 > 0 be some bound on this sequence. Next, we will establish that there exists
some ξ2 > 0 such that

ψk ≥ ξ2

n∑

i=1

‖Gi z
l(i,k) − xk

i ‖2. (15)

The proof resembles that of [5, Lemma 12]: since the backtracking linesearch termi-
nates in a finite number of iterations, we must have

〈Gi z
l(i,k) − xk

i , yk
i − w

l(i,k)
i 〉 ≥ Δ‖Gi z

l(i,k) − xk
i ‖2 (16)

for every k ∈ N and i ∈ IF. Terms in IB are treated as before in [5, Lemma 12]:
specifically, for all i ∈ IB,

ψik =
〈
Gi z

l(i,k) − xk
i , yk

i − w
l(i,k)
i

〉

(a)=
〈
Gi z

l(i,k) − xk
i ,

(
ρ

l(i,k)
i

)−1
(

Gi z
l(i,k) − xk

i

)〉

= (
ρ

l(i,k)
i

)−1‖Gi z
l(i,k) − xk

i ‖2. (17)

In the above derivation, (a) follows by substitution of (8). Combining (16) and (17)
yields

ψk ≥ ρ−1
∑

i∈IB
‖Gi z

l(i,k) − xk
i ‖2 + Δ

∑

i∈IF
‖Gi z

l(i,k) − xk
i ‖2, (18)

which yields (15) with ξ2 = min{ρ−1,Δ} > 0.
We now proceed as in as in part 1 of the proof of [5, Theorem 1]: first, Lemma 2(3)

states that the updates on lines 37–38 can be written as

pk+1 = pk − βk max{φk, 0}
‖∇ϕk‖2γ

∇ϕk .

Lemma 2(2) guarantees that pk − pk+1 → 0, so it follows that

0 = lim
k→∞ ‖pk+1 − pk‖γ = lim

k→∞
βk max{φk, 0}

‖∇ϕk‖γ

≥ β lim supk→∞ max{φk, 0}√
ξ1

.

123

240 P. R. Johnstone, J. Eckstein

Therefore, lim supk→∞ φk ≤ 0. Since [5, Lemma 10] states that φk − ψk → 0, it
follows that lim supk→∞ ψk ≤ 0. With (a) following from (15), we next obtain

0 ≥ lim sup
k→∞

ψk
(a)≥ ξ2 lim sup

k

n∑

i=1

‖Gi z
l(i,k) − xk

i ‖2

≥ ξ2 lim inf
k

n∑

i=1

‖Gi z
l(i,k) − xk

i ‖2 ≥ 0.

Therefore, Gi zl(i,k) − xk
i → 0 for i = 1, . . . , n. ��

Lemma 6 Suppose Assumptions 1–3 hold and that Algorithm 1 produces an infinite
sequence of iterates with {xk

i } and {yk
i } being bounded. Then, for all i ∈ IB, one has

yk
i − w

l(i,k)
i → 0.

Proof The argument to is similar to those of [5, Lemma13] and [5, Theorem1 (part 2)]:
the crux of the proof is to establish for all k ≥ M that

ψk +
∑

i∈IF
〈xk

i − Gi z
l(i,k), Ti xk

i − Ti Gi z
l(i,k)〉 ≥ ρ

∑

i∈IB
‖yk

i − w
l(i,k)
i ‖2. (19)

SinceTi is continuous anddefined everywhere, xk
i is boundedby assumption, and zl(i,k)

is bounded by Lemma 2, the extreme value theorem implies that Ti xk
i − Ti Gi zl(i,k) is

bounded. Furthermore from Lemma 5, lim supk→∞ ψk ≤ 0, and xk
i − Gi zl(i,k) → 0.

Therefore the desired result follows from (19).
It remains to prove (19). For all k ≥ M , we have

ψk =
n∑

i=1

〈Gi z
l(i,k) − xk

i , yk
i − w

l(i,k)
i 〉

(a)=
∑

i∈IB
〈ρl(i,k)

i (yk
i − w

l(i,k)
i), yk

i − w
l(i,k)
i 〉

+
∑

i∈IF
〈Gi z

l(i,k) − xk
i , Ti Gi z

l(i,k) − w
l(i,k)
i 〉

+
∑

i∈IF
〈Gi z

l(i,k) − xk
i , yk

i − Ti Gi z
l(i,k)〉

(b)=
∑

i∈IB

(
ρ

l(i,k)
i ‖yk

i − w
l(i,k)
i ‖2

)

+
∑

i∈IF
〈ρl(i,k)

i (Ti Gi z
l(i,k) − w

l(i,k)
i), Ti Gi z

l(i,k) − w
l(i,k)
i 〉

−
∑

i∈IF
〈xk

i − Gi z
l(i,k), Ti xk

i − Ti Gi z
l(i,k)〉

123

Projective splitting with forward steps only requires… 241

(c)≥ ρ
∑

i∈IB
‖yk

i − w
l(i,k)
i ‖2 −

∑

i∈IF
〈xk

i − Gi z
l(i,k), Ti xk

i − Ti Gi z
l(i,k)〉. (20)

In the above derivation, (a) follows by substition of (8) into the IB terms and algebraic
manipulation of the IF terms. Next, (b) is obtained by algebraic simplification of the
IB terms and substitution of (9) into the two groups of IF terms. Finally, (c) follows
by dropping the terms from (20), which must be nonnegative. ��

3.4 Main result

We are now ready to prove the main result of this paper: weak convergence of the
iterates of Algorithm 1 to a solution of (3). The main challenge is establishing yk

i −
w

l(i,k)
i → 0 for i ∈ IF. Since we no longer assume Lipschitz continuity, this requires

significant innovation beyond our previous work [5] and constitutes the bulk of the
following argument.

Theorem 1 Suppose Assumptions 1–3 hold. If Algorithm 1 terminates at line 34, then
its final iterate (zk+1,wk+1) is a member of the extended solution set S defined in (5).
Otherwise, the sequence {(zk,wk)} generated by Algorithm 1 converges weakly to
some point (z̄,w) in S and furthermore xk

i ⇀Gi z̄ and yk
i ⇀wi for all i = 1, . . . , n−1,

xk
n⇀z̄, and yk

n⇀ − ∑n−1
i=1 G∗

i wi .

Proof The argument when the algorithm terminates via line 34 is identical to [5,
Theorem 1]. From now on we assume the algorithm produces an infinite sequence
of iterates. The proof proceeds by showing that the two conditions of Lemma 4 are
satisfied. To establish Lemma 4(1) for i = 1, . . . , n and Lemma 4(2) for i ∈ IB, we
will show that {xk

i } and {yk
i } are bounded, and then employ Lemmas 5 and 6. This

argument is only a slight variation ofwhatwas given in [5]. Themain departure from [5]
is in establishing Lemma 4(2) for i ∈ IF, which requires significant innovation.

We begin by establishing that {xk
i } and {yk

i } are bounded. For i ∈ IB the bounded-
ness of {xk

i } follows exactly the same argument as [16, Lemma 10]. For i ∈ IF write
using Lemma 1

‖xk
i ‖ ≤ ‖Gi z

l(i,k) − ρ̂
l(i,k)
i Ti Gi z

l(i,k)‖ + ρ̂
l(i,k)
i ‖wl(i,k)

i ‖ (21)

≤ ‖Gi‖‖zl(i,k)‖ + ρ‖Ti Gi z
l(i,k)‖ + ρ‖wl(i,k)

i ‖. (22)

Now zl(i,k) and w
l(i,k)
i are bounded by Lemma 2. Furthermore, since Ti is continuous

with full domain, Gi is bounded, and zl(i,k) is bounded, {Ti Gi zl(i,k)} is bounded by
the extreme value theorem. Thus {xk

i } is bounded for i ∈ IF.
Now we prove that {yk

i } is bounded. For i ∈ IB, Lemma 1 implies that

yk
i =

(
ρ

l(i,k)
i

)−1 (
Gi z

l(i,k) − xk
i + ρ

l(i,k)
i w

l(i,k)
i

)
.

123

242 P. R. Johnstone, J. Eckstein

Since ρk
i is bounded from above and below, Gi is bounded, and zl(i,k) and w

l(i,k)
i are

bounded by Lemma 2, {yk
i } is bounded for i ∈ IB. For i ∈ IF, since yk

i = Ti xk
i and Ti

is continuous with full domain, it follows again from the extreme value theorem that
{yk

i } is bounded.
Therefore we can apply Lemma 5 to infer that Gi zl(i,k) − xk

i → 0 for i = 1, . . . , n,

andLemma4(1) holds. Furthermorewe can applyLemma6 to infer that yk
i −w

l(i,k)
i →

0 for i ∈ IB.
It remains to establish that yk

i − w
l(i,k)
i → 0 for i ∈ IF. The argument needs to be

significantly expanded from that in [5], since it is not immediate that the stepsize ρ̂k
i

is bounded away from 0.
From Lemma 2, we know that zl(i,k) and w

l(i,k)
i are bounded, as is the operator Gi

by assumption. Furthermore, since Ti is continuous with full domain, we know once
again from the extreme value theorem that there exists B ≥ 0 such that

(∀k ∈ N) ‖Ti Gi z
l(i,k) − w

l(i,k)
i ‖ ≤ B. (23)

We have already shown that xk
i is bounded. Using the boundedness of zk and wk

i in
conjunction with Assumption 3 and inspecting the steps in the backtracking search,
there must exist a closed ball Bx ⊂ Hi such that x̃ (j,s(i,k))

i ∈ Bx for all k, j ∈ N

such that i ∈ Ik and j is encountered during the backtracking linesearch at step
k. In addition, let BG Z ⊂ Hi be a closed ball containing Gi zl(i,k) for all k ∈ N.
Let B � Bx ∪ BG Z , which is another closed ball. Since Hi is finite dimensional, B
is compact. Since Ti is continuous everywhere, by the Heine–Cantor theorem it is
uniformly continuous on B [18, Theorem 21.4].

Continuing, we write

yk
i − w

l(i,k)
i = Ti xk

i − w
l(i,k)
i = Ti Gi z

l(i,k) − w
l(i,k)
i + Ti xk

i − Ti Gi z
l(i,k). (24)

Since Ti is uniformly continuous on B it must be Cauchy continuous, meaning that
xk

i −Gi zl(i,k) → 0 implies Ti xk
i −Ti Gi zl(i,k) → 0.Thus, to prove that yk

i −w
l(i,k)
i → 0

it is sufficient to show that Ti Gi zl(i,k) − w
l(i,k)
i → 0.

Wenow show that indeed Ti Gi zl(i,k)−w
l(i,k)
i → 0. Fix ε > 0. Since Ti is uniformly

continuous on B, there exists δ > 0 such that whenever x, y ∈ B and ‖x − y‖ ≤ δ,
then ‖Ti x − Ti y‖ ≤ ε/4. Since Gi zl(i,k) − xk

i → 0, there exists K ≥ 1 such that for
all k ≥ K ,

‖Gi z
l(i,k) − xk

i ‖ ≤ ε min

(
νε

4BΔ
,
νδ

B
, ρ

)
(25)

with B as in (23), Δ from the linesearch termination criterion, and ρ from Assump-
tion 3. For any k ≥ K we will show that

‖Ti Gi z
l(i,k) − w

l(i,k)
i ‖ ≤ ε. (26)

123

Projective splitting with forward steps only requires… 243

If ‖Ti Gi zl(i,k)−w
l(i,k)
i ‖ ≤ ε/2, then (26) clearly holds. So from now on it is sufficient

to consider k for which ‖Ti Gi zl(i,k) − w
l(i,k)
i ‖ > ε/2. As in the proof of Lemma 3,

let ρ � ρ̃
(j,s(i,k))
i for brevity. Reconsidering (12), we now have the following lower

bound for the left-hand side of (10):

‖Ti Gi zl(i,k) − w
l(i,k)
i ‖ −

∥∥∥Ti
(
Gi zl(i,k) − ρ(Ti Gi zl(i,k) − w

l(i,k)
i)

) − Ti Gi zl(i,k)
∥∥∥

ρ‖Ti Gi zl(i,k) − w
l(i,k)
i ‖

>
ε/2 −

∥∥∥Ti
(
Gi zl(i,k) − ρ(Ti Gi zl(i,k) − w

l(i,k)
i)

) − Ti Gi zl(i,k)
∥∥∥

ρ‖Ti Gi zl(i,k) − w
l(i,k)
i ‖

. (27)

Now, suppose it were true that

‖Gi z
l(i,k) − x̃ (j,s(i,k))

i ‖ = ρ‖Ti Gi z
l(i,k) − w

l(i,k)
i ‖ ≤ δ. (28)

Then the uniform continuity of Ti on B would imply that

‖Ti Gi z
l(i,k) − Ti x̃ (j,s(i,k))

i ‖
=

∥∥∥Ti
(
Gi z

l(i,k) − ρ(Ti Gi z
l(i,k) − w

l(i,k)
i)

) − Ti Gi z
l(i,k)

∥∥∥ ≤ ε

4
.

We next observe that (28) is implied by ρ ≤ δ
B , in which case (27) gives the following

lower bound on the left-hand side of (10):

〈Gi zl(i,k) − x̃ (j,s(i,k))
i , ỹ(j,s(i,k))

i − w
l(i,k)
i 〉

‖Gi zl(i,k) − x̃ (j,s(i,k))
i ‖2

>
ε

4ρ‖Ti Gi zl(i,k) − w
l(i,k)
i ‖

≥ ε

4ρB
.

Therefore if ρ also satisfies ρ ≤ ε
4BΔ

, then

〈Gi zl(i,k) − x̃ (j,s(i,k))
i , ỹ(j,s(i,k))

i − w
l(i,k)
i 〉

‖Gi zl(i,k) − x̃ (j,s(i,k))
i ‖2

> Δ. (29)

Thus, any stepsize satisfying ρ ≤ (1/B)min {ε/(4Δ), δ}must cause the backtracking
linesearch termination criterion at line 18 to hold. Therefore, since the backtracking
linesearch proceeds by reducing the stepsize by a factor of ν at each inner iteration, it
must terminate with

ρ̂
l(i,k)
i ≥ ρbt � min

{
νε

4BΔ
,
νδ

B
, ρ

}
. (30)

Now, using Lemma 1, we have

xk
i − Gi z

l(i,k) = −ρ̂
l(i,k)
i (Ti Gi z

l(i,k) − w
l(i,k)
i)

123

244 P. R. Johnstone, J. Eckstein

�⇒ ‖xk
i − Gi z

l(i,k)‖ = ρ̂
l(i,k)
i ‖Ti Gi z

l(i,k) − w
l(i,k)
i ‖.

Thus,

‖Ti Gi z
l(i,k) − w

l(i,k)
i ‖ ≤ (ρbt)−1‖xk

i − Gi z
l(i,k)‖

≤ min

{
νε

4BΔ
,
νδ

B
, ρ

}−1

‖xk
i − Gi z

l(i,k)‖ ≤ ε

and therefore (26) holds for all k ≥ K . Since ε > 0 was chosen arbitrarily, it follows
that ‖Ti Gi zl(i,k) − w

l(i,k)
i ‖ → 0 and thus ‖yk

i − w
l(i,k)
i ‖ → 0 by (24). The proof

that Lemma 4(2) holds is now complete. The proof of the theorem now follows from
Lemma 4. ��

If Hi is not finite dimensional for i ∈ IF, Theorem 1 can still be proved if the
assumption on Ti is strengthened to Cauchy continuity over all bounded sequences.
This is slightly stronger than the assumption given in [7, Equation (1.1)] for proving
weak convergence of Tseng’s forward–backward–forward method. That assumption
is Cauchy continuity but only for all weakly convergent sequences.

4 Numerical example: fused Lp regression

Consider the following optimization problem:

F∗ � min
x∈Rd

F(x) � 1

p
‖Ax − b‖p

p + λ1‖Dx‖1 + λ2‖x‖1 (31)

where 1 < p ≤ 2, A : Rd → R
m is linear, b ∈ R

m , λ1, λ2 ≥ 0, and D : Rd → R
d−1

is the finite difference operator defined by {Dx}i = xi+1 − xi . While increasing λ2
typically forces a sparser solution, increasing λ1 typically forces the nonzero coef-
ficients of the solution to group together (i.e. “fuse” together) with the same value.
Regression problems of this sort are common for p = 2 [19]. However, the loss func-
tion ‖ · ‖22 is highly sensitive to outliers in the noise distribution. If outliers are present,
then choosing p < 2 has been shown to lead to more robust estimates [20,21].

By [15, Thm. 27.2], (31) is equivalent to the following monotone inclusion: find
z ∈ R

d such that

0 ∈ D∗T1Dz + T2z + T3z, (32)

where T1 � λ1∂{‖ · ‖1}, T2 � λ2∂{‖ · ‖1}, and T3x � ∇{ 1
p ‖Ax − b‖p

p
}
. Note that for

1 < p < 2, the operator T3 is continuous but not Lipschitz continuous (in fact, it is only
(p − 1)-Hölder continuous). Thus, it is not possible to apply well-known first-order
optimization methods such as the proximal gradient method and FISTA [22], as they
require Lipschitz continuous gradients. Furthermore these methods can only handle
one nonsmooth function via its proximal operator, but (31) has two. However, we can

123

Projective splitting with forward steps only requires… 245

apply our method in Algorithm 1, since it only requires that the gradient be continuous
in order to perform forward steps, and can handle sums of arbitrarily many nonsmooth
functions through these functions’ corresponding proximal operators. Thus, we apply
Algorithm 1 with IF = {3}, IB = {1, 2}, G1 = D, and G2 = G3 = I . We apply
the algorithm with no delays and full synchronization, so that d(i, k) = k and Ik =
{1, 2, 3} for all i and k. From now on we refer to this as ps, short for projective
splitting.

One of the few proximal splitting methods that can be applied to (31) is the method
of [11]. Note that the analysis of [11] requires Lipschitz continuity of T3. However,
since the algorithm is an instance of Tseng’s method applied to the underlying primal–
dual “monotone+skew” inclusion, one may modify it by applying the backtracking
linesearch variant of Tseng’s method, which does not require Lipschitz continuity. We
refer to this as tseng-pd. In order to achieve good performance with tseng-pd,
we had to incorporate the following diagonal preconditioner:

U = diag(Id×d , γpd Id×d , γpd Id×d) (33)

whereU is as in [23, Eq. (3.2)]. We also comparewith the standard subgradientmethod
sg as well as the proximal subgradient method prox-sg which takes proximal
(resolvent) steps with respect to the term λ2‖ · ‖1 and (sub)gradient steps with respect
to the other two terms [24].

We created a random instance of (31) as follows: we set m = 1000 and d = 2000.
The entries of A are drawn i.i.d. fromN (0, 1) and then the columns of A are normalized
to have unit norm and 0 mean. A vector x0 ∈ R

d was created with 500 nonzero entries
which are grouped together into 10 blocks of size 50, all with the same value in each
block. We then set b = Ax0 +ε. For each entry of ε, with probability 0.9 it was drawn
from N (0, 1), otherwise from N (0, 25). We tested three values of p: 1.7, 1.5, and
1.3. For all p, we set λ1 = λ2 = 1.

For the twomethods using backtracking linesearch (ps and tseng-pd), we set the
initial trial stepsize to 1 at the first iteration, and afterwards set it to be the successful
stepsize discovered in the previous iteration. For each failure of the backtracking exit
condition the stepsize was reduced by a factor of 0.7. For the other parameters of
ps, we used ρk

1 = ρk
2 = 1 for all k, and γ = Δ = 1. For tseng-pd, we used

θ = 0.99. The best-tuned value for γpd in the preconditioner in (33) was γpd = 100.
Finally, the stepsizes for the subgradient methods were set to αk = α0k−r , where for
both sg and prox-sg we used (α0, r) = (1, 1), which performed best in practice.
We implemented all the methods in Python using the numpy package. The Python
code used in these experiments is publicly available at https://github.com/projective-
splitting/just-continuity [25].

In Fig. 1 we plot the performance of the methods in terms of the relative primal
objective error (F(xk) − F∗)/F∗, where the true minimum value F∗ is estimated as
the lowest value returned by any algorithm after 2000 iterations. The left, middle, and
right plots correspond to p = 1.3, p = 1.5, and p = 1.7, respectively. The figure
plots just one representative random instance but performance was very similar over
10 random instances. The x-axis counts the number of matrix multiplies by A, which
is the dominant computation for all methods.

123

https://github.com/projective-splitting/just-continuity
https://github.com/projective-splitting/just-continuity

246 P. R. Johnstone, J. Eckstein

Fig. 1 Left: p = 1.3, middle: p = 1.5, right: p = 1.7. The algorithms are: ps (our projective splitting
method as in Algorithm 1), sg (the subgradient method), prox-sg (proximal subgradient method [24]),
and tseng-pd (primal–dual version of Tseng’s method [11])

On all problems, sg and prox-sg are outperformed by ps and tseng-pd, and
ps is that fastest method. For p = 1.3, the difference between ps and tseng-pd
is fairly small, but for p = 1.5 and 1.7, the advantage of ps over tseng-pd is
substantial. One advantage ps has over the other methods is that it allows for different
stepsizes for each operator. So, even when backtracking results in a small stepsize for
T3, the other stepsizes may be held constant. By contrast, tseng-pd only has one
stepsize for all three operators, which may become small as the result of backtracking
on one of them. This difference may explain tseng-pd’s slower convergence rate
when p = 1.5. A possible explanation for the relatively poor performance of both
sg and prox-sg is that their update directions are only subgradients rather than
gradients.

Acknowledgements Funding was provided by National Science Foundation (US) (Grant No. 1617617).

References

1. Eckstein, J., Svaiter, B.F.: A family of projective splitting methods for the sum of two maximal mono-
tone operators. Math. Program. 111(1), 173–199 (2008)

2. Eckstein, J., Svaiter, B.F.: General projective splitting methods for sums of maximal monotone oper-
ators. SIAM J. Control Optim. 48(2), 787–811 (2009)

3. Alotaibi, A., Combettes, P.L., Shahzad, N.: Solving coupled composite monotone inclusions by suc-
cessive Fejér approximations of their Kuhn–Tucker set. SIAM J. Optim. 24(4), 2076–2095 (2014)

4. Combettes, P.L., Eckstein, J.: Asynchronous block-iterative primal–dual decomposition methods for
monotone inclusions. Math. Program. 168(1–2), 645–672 (2018)

5. Johnstone, P.R., Eckstein, J.: Projective splitting with forward steps: asynchronous and block-iterative
operator splitting (2018). Preprint arXiv:1803.07043

6. Tran-Dinh, Q., Vũ, B.C.: A new splitting method for solving composite monotone inclusions involving
parallel-sum operators (2015). Preprint arXiv:1505.07946

7. Tseng, P.: A modified forward–backward splitting method for maximal monotone mappings. SIAM J.
Control Optim. 38(2), 431–446 (2000)

8. Korpelevich, G.: Extragradient method for finding saddle points and other problems. Matekon 13(4),
35–49 (1977)

9. Iusem, A., Svaiter, B.: A variant of Korpelevich’s method for variational inequalities with a new search
strategy. Optimization 42(4), 309–321 (1997)

10. Bello Cruz, J., Díaz Millán, R.: A variant of forward-backward splitting method for the sum of two
monotone operators with a new search strategy. Optimization 64(7), 1471–1486 (2015)

11. Combettes, P.L., Pesquet, J.C.: Primal–dual splitting algorithm for solving inclusions with mixtures
of composite, Lipschitzian, and parallel-sum type monotone operators. Set-Valued Var. Anal. 20(2),
307–330 (2012)

123

http://arxiv.org/abs/1803.07043
http://arxiv.org/abs/1505.07946

Projective splitting with forward steps only requires… 247

12. Combettes, P.L., Pesquet, J.C.: Proximal splitting methods in signal processing. In: Bauschke, H.H.,
Burachik, R.S., Combettes, P.L., Elser, V., Luke, D.R., Wolkowicz, H. (eds.) Fixed-Point Algorithms
for Inverse Problems in Science and Engineering, pp. 185–212. Springer, Berlin (2011)

13. Mercier, B., Vijayasundaram, G.: Lectures on Topics in Finite Element Solution of Elliptic Problems.
Tata Institute of Fundamental Research, Bombay (1979)

14. Malitsky, Y., Tam, M.K.: A forward–backward splitting method for monotone inclusions without
cocoercivity (2018). Preprint arXiv:1808.04162

15. Bauschke, H.H., Combettes, P.L.: Convex Analysis and Monotone Operator Theory in Hilbert Spaces.
Springer, Berlin (2011)

16. Eckstein, J.: A simplified form of block-iterative operator splitting and an asynchronous algorithm
resembling the multi-block alternating direction method of multipliers. J. Optim. Theory Appl. 173(1),
155–182 (2017)

17. Johnstone, P.R., Eckstein, J.: Convergence rates for projective splitting. SIAM J. Optim. 29(3), 1931–
1957 (2019)

18. Ross, K.A.: Elementary Analysis: The Theory of Calculus. Springer, Berlin (1980)
19. Tibshirani, R., Saunders, M., Rosset, S., Zhu, J., Knight, K.: Sparsity and smoothness via the fused

lasso. J. R. Stat. Soc. Ser. B (Stat. Method.) 67(1), 91–108 (2005)
20. Lai, P., Lee, S.M.S.: An overview of asymptotic properties of L p regression under general classes of

error distributions. J. Am. Stat. Assoc. 100(470), 446–458 (2005)
21. Agro, G.: Maximum likelihood and �p-norm estimators. Stat. Appl. 4(1), 7 (1992)
22. Beck, A., Teboulle, M.: A fast iterative shrinkage-thresholding algorithm for linear inverse problems.

SIAM J. Imging Sci. 2(1), 183–202 (2009). https://doi.org/10.1137/080716542
23. Vũ, B.C.: A variable metric extension of the forward–backward–forward algorithm for monotone

operators. Numer. Funct. Anal. Optim. 34(9), 1050–1065 (2013)
24. Cruz, J.Y.B.: On proximal subgradient splitting method for minimizing the sum of two nonsmooth

convex functions. Set-Valued Var. Anal. 25(2), 245–263 (2017)
25. Johnstone, P.R., Eckstein, J.: Github repository (2019). https://doi.org/10.5281/zenodo.3377996,

https://github.com/projective-splitting/just-continuity. Accessed 28 Aug 2019

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

123

http://arxiv.org/abs/1808.04162
https://doi.org/10.1137/080716542
https://doi.org/10.5281/zenodo.3377996
https://github.com/projective-splitting/just-continuity

	Projective splitting with forward steps only requires continuity
	Abstract
	1 Introduction
	2 Algorithm, principal assumptions, and preliminary analysis
	2.1 Separator-projection methods
	2.2 The algorithm
	2.3 Main assumptions and preliminary analysis

	3 Main analysis
	3.1 Finite termination of backtracking
	3.2 The key to weak convergence
	3.3 Two technical lemmas
	3.4 Main result

	4 Numerical example: fused Lp regression
	Acknowledgements
	References

