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Abstract
Integrally convex functions constitute a fundamental function class in discrete convex
analysis. This paper shows that an integer-valued integrally convex function admits an
integral subgradient and that the integral biconjugate of an integer-valued integrally
convex function coincides with itself. The proof is based on the Fourier–Motzkin elim-
ination. The latter result provides a unified proof of integral biconjugacy for various
classes of integer-valued discrete convex functions, including L-convex, M-convex,
L2-convex, M2-convex, BS-convex, and UJ-convex functions as well as multimodular
functions. Our results of integral subdifferentiability and integral biconjugacy make
it possible to extend the theory of discrete DC (difference of convex) functions devel-
oped for L- and M-convex functions to that for integrally convex functions, including
an analogue of the Toland–Singer duality for integrally convex functions.

Keywords Discrete convex analysis · Integrally convex function · Subgradient ·
Biconjugate function · Integrality · Fourier–Motzkin elimination

1 Introduction

In discrete convex analysis [2,10,11], a variety of discrete convex functions are consid-
ered. Among others, integrally convex functions, due to Favati–Tardella [1], constitute
a common framework for discrete convex functions, and almost all kinds of discrete
convex functions are known to be integrally convex. Indeed, separable convex, L-
convex, L�-convex, M-convex, M�-convex, L�

2-convex, and M�
2-convex functions are
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known to be integrally convex [11]. Multimodular functions [4] are also integrally
convex, as pointed out in [13]. Moreover, BS-convex and UJ-convex functions [3] are
integrally convex.

The concept of integral convexity is used in formulating discrete fixed point the-
orems and found applications in economics and game theory [6,14,19]. A proximity
theorem for integrally convex functions has recently been established in [9] together
with a proximity-scaling algorithm forminimization. Fundamental operations for inte-
grally convex functions such as projection and convolution are investigated in [8].

In this paper we are concerned with subgradients and biconjugates of integer-
valued integrally convex functions. For a function f : Zn → R ∪ {+∞} we denote
its effective domain as domZ f = {x ∈ Z

n | f (x) < +∞}; we always assume that
domZ f is nonempty. For an integer-valued function f : Zn → Z∪ {+∞}, we define
f • : Zn → Z ∪ {+∞} by

f •(p) = sup{〈p, x〉 − f (x) | x ∈ Z
n} (p ∈ Z

n), (1.1)

where 〈p, x〉 = ∑n
i=1 pi xi is the inner product of p = (p1, p2, . . . , pn) and x =

(x1, x2, . . . , xn). This function f • is referred to as the integral conjugate of f . We
can apply (1.1) twice to obtain f •• = ( f •)•, which is called the integral biconjugate
of f .

Concerning conjugacy and biconjugacy it is natural to ask the following questions
for a given class of discrete convex functions.

– For an integer-valued function f in the class, does the integral conjugate f • belong
to the same class? If not, how is it characterized?

– For an integer-valued function f in the class, does integral biconjugacy f •• = f
hold?

These questions are completely settled for separable convex, L-convex, L�-convex,
M-convex, M�-convex, L�

2-convex, and M
�
2-convex functions; see [11, Chapter 8]. We

may say that they are also settled for multimodular functions via equivalence between
L�-convexity and multimodularity pointed out in [12]. The conjugacy question for
BS-convex and UJ-convex functions is addressed in [3].

For integrally convex functions, the first question about conjugacy is already settled
in the negative [15]. Indeed, there is an example of an integrally convex functionwhose
integral conjugate is not integrally convex; see Remark 3 in Sect. 2. The main result
of this paper is an affirmative answer to the second question about biconjugacy, which
is stated as Theorem 4 in Sect. 3.2.

Integral biconjugacy is closely related to integral subgradients. For a point x ∈
domZ f , the integral subdifferential of f at x is defined as

∂Z f (x) = {p ∈ Z
n | f (y) − f (x) ≥ 〈p, y − x〉 for all y ∈ Z

n}, (1.2)

and an element of ∂Z f (x) is called an integral subgradient of f at x . It is known
that f ••(x) = f (x) if and only if ∂Z f (x) 	= ∅; see Lemma 1 in Sect. 3.2. The
condition ∂Z f (x) 	= ∅ is sometimes referred to as the integral subdifferentiability of
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f at x . Our proof of the integral biconjugacy actually consists in showing the integral
subdifferentiability, which is stated as Theorem 3 in Sect. 3.1.

We can name the following significances of the present result:

1. Our result of integral biconjugacy for integrally convex functions serves as a uni-
fied proof of integral biconjugacy for various classes of discrete convex functions,
such as L-convex, L�-convex, M-convex, M�-convex, L�

2-convex, and M
�
2-convex

functions. The existing proofs for these functions are based on conjugacy state-
ments valid for respective function classes, and as such, vary with function classes.
Our proof considers integral biconjugacy directly, without involving conjugacy
properties that depend on function classes.

2. In addition to being a unified proof for known results, our result reveals new facts
that integer-valued BS-convex and UJ-convex functions admit integral subgradi-
ents and enjoy integral biconjugacy (Corollaries 1 and 2).

3. Our results imply that a theory of discrete DC functions can be developed for
integrally convex functions. In particular, an analogue of the Toland–Singer duality
for integrally convex functions can be established. See Section 3.3 for details.

This paper is organized as follows. Section 2 is a review of relevant results on
integrally convex functions. Section 3 presents the main results of this paper, followed
by Sect. 4 for the proofs. Section 5 concludes the paper with some remarks.

2 Integrally convex functions

In this section we summarize fundamental facts about integrally convex functions.
The reader is referred to [1] and [11, Section 3.4] for backgrounds.

For integer vectors a ∈ (Z ∪ {−∞})n and b ∈ (Z ∪ {+∞})n with a ≤ b, [a, b]Z
denotes the integer interval (box, discrete rectangle) between a and b, i.e., [a, b]Z =
{x ∈ Z

n | a ≤ x ≤ b}. For x ∈ R
n the integral neighborhood of x is defined as

N (x) = {z ∈ Z
n | |xi − zi | < 1 (i = 1, . . . , n)}.

For a function f : Zn → R∪{+∞} the local convex extension f̃ : Rn → R∪{+∞}
of f is defined as the union of all convex envelopes of f on N (x). That is,

f̃ (x) = min

⎧
⎨

⎩

∑

y∈N (x)

λy f (y) |
∑

y∈N (x)

λy y = x, (λy) ∈ �(x)

⎫
⎬

⎭
(x ∈ R

n), (2.1)

where�(x) denotes the set of coefficients for convex combinations indexed by N (x):

�(x) =
⎧
⎨

⎩
(λy | y ∈ N (x)) |

∑

y∈N (x)

λy = 1, λy ≥ 0 (∀y ∈ N (x))

⎫
⎬

⎭
.

If f̃ is convex on R
n , then f is said to be integrally convex [1,11].
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A set S ⊆ Z
n is said to be integrally convex if the convex hull S of S coincides with

the union of the convex hulls of S ∩ N (x) over x ∈ R
n , i.e., if, for any x ∈ R

n , x ∈ S
implies x ∈ S ∩ N (x). A set S is integrally convex if and only if its indicator function
δS : Zn → {0,+∞} is an integrally convex function, where the indicator function δS

is defined by δS(x) =
{
0 (x ∈ S),

+∞ (x /∈ S).
An integrally convex set S is “hole-free” in

the sense that

S = S ∩ Z
n . (2.2)

In this paper we need the following property of integrally convex sets.

Proposition 1 The convex hull S of an integrally convex set S ⊆ Z
n is an integer

polyhedron. Moreover, for any face F of S, the smallest affine subspace containing
F is given as {x + ∑h

k=1 ckd
(k) | c1, c2, . . . , ch ∈ R} for a point x in F and some

direction vectors d(k) ∈ {−1, 0,+1}n (k = 1, 2, . . . , h).

Proof The proof is given in Sect. 4.1.

Remark 1 The properties mentioned in Proposition 1 do not characterize integral con-
vexity of a set. For example, let S = {(0, 0, 0), (1, 0, 1), (1, 1,−1), (2, 1, 0)}. The
convex hull S is a parallelogram with edge directions (1, 0, 1) and (1, 1,−1), and
hence is an integer polyhedron such that the smallest affine subspace containing each
face is spanned by {−1, 0, 1}-vectors. However, S is not integrally convex, since
x = [(1, 0, 1) + (1, 1,−1)]/2 = (1, 1/2, 0) ∈ S, N (x) = {(1, 0, 0), (1, 1, 0)}, and
S ∩ N (x) = ∅. ��

The effective domain of an integrally convex function is an integrally convex set.
Integral convexity of a function can be characterized by a local condition under the
assumption that the effective domain is an integrally convex set.

Theorem 1 [1,9] Let f : Zn → R ∪ {+∞} be a function with an integrally convex
effective domain. Then the following properties are equivalent:

(a) f is integrally convex.
(b) For every x, y ∈ Z

n with ‖x − y‖∞ = 2 we have

f̃

(
x + y

2

)

≤ 1

2
( f (x) + f (y)). (2.3)

��
A minimizer of an integrally convex function can be characterized by a local min-

imality condition as follows.

Theorem 2 ([1, Proposition 3.1]; see also [11, Theorem 3.21]) Let f : Zn → R ∪
{+∞} be an integrally convex function and x∗ ∈ domZ f . Then x∗ is a minimizer of
f if and only if f (x∗) ≤ f (x∗ + d) for all d ∈ {−1, 0,+1}n. ��
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Integrality of subgradients and biconjugates… 199

Remark 2 The concept of integrally convex functions is introduced in [1] for functions
defined on integer intervals (discrete rectangles). The extension to functions with
general integrally convex effective domains is straightforward, which is found in [11].
Theorem 1 is proved in [1, Proposition 3.3] when the effective domain is an integer
interval and in [9] for the general case. ��
Remark 3 The integral conjugate of an integrally convex function f is not necessarily
integrally convex. This is shown by the following example ([15, Example 4.15] with
a minor correction). Let S = {(1, 1, 0, 0), (0, 1, 1, 0), (1, 0, 1, 0), (0, 0, 0, 1)}. This
is obviously an integrally convex set, as it is contained in {0, 1}4. Accordingly, its
indicator function δS : Z4 → {0,+∞} is integrally convex. The integral conjugate
g = δ•

S is given by

g(p1, p2, p3, p4) = max{p1 + p2, p2 + p3, p1 + p3, p4} (p ∈ Z
4).

Let g̃ be the local convex extension of g. For p = (0, 0, 0, 0) and q = (1, 1, 1, 2)
we have (p + q)/2 = (1/2, 1/2, 1/2, 1) = [(1, 0, 0, 1) + (0, 1, 0, 1) + (0, 0, 1, 1) +
(1, 1, 1, 1)]/4 and g̃((p + q)/2) = [g(1, 0, 0, 1) + g(0, 1, 0, 1) + g(0, 0, 1, 1) +
g(1, 1, 1, 1)]/4 = (1+1+1+2)/4 = 5/4,whereas (g(p)+g(q))/2 = (0+2)/2 = 1.
Thus we have g̃((p+ q)/2) > (g(p) + g(q))/2, violating (2.3) in Theorem 1. Hence
g is not integrally convex. ��

3 Results

3.1 Integral subgradients

Theorem 3 (Integral subdifferentiability) For an integer-valued integrally convex
function f : Zn → Z ∪ {+∞}, we have ∂Z f (x) 	= ∅ for all x ∈ domZ f .

Proof The proof is given in Sect. 4.2.

The following example shows that integral subdifferentiability is not guaranteed
without the assumption of integral convexity.

Example 1 [10, Example 1.1] Let D = {(0, 0, 0),±(1, 1, 0),±(0, 1, 1),±(1, 0, 1)}
and f : Z3 → Z ∪ {+∞} be defined by

f (x1, x2, x3) =
{

(x1 + x2 + x3)/2 (x ∈ D),

+∞ (otherwise).

This function can be naturally extended to a convex function on the convex hull
D of D and D is hole-free in the sense of (2.2). However, D is not integrally
convex since for x = (1, 1, 0) and y = (−1, 0,−1) we have (x + y)/2 =
(0, 1/2,−1/2), N ((0, 1/2,−1/2)) = {(0, 0, 0), (0, 1, 0), (0, 0,−1), (0, 1,−1)},
and hence N ((0, 1/2,−1/2))∩D = {(0, 0, 0)}. Therefore, f is not integrally convex.
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To investigate the integral subgradient of f at the origin, suppose that p ∈ ∂Z f (0) ⊆
Z
3. Since f (y) − f (0) ≥ 〈p, y〉 for all y ∈ D, we must have

1 ≥ p1 + p2, 1 ≥ p2 + p3, 1 ≥ p3 + p1,
−1 ≥ −p1 − p2, −1 ≥ −p2 − p3, −1 ≥ −p3 − p1.

However, this systemadmits no integer solution, though it is satisfiedby (p1, p2, p3) =
(1/2, 1/2, 1/2). Hence ∂Z f (0) = ∅. ��
Remark 4 Here is a subtle point about the statement of Theorem 3. In parallel to the
integral subdifferential ∂Z f (x) in (1.2), the (real) subdifferential ∂R f (x) is defined
by

∂R f (x) = {p ∈ R
n | f (y) − f (x) ≥ 〈p, y − x〉 for all y ∈ Z

n}. (3.1)

Theorem 3 states that ∂R f (x) ∩ Z
n 	= ∅, but it does not claim a stronger state-

ment that ∂R f (x) is an integer polyhedron. Indeed, ∂R f (x) is not necessarily an
integer polyhedron, as the following example shows. Let f : Z

3 → Z ∪ {+∞}
be defined by f (0, 0, 0) = 0 and f (1, 1, 0) = f (0, 1, 1) = f (1, 0, 1) = 1, with
domZ f = {(0, 0, 0), (1, 1, 0), (0, 1, 1), (1, 0, 1)}. This function is integrally convex
and the subdifferential of f at the origin is given as

∂R f (0) = {p = (p1, p2, p3) ∈ R
3 | p1 + p2 ≤ 1, p2 + p3 ≤ 1, p1 + p3 ≤ 1},

which is not an integer polyhedron, having anon-integral vertex at p = (1/2, 1/2, 1/2).
In contrast, it is known [11] that, ∂R f (x) is an integer polyhedron if f is L�-convex,
M�-convex, L�

2-convex, or M
�
2-convex. ��

Remark 5 BS-convex and UJ-convex functions are investigated by Fujishige [3]. For
an integer-valued BS-convex function f , the subdifferential ∂R f (x) in (3.1) contains
a half-integral vector [3, Theorem 2], and it contains an integral vector if the function
f arises as the conjugate of a D-convex function, which, by definition, is associated
with a disconcordant Freudenthal simplicial division D [3, Theorem 5]. The function
used as an example in Remark 4 is actually a BS-convex function [3, Example 3], and
therefore, ∂R f (x) is not necessarily an integer polyhedron for a BS-convex function
f . Nevertheless, BS-convex and UJ-convex functions admit integral subgradients, as
they are integrally convex. This fact is stated below as a corollary of Theorem 3. ��
Corollary 1 (1) For an integer-valued BS-convex function f , we have ∂Z f (x) 	= ∅ for

all x ∈ domZ f .
(2) For an integer-valued UJ-convex function f , we have ∂Z f (x) 	= ∅ for all x ∈

domZ f . ��

3.2 Integral biconjugacy

In this section we establish the integral biconjugacy f •• = f for integer-valued
integrally convex functions.
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Integrality of subgradients and biconjugates… 201

Lemma 1 [10, Lemma 4.1] For each x ∈ domZ f we have: f ••(x) = f (x) ⇐⇒
∂Z f (x) 	= ∅.
Proof By the definitions (1.1) and (1.2) it holds, for x ∈ domZ f and p ∈ Z

n , that

p ∈ ∂Z f (x) ⇐⇒ f (x) + f •(p) = 〈p, x〉. (3.2)

If there exists p ∈ ∂Z f (x), (3.2) implies that f (x) + f •(p) = 〈p, x〉. From this
and the definition of f ••(x) we obtain f ••(x) ≥ 〈p, x〉 − f •(p) = f (x), while
f ••(x) ≤ f (x) is obvious. Conversely, if f ••(x) = f (x), there exists p ∈ Z

n such
that 〈p, x〉 − f •(p) = f ••(x) = f (x). This implies p ∈ ∂Z f (x) by (3.2).

Remark 6 The desired integral biconjugacy f •• = f does not follow immediately
from the combination of Theorem 3 and Lemma 1. Let f : Z

2 → Z ∪ {+∞} be
the indicator function of S = {(x1, x2) ∈ Z

2 | x2 ≥ √
2x1 − 1/2}, which is not an

integrally convex set. Then ∂Z f (x) = ∂R f (x) = {(0, 0)} 	= ∅ for all x ∈ S = domZ f .
On the other hand, we have f •(0, 0) = 0 and f •(p) = +∞ for p ∈ Z

2\{(0, 0)},
from which follows that f ••(x) = 0 for all x ∈ Z

2. Thus we have domZ f •• =
Z
2 	= domZ f , and, a fortiori, f •• 	= f . This example, taken from [10, Remark 4.1],

motivates the technical condition (3.4) below. ��
For f : Zn → Z ∪ {+∞} we consider the following conditions:

domZ f = cl(domZ f ) ∩ Z
n 	= ∅, (3.3)

cl(domZ f ) is rationally-polyhedral, (3.4)

∂Z f (x) 	= ∅ for all x ∈ domZ f , (3.5)

where cl(domZ f ) denotes the closure of the convex hull1 of domZ f , and a closed
convex set in R

n is said to be rationally-polyhedral if it is described by a system of
finitely many inequalities with coefficients of rational numbers. The first condition
(3.3) is natural, the second condition (3.4) is rather technical, and the third condition
(3.5) is essential.

Lemma 2 [10, Lemma 4.2] Suppose that f : Zn → Z∪{+∞} satisfies the conditions
(3.3), (3.4), and (3.5).2 Then the following hold.

(1) domZ f • =
⋃

{∂Z f (x) | x ∈ domZ f } 	= ∅.

(2) domZ f •• = domZ f .
(3) f ••(x) = f (x) (x ∈ Z

n).
(4) For x ∈ domZ f , p ∈ domZ f • : p ∈ ∂Z f (x) ⇐⇒ x ∈ ∂Z f •(p).
(5) ∂Z f •(p) 	= ∅ (p ∈ domZ f •). ��
Lemma 3 An integer-valued integrally convex function satisfies the conditions (3.3),
(3.4), and (3.5).

1 cl(domZ f ) coincides with the closed convex hull of domZ f [5, Section 1.4].
2 In Lemma 4.2 of [10] an additional condition “∂R f (x) = cl(domZ f )” is involved in the definition of
FG in (4.18). However, we can verify that this condition is not needed.
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Proof Since S = domZ f is integrally convex, S is an integer polyhedron by Proposi-
tion 1. In particular, we have cl(S) = S. The condition (3.3) is satisfied by (2.2). The
property (3.4) can be shown as follows. By Proposition 1, the smallest affine subspace
containing a facet F of S is described by a system of equations, say, AFx = bF
with the entries of AF belonging to {−1, 0,+1} and bF being an integer vector. This
implies the rationality (3.4). The property (3.5) is shown in Theorem 3.

By combining Lemmas 2 and 3, we obtain the following statements about the
integral subdifferential, integral conjugate, and integral biconjugate of an integer-
valued integrally convex function.

Proposition 2 For an integer-valued integrally convex function f : Zn → Z∪{+∞},
we have the properties (1) to (5) in Lemma 2. ��

The integral biconjugacy claimed in Proposition 2 deserves a separate statement as
a theorem.

Theorem 4 (Integral biconjugacy) For an integer-valued integrally convex function
f : Zn → Z ∪ {+∞} we have f ••(x) = f (x) for all x ∈ Z

n. ��

The following example shows that integral biconjugacy is not guaranteed without
the assumption of integral convexity.

Example 2 [10, Example 1.1] In Example 1, D = domZ f is not an integrally convex
set, and therefore f is not integrally convex. The integral conjugate of f is given as

f •(p) = max{0, |p1 + p2 − 1|, |p2 + p3 − 1|, |p3 + p1 − 1|}

and the integral biconjugate is f ••(x) = supp∈Z3{〈p, x〉 − f •(p)}. Hence

f ••(0) = − inf
p∈Z3

max{0, |p1 + p2 − 1|, |p2 + p3 − 1|, |p3 + p1 − 1|}.

Therefore we have f ••(0) = −1 	= 0 = f (0). This shows f •• 	= f . ��

As special cases of Theorem 4 we obtain integral biconjugacy for L-convex, L�-
convex, M-convex, M�-convex, L�

2-convex, and M�
2-convex functions given in [11,

Theorems 8.12, 8.36, 8.46]. Integral biconjugacy for BS-convex and UJ-convex func-
tions are also obtained as a corollary of Theorem 4.

Corollary 2 (1) For an integer-valued BS-convex function f , we have f ••(x) = f (x)
for all x ∈ Z

n.
(2) For an integer-valued UJ-convex function f , we have f ••(x) = f (x) for all

x ∈ Z
n.
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Integrality of subgradients and biconjugates… 203

3.3 Discrete DC programming

Adiscrete analogue of the theory of DC functions (difference of two convex functions)
and DC programming has recently been proposed in [7] using L�-convex and M�-
convex functions. As already noted in [7, Remark 4.7], such theory of discrete DC
functions can in fact be developed for functions that satisfy integral biconjugacy and
integral subdifferentiability. Our present results, Theorems 3 and 4, enable us to extend
the theory of discrete DC functions to integrally convex functions. In particular, an
analogue of the Toland–Singer duality [17,18] can be established for integrally convex
functions as a corollary of our results.

Theorem 5 (Toland–Singer duality) Let g and h be integer-valued integrally convex
functions.3 Then

inf
x∈Zn

{g(x) − h(x)} = inf
p∈Zn

{h•(p) − g•(p)}. (3.6)

Proof By integral biconjugacy (Theorem 4) of h, we can prove (3.6) as follows:

inf
x

{g(x) − h(x)} = inf
x

{g(x) − h••(x)} = inf
x

{g(x) − sup
p

{〈p, x〉 − h•(p)}}

= inf
x
inf
p

{g(x) − 〈p, x〉 + h•(p)} = inf
p

{h•(p) − sup
x

{〈p, x〉 − g(x)}}
= inf

p
{h•(p) − g•(p)}.

4 Proofs

4.1 Proof of Proposition 1 about the convex hull

We start with a basic fact, which will be intuitively obvious.

Lemma 4 The convex hull S of an integrally convex set S is a closed set.

Proof Take any point x in the (topological) closure of S. There exists a sequence
{xk} ⊆ S that converges to x . We may assume that N (x) ⊆ N (xk) holds for all k, by
considering a subsequence consisting of {xk} with ‖xk − x‖∞ < ε for a sufficiently
small ε > 0. We may further assume that N (xk) is identical for all k, since there
are finitely many possibilities of the set N (xk) and we can choose an appropriate
subsequence of {xk}. Let N∗ denote this N (xk). Since S is integrally convex and
xk ∈ S, we have xk ∈ S ∩ N (xk) = S ∩ N∗. Here S ∩ N∗ is a closed set, since S∩ N∗
is a finite set. Therefore, x = limk xk ∈ S ∩ N∗ ⊆ S.

Let S ⊆ Z
n be an integrally convex set, and F be a face of its convex hull S. Let

LF denote the linear subspace of Rn such that the smallest affine subspace containing

3 As the proof shows, the integral convexity of g is not needed. That is, (3.6) holds for any g : Zn →
Z ∪ {+∞}, as long as h : Zn → Z ∪ {+∞} is integrally convex.
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204 K. Murota and A. Tamura

F is represented as x + LF for a point x in F . In the following we prove Proposition
1 by showing that (1) F contains an integer point, (2) LF is spanned by vectors in
{−1, 0,+1}n , and (3) S is a polyhedron.

Proof of (1): Take any x ∈ R
n in F . By the integral convexity of S, we have

x ∈ S ∩ N (x). That is, there exist integer points y(1), y(2), . . . , y(m) ∈ S ∩ N (x) and
λ1, λ2, . . . , λm > 0 such that x = ∑m

k=1 λk y(k) and
∑m

k=1 λk = 1. Here we have
y(1), y(2), . . . , y(m) ∈ F , since F is a face of S, x ∈ F , and y(1), y(2), . . . , y(m) ∈ S.

Proof of (2): Fix x ∈ F ∩ Z
n . We shall show that there exist d(1), d(2), . . . , d(h) ∈

{−1, 0,+1}n such that

F = (x + span{d(1), d(2), . . . , d(h)}) ∩ S, (4.1)

where span{· · · }means the subspace spanned by the vectors in the braces. We assume
that F is not a singleton, since otherwise (4.1) is trivially true. Take any y ∈ F\{x}
and define z = (1 − ε)x + εy with a sufficiently small ε > 0 so that x ∈ N (z).
Since z ∈ S and S is integrally convex, there exist z(1), z(2), . . . , z(m) ∈ S ∩ N (z)
and λ1, λ2, . . . , λm > 0 such that z = ∑m

k=1 λk z(k) and
∑m

k=1 λk = 1. Here we have
z(1), z(2), . . . , z(m) ∈ F , since F is a face of S, z ∈ F , and z(1), z(2), . . . , z(m) ∈ S. It
follows from (1 − ε)x + εy = z = ∑m

k=1 λk z(k) that

y = x + 1

ε

m∑

k=1

λk(z
(k) − x),

where each direction vector z(k) − x belongs to {−1, 0,+1}n , since both z(k) and x
are members of N (z). By collecting all the direction vectors z(k) − x arising from all
choices of y ∈ F\{x} we obtain a set of vectors {d(1), d(2), . . . , d(h)} ⊆ {−1, 0,+1}n
for which (4.1) holds.

Proof of (3): First suppose that S is full dimensional. For a facet F of S, the linear
subspace LF is a hyperplane of dimension n − 1, and is described by an (outward)
normal vector. The normal vector is perpendicular to (n − 1) linearly independent
direction vectors generating LF and is uniquely determined under some appropriate
normalization of the length. Since the direction vectors are contained in {−1, 0,+1}n
by (4.1), there exist only a finite number of possible normal vectors, and hence S has
a finite number of facets. If S is not full dimensional, we consider normal vectors of
its facets contained in the subspace LS . There are only a finite number of such normal
vectors, up to scaling. Therefore, S is a polyhedron.

4.2 Proof of Theorem 3 for integral subdifferentiability

Let f : Zn → Z∪ {+∞} be an integer-valued integrally convex function. For a point
x ∈ domZ f , the subdifferential of f at x is defined as

∂R f (x) = {p ∈ R
n | f (y) − f (x) ≥ 〈p, y − x〉 for all y ∈ Z

n}. (4.2)
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The subdifferential ∂R f (x) is nonempty for every x ∈ domZ f , since an integrally
convex function is extensible to a convex function. In the following we prove that
∂R f (x) contains an integer vector, which is the claim of Theorem 3.

We may assume that x = 0 and f (0) = 0. In the definition of ∂R f (0) by (4.2), it
suffices, by Theorem 2, to consider y in {−1, 0,+1}n . Therefore, we have

∂R f (0) = {p ∈ R
n |

n∑

j=1

y j p j ≤ f (y) for all y ∈ {−1, 0,+1}n}. (4.3)

We represent the system of inequalities
∑n

j=1 y j p j ≤ f (y) for y with f (y) < +∞
in a matrix form as

Ap ≤ b. (4.4)

Let I denote the row set of A and A = (ai j | i ∈ I , j ∈ {1, 2, . . . , n}). We denote the
i th row vector of A by ai for i ∈ I . The row set I is indexed by y ∈ {−1, 0,+1}n with
f (y) < +∞, and ai is equal to the corresponding y for i ∈ I ; we have ai j = y j for
j = 1, 2, . . . , n and bi = f (ai ). Note that ai j ∈ {−1, 0,+1} and ai ∈ {−1, 0,+1}n
for all i and j .

We apply the Fourier–Motzkin elimination procedure [16] to the system of inequal-
ities (4.4) to show the existence of an integer vector satisfying (4.4).

The Fourier–Motzkin elimination for (4.4) goes as follows. According to the value
of the coefficient ai1 of the first variable p1, we partition I into three disjoint parts
(I+

1 , I 01 , I−
1 ) as

I+
1 = {i ∈ I | ai1 = +1},
I 01 = {i ∈ I | ai1 = 0},
I−
1 = {i ∈ I | ai1 = −1},

and decompose (4.4) into three parts as

ai p ≤ bi (i ∈ I+
1 ), (4.5)

ai p ≤ bi (i ∈ I 01 ), (4.6)

ai p ≤ bi (i ∈ I−
1 ). (4.7)

For all possible combinations of i ∈ I+
1 and k ∈ I−

1 , we add the inequality for i in
(4.5) and the inequality for k in (4.7) to obtain

(ai + ak)p ≤ bi + bk (i ∈ I+
1 , k ∈ I−

1 ). (4.8)

The inequalities in (4.8) are free from the variable p1, since ai1 + ak1 = 0 for all
i ∈ I+

1 and k ∈ I−
1 . For the variable p1 we obtain

max
k∈I−

1

⎧
⎨

⎩

n∑

j=2

akj p j − bk

⎫
⎬

⎭
≤ p1 ≤ min

i∈I+
1

⎧
⎨

⎩
bi −

n∑

j=2

ai j p j

⎫
⎬

⎭
(4.9)
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from (4.5) and (4.7). It is understood that the maximum over the empty set is equal to
−∞ and the minimum over the empty set is equal to +∞.

We have thus eliminated p1 and obtained a system of inequalities in (p2, . . . , pn)
consisting of (4.6) and (4.8). Once (p2, . . . , pn) is found, p1 can easily be found from
(4.9), if the interval described by (4.9) is nonempty. It is important that the derived
system of inequalities in (p1, p2, . . . , pn) consisting of (4.6), (4.8), and (4.9) is in
fact equivalent to the original system consisting of (4.5), (4.6), and (4.7). In particular,
(p1, p2, . . . , pn) satisfies (4.5), (4.6), and (4.7) if and only if (p2, . . . , pn) satisfies
(4.6) and (4.8), and p1 satisfies (4.9).

The Fourier–Motzkin elimination applies the above procedure recursively to elim-
inate variables p1, p2, . . . , pn−1. This process results in a single inequality in pn
of the form (4.9). Then we can determine (p1, p2, . . . , pn) in the reverse order
pn, pn−1, . . . , p1.

By virtue of the integral convexity of f , a drastic simplification occurs in the
elimination process. The inequalities (4.8) that are to be added in general are actually
redundant and need not be added, which is shown in the following lemma. The lemma
implies in particular that I 01 is nonempty if I+

1 and I−
1 are nonempty.

Lemma 5 The inequalities in (4.8) are implied by those in (4.6).

Proof In (4.8) we have bi = f (ai ) and bk = f (ak), and hence the inequality in (4.8)
can be rewritten as

1

2
(ai + ak)p ≤ 1

2
( f (ai ) + f (ak)). (4.10)

By the integral convexity of f there exist y(1), y(2), . . . , y(m) ∈ N ((ai + ak)/2)
such that

m∑

l=1

λl y
(l) = 1

2
(ai + ak),

m∑

l=1

λl f (y
(l)) ≤ 1

2
( f (ai ) + f (ak)), (4.11)

where λl > 0 for l = 1, 2, . . . ,m and
∑m

l=1 λl = 1 (cf., Theorem 1). Since the first
component of (ai + ak)/2 is zero, the first component of each y(l) must also be zero,
which means that each y(l) coincides with a j for some j = j(l) ∈ I 01 . Hence we have
y(l) p ≤ f (y(l)) for l = 1, 2, . . . ,m by (4.6). Using this and (4.11) we obtain

1

2
(ai + ak)p =

m∑

l=1

λl y
(l) p ≤

m∑

l=1

λl f (y
(l)) ≤ 1

2
( f (ai ) + f (ak)).

The above argument shows that (4.10) can be derived from the inequalities in (4.6).

For j = 2, 3, . . . , n, define

I+
j = {i ∈ I 0j−1 | ai j = +1},
I 0j = {i ∈ I 0j−1 | ai j = 0},
I−
j = {i ∈ I 0j−1 | ai j = −1}.
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Then the original system (4.4) is equivalent to

max
k∈I−

1

⎧
⎨

⎩

n∑

j=2

akj p j − bk

⎫
⎬

⎭
≤ p1 ≤ min

i∈I+
1

⎧
⎨

⎩
bi −

n∑

j=2

ai j p j

⎫
⎬

⎭
,

max
k∈I−

2

⎧
⎨

⎩

n∑

j=3

akj p j − bk

⎫
⎬

⎭
≤ p2 ≤ min

i∈I+
2

⎧
⎨

⎩
bi −

n∑

j=3

ai j p j

⎫
⎬

⎭
,

...

max
k∈I−

n−1

{akn pn − bk} ≤ pn−1 ≤ min
i∈I+

n−1

{bi − ain pn} ,

max
k∈I−

n

{−bk} ≤ pn ≤ min
i∈I+

n

{bi } . (4.12)

Note that the expressions above are valid even when some of the index sets I+
j and/or

I−
j are empty.
Since ∂R f (x) is nonempty, there exists a real vector p satisfying the inequalities

(4.12). As for integrality, the last inequality in (4.12) shows that we can choose an
integral pn ∈ Z, since bi = f (ai ) for i ∈ I−

n ∪ I+
n and f is integer-valued. Then

the next-to-last inequality shows that we can choose an integral pn−1 ∈ Z, since
akn pn −bk ∈ Z for k ∈ I−

n−1 and bi −ain pn ∈ Z for i ∈ I+
n−1. Continuing in this way

we can see the existence of an integer vector p ∈ Z
n satisfying (4.12). This shows

∂Z f (x) 	= ∅, completing the proof of Theorem 3.

Remark 7 Suppose that ∂R f (x) is a bounded polyhedron for an integrally convex
function f : Zn → Z∪{+∞} and x ∈ dom f . The expression (4.12) shows that there
exists an integral vertex of ∂R f (x). Indeed we can choose the (finite) upper bound
in (4.12) for each pi . It is emphasized, however, that not every vertex is an integral
vector. ��

5 Concluding remarks

The established biconjugacy implies that there is a one-to-one correspondence between
the class FIC of integer-valued integrally convex functions and the class of their
integral conjugates F•

IC = { f • | f ∈ FIC}. By the conjugacy theorems related to
L- and M-convex functions (see [11, Fig. 8.1]), the class F•

IC also contains separa-

ble convex, L-convex, L�-convex, M-convex, M�-convex, L�
2-convex, and M

�
2-convex

functions. A direct characterization of F•
IC is an interesting question and is left for

the future. It will be also interesting to characterize its subclasses F•
BS = { f • |

f : integer-valued BS-convex} and F•
UJ = { f • | f : integer-valued UJ-convex}.
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