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Abstract
We study optimization problems with interval objective functions. We focus on set-
type solution notions defined using the Kulisch–Miranker order between intervals.
We obtain bounds for the asymptotic cones of level, colevel and solution sets that
allow us to deduce coercivity properties and coercive existence results. Finally, we
obtain various noncoercive existence results. Our results are easy to check since they
are given in terms of the asymptotic cone of the constraint set and the asymptotic
functions of the end point functions. This work extends, unifies and sheds new light
on the theory of these problems.

Keywords Asymptotic cones · Asymptotic functions · Coercivity properties ·
Coercive and noncoercive existence results · Set-type solutions · Interval
optimization problems

1 Introduction

Optimization problems are significant since they are applied to many research fields.
As pointed out in [23], depending on the choice of the coefficients of the objective
function, we have different types of problems: when they are numbers, we have deter-
ministic problems; when they are random variables with known distributions, we have
stochastic problems; and when they are closed intervals, we have interval problems.
The last type of problems is important since it allows us to deal with nonstatistical and
nonprobabilistic uncertain optimization problems. The aim of this paper is to develop
a general theory for studying these problems.

There exist two types of solution notions for an interval optimization problem:
vector- and set-type solutions. In this paper, we focus on the latter, where the images
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of the objective function are compared using the Kulisch–Miranker order. An interval
optimization problem, by considering this order, can be cast as a bi-objective optimiza-
tion problem and it is a particular case of a set optimization problem. Consequently,
some of our results are consequences of well-known results for such problems. How-
ever, we study the interval optimization problem from scratch and obtain our main
results by exploiting the structure of interval functions. An advantage of our results lies
in the fact that they are easy to check since they are given in terms of the asymptotic
cone of the constraint set and the asymptotic functions of the end point functions.

The paper is organized as follows. In Sect. 2, we formulate the problem, introduce
the notation, recall notions of interval arithmetic, asymptotic cones, asymptotic func-
tions, scalar minimization problems, convergence of intervals and orders between
them. We define vector- and set-type solution notions of an interval optimization
problem. We cast this problem as a bi-objective optimization problem. In Sect. 3,
we study properties of level, colevel, and set-type solutions, prove an existence
result when the constraint set is bounded and provide a formula for the solution set
by using linear scalarizations. In Sect. 4, we recall some classes of interval func-
tions and study their properties. In Sect. 5, we deal with problems with unbounded
data. We use asymptotic cones and asymptotic functions to obtain bounds for the
asymptotic cones of level, colevel and solution sets. By using this information, we
obtain coercivity properties and coercive existence results. We also obtain various
noncoercive existence results. Finally, in Sect. 6, we provide a summary of conclu-
sions.

2 Formulation of the problem, notation and preliminaries

In the last years, several problems in science and technology have been formulated as
an interval optimization problem. We illustrate this with an example.

Example 1 [19] The portfolio selection problem of n investment types can be formu-
lated as the following scalar optimization problem:

Minimize ϕ(x) := 1
2

n∑

i, j=1
σi j xi x j

subject to
n∑

i=1
xi = 1, xi ≥ 0, i ∈ {1, . . . , n},

where (σi j ) is a symmetric matrix with σi j being the covariance between Ri and R j

where Ri is the return and xi is the investment fund devoted to the investment type
i ∈ {1, . . . , n}, and ϕ(x) is the risk of investment of x = (x1, . . . , xn)�. Regrettably,
due to various kinds of uncertainties, it is difficult to determine the coefficients σi j ,
but we can determine intervals [aLi j , aUi j ] that contain them. So, we can reformulate
this problem as follows:
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Minimize f (x) := 1
2

n∑

i, j=1
[aLi j , aUi j ]xi x j

subject to
n∑

i=1
xi = 1, xi ≥ 0, i ∈ {1, . . . , n}.

By using operations with intervals, we can write the objective function as f (x) =
[ f L(x), f U (x)], that is an interval function.

In this paper, we study the interval optimization problem (for short, IOP) formulated
as follows:

(P)
Minimize f (x) := [ f L(x), f U (x)]
subject to x ∈ C,

where C ⊂ R
n is a nonempty set and f L , f U : Rn → R are proper scalar functions

with domain C and f L(x) ≤ f U (x) for all x ∈ C . Clearly, f L(x) = f U (x) = +∞
for all x /∈ C , so we set f (x) = ∅ for such x . We denote the interval function by
(C, f ) and its end point functions by (C, f L) and (C, f U ).

We list some interval functions that have been studied in the literature.

Example 2 Consider (Ci , fi ) for i ∈ {1, . . . , 4} :
(i) [21] C1 = {x : Ax = b, x ≥ 0} and f1(x) =∑n

i=1 xi [aLi , aUi ];
(i i) [19] C2 = {x : ∑n

i=1 xi = 1, x ≥ 0} and f2(x) = 1
2

∑n
i, j=1 xi x j [aLi j , aUi j ];

(i i i) [17] C3 = {x : Ax = b, x ≥ 0} and f3(x) =
∑n

i=1 xi [aLi , aUi ] + [cL , cU ]
∑n

i=1 xi [bLi , bUi ] + [dL , dU ] ;
(iv) [3] C4 = {x : ∑n

j=1 xi j = ai ,
∑m

i=1 xi j = b j ,
∑m

i=1 ai =
∑n

j=1 b j , x ≥ 0}

and f4(x) =
∑m

i=1
∑n

j=1 xi j [aLi j , aUi j ]
∑m

i=1
∑n

j=1 xi j [bLi j , bUi j ]
.

There exist various solution notions for problem (P). For instance,we have vector-type
solutions that have been defined in [18] as follows.

Definition 1 A vector x̄ is said to be a vector-type solution of problem (P), denoted
by x̄ ∈ Eff(C, f ), if x̄ ∈ C and f L(x̄) = inf f (C); i.e., x̄ ∈ argminC f L .

This type of solution is not suitable since other elements of f (x̄) that could be ‘bad
elements’ are ignored. This occurs since when finding them we do not compare the
images of the objective function. To compare them, we require some orders between
intervals. In this work, we consider the Kulisch–Miranker order introduced in [16].

Let Kc := {A = [aL , aU ] : aL , aU ∈ R, aL ≤ aU } be the family of nonempty
bounded closed intervals. For A and B being from this family, the Kulisch–Miranker
order between them is defined by:

A ≤s B ⇐⇒ aL ≤ bL , aU ≤ bU and A <s B ⇐⇒ aL < bL , aU < bU .

This order has been employed to define a standard for interval arithmetic in [15].
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We recall some operations with intervals A, B ∈ Kc and λ ∈ R:

A + B := [aL + bL , aU + bU ],
λA :=

{ [λaL , λaU ], if λ ≥ 0;
[λaU , λaL ], if λ < 0,

A/B := [min T ,max T ],

where T := { aL
bL

, aL

bU
, aU

bL
, aU

bU
} with bL , bU �= 0 (see [19,22,23]).

Remark 1 (i) Let K be a pointed convex cone of a real linear space Y . The following
orders between nonempty setsU and V from Y have been used in set optimization (see
[9,12,14]): U �l V if V ⊂ U + K ; U �u V if U ⊂ V − K ; and U �s V if U �l V
and U �u V . If in addition K is solid, then U ≺l V if V ⊂ U + int K ; U ≺u V if
U ⊂ V − int K ; and U ≺s V if U ≺l V and U ≺u V . Clearly, if Y = R, K = R+
and the sets are from Kc, then �s and ≺s coincide with ≤s and <s , respectively.

(i i) The order ≤s is compatible with the addition and multiplication with nonneg-
ative numbers; i.e., for all A, B,C, D ∈ Kc it holds that A ≤s B and C ≤s D imply
A + C ≤s B + D, A ≤s B and λ ≥ 0 imply λA ≤s λB. The order <s is compatible
with the addition and multiplication with positive numbers.

(i i i) [10] The order A ≤cw B is defined by aC ≤ bC and aW ≤ bW , where
aC := 1

2 (a
L + aU ) is the center and aW := 1

2 (a
U − aL) is the half-width of the

interval A. The orders ≤s and ≤cw are not comparable. Indeed, [5, 7] ≤s [10, 11] but
[5, 7] �≤cw [10, 11] and [5, 7] �≤s [4, 9] but [5, 7] ≤cw [4, 9].

(iv) [4] The order A ≤ls B is defined by aL ≤ bL and aS ≤ bS , where aS :=
aU − aL is the width of the interval A; A <ls B by A ≤ls B and A �= B; and
A <lu B by A ≤s B and A �= B. Clearly, A <ls B implies A <s B which in turn
implies A <lu B. The reverse implication does not hold. Indeed, [1, 2] ≤lu [1, 3] but
[1, 2] ≮

s [1, 3]. For a comparative study of orders between intervals see [13].
(v) [8] The generalized Hukuhara difference between intervals always exists and

is defined by A �gH B := [min{aL − bL , aU − bU },max{aL − bL , aU − bU }]. It
is easy to check that A ≤s B iff (A �gH B)U ≤ 0. Moreover, if A ≤cw B then
(A�gH B)L ≤ 0 and (A�gH B)C ≤ 0. This difference has been used in [8] to define
a comparison index for interval orders.

Set-type solution notions for problem (P) have been defined in [18] via comparisons
of the images by using the Kulisch–Miranker order as follows.

Definition 2 A vector x̄ ∈ C is said to be:

– an s-efficient solution of problem (P), denoted by x̄ ∈ Effs(C, f ), if x ∈ C and
f (x) ≤s f (x̄) imply f (x̄) = f (x).

– a weakly s-efficient solution of problem (P), denoted by x̄ ∈ WEffs(C, f ), if
there is no x ∈ C such that f (x) <s f (x̄).

We will study only weakly s-efficient solutions.

Remark 2 (i) Effs(C, f ) ⊂WEffs(C, f ).
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A study of interval optimization problems 863

(i i) If f L = f U = ϕ, with ϕ being a scalar function, then Effs(C, f ) =
WEffs(C, f ) = argminC ϕ.
(i i i) Problem (P) can be cast as the bi-objective optimization problem:

Minimize f̃ (x) := (
f L(x), f U (x)

)�

subject to x ∈ C,

where f̃ is the associated vector function and R
2 is ordered by: x ≤

R
2+ y if

y − x ∈ R
2+, i.e., x1 ≤ y1 and x2 ≤ y2 and x <

R
2+ y if y − x ∈ intR2+, i.e.,

x1 < y1 and x2 < y2. A vector x̄ ∈ C is said to be a weakly efficient solution
of this problem, denoted by x̄ ∈ WEff(C, f̃ ), if there is no x ∈ C such that

f̃ (x) <
R
2+ f̃ (x̄). As [aL , aU ] <s [bL , bU ] iff (

aL , aU
)�

<
R
2+

(
bL , bU

)�
, we

have

WEffs(C, f ) =WEff(C, f̃ ). (1)

Clearly, f̃ (WEffs(C, f )) = WMin f̃ (C) := {y ∈ f̃ (C) : (y − intR2+) ∩
f̃ (C) = ∅}.
(iv) Let ≤a , <a and ≤b, <b be orders in Kc. We can define set-type solutions of
problem (P) by using them; i.e., we have Eff t (C, f ) and WEff t (C, f ) with t ∈
{a, b}. Clearly, if A ≤a B implies A ≤b B (resp. A <a B implies A <b B) for all
A, B ∈ Kc, then Effb(C, f ) ⊂ Effa(C, f ) (resp.WEffb(C, f ) ⊂WEffa(C, f )).
For the orders in Remark 1, we have WEff lu(C, f ) ⊂ WEffs(C, f ) ⊂
WEff ls(C, f ).

For an interval function (C, f ), we denote by Gph(C, f ) := {(x, y) ∈ C × R : y ∈
f (x)} its graph, by Epis(C, f ) := {(x,Y ) ∈ C × Kc : f (x) ≤s Y } its epi-
graph, by Coepis(C, f ) := {(x,Y ) ∈ C × Kc : Y �<s f (x)} its coepigraph, by
Levs(C, f ,Y ) := {x ∈ C : f (x) ≤s Y } its level set at height Y ∈ Kc and by
Colevs(C, f ,Y ) := {x ∈ C : Y �<s f (x)} its colevel set at height Y ∈ Kc, by
f (A) := ∪x∈A f (x) the imageof A ⊂ R

n , andby (C, f̃ ) the associated vector function
f̃ := ( f L , f U )�. Clearly, Epis(C, f ) ⊂ Coepis(C, f ), Gph(C, f ) ⊂ Coepis(C, f )
and Levs(C, f ,Y ) ⊂ Colevs(C, f ,Y ).

We recall some notions that allow us to establish coercivity properties and existence
results for the scalar minimization problem:

(P ′) Minimize ϕ(x)
subject to x ∈ C,

where ϕ : R
n → R is a proper function with dom ϕ = C , i.e., ϕ(x) = +∞ for

all x /∈ C . We denote the function by (C, ϕ), by argminC ϕ its solution set, by
lev(C, ϕ, λ) := {x ∈ C : ϕ(x) ≤ λ} its level set at height λ ∈ R and by epi(C, ϕ) :=
{(x, y) ∈ C × R : ϕ(x) ≤ y} its epigraph.

When the constraint set is bounded, we have the following existence result: if
(C, ϕ) is lsc with C compact, then argminC ϕ is nonempty and compact. To obtain an
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existence result when the constraint is unbounded, we use the notions of asymptotic
cone and asymptotic function (see [1,2,20]).

The asymptotic cone of a set C ⊂ R
n is defined by

C∞ :=
{

u ∈ R
n : ∃tk →+∞, ∃xk ∈ C s.t.

xk

tk
→ u

}

and ∅∞ = {0}. (2)

This notion characterizes the boundedness of a set as follows:

C is bounded ⇐⇒ C∞ = {0}. (3)

If C is closed and convex, then for all x ∈ C

C∞ =
{
u ∈ R

n : x + λu ∈ C, ∀λ ≥ 0
}
. (4)

The asymptotic function of (C, ϕ) is the function ϕ∞ : R
n → R with domain D,

denoted by (D, ϕ∞), such that epi(D, ϕ∞) = [epi(C, ϕ)]∞. Clearly, D ⊂ C∞ and

ϕ∞(u) = inf

{

lim inf
k→+∞

ϕ(tkuk)

tk
: tk →+∞, uk → u

}

. (5)

If (C, ϕ) is lsc and convex with C closed and convex, then for all x ∈ C

ϕ∞(u) = lim
t→+∞

ϕ(x + tu)− ϕ(x)

t
= sup

t>0

ϕ(x + tu)− ϕ(x)

t
. (6)

For any λ ∈ R, we have

lev(C, ϕ, λ)∞ ⊂ {v ∈ C∞ : ϕ∞(v) ≤ 0}, (7)

where the equality holds, if (C, ϕ) is lsc and convex with C is closed and convex,
and the level set is nonempty. The right-hand set in (7), that is a closed cone, plays an
important role in our approach. We denote it by

R(C, ϕ) := {v ∈ C∞ : ϕ∞(v) ≤ 0}.

We say that (C, ϕ) is coercive if ϕ∞ > 0 on C∞\{0}, and that it is level-bounded
if all its level sets are bounded. It is easy to check that (C, ϕ) is level-bounded iff
lim‖x‖→+∞ ϕ(x) = +∞, and that (C, ϕ) is coercive iff R(C, ϕ) = {0}. From (3) and
(7), we have that if (C, ϕ) is coercive, then it is level-bounded.

We recall a necessary condition from [1].

Theorem 1 If argminC ϕ is nonempty, then ϕ∞ ≥ 0 on C∞.

We recall a coercive existence result (see [1, Corollary 3.2.4] or [2, Proposition 3.1.3]).
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Theorem 2 (a) If (C, ϕ) is lsc with C closed and has one bounded level set, then
argminC ϕ is nonempty and compact.

(b) If (C, ϕ) is lsc and convex with C closed and convex, then the following statements
are equivalent:

(i) R(C, ϕ) = {0} (or equivalently (C, ϕ) is coercive);
(ii) (C, ϕ) is level-bounded (or equivalently lim‖x‖→+∞ ϕ(x) = +∞);
(iii) argminC ϕ is nonempty and compact.

We recall a noncoercive existence result from [1, Theorem 15.1.1]. To do this, we
recall the set:

K (C, ϕ) := {v ∈ C∞ : ϕ∞(v) = 0}.

If (C, ϕ) is convex with C convex and ϕ∞ ≥ 0 on C∞, then K (C, ϕ) is a closed
convex cone. Moreover, K (C, ϕ) = −K (C, ϕ) iff K (C, ϕ) is a linear subspace.

Theorem 3 If (C, ϕ) is lsc and convex with C closed and convex, ϕ∞ ≥ 0 on
C∞, and K (C, ϕ) = −K (C, ϕ), then argminC ϕ is nonempty and closed (possibly
unbounded).

A function (C, ϕ) is said to be asymptotically directionally constant (adc), if v ∈
K (C, ϕ) implies ϕ(x + ρv) = ϕ(x) for all x ∈ C and ρ ∈ R. Under the hypothesis
of Theorem 3, we have K (C, ϕ) = −K (C, ϕ) iff (C, ϕ) is adc (see [2], for more
details).

We recall another noncoercive existence result from [11] that holds without convex-
ity assumptions. To this end, we approximate problem (P ′) by the family of problems
with εk ↘ 0:

(P ′k)
Minimize ϕk(x) := ϕ(x)+ εk

2 ||x ||2
subject to x ∈ C .

Theorem 4 If (C, ϕ) is lsc with C closed, lim||x ||→+∞ ϕk(x) = +∞ for each k,
and the following condition holds: for any sequence {xk} in C with ||xk || → +∞,
xk

||xk || → u and {ϕ(xk)} bounded from above, there exist scalars ρk ∈ (0, ||xk ||) and
k0 = k0({ρk}, {xk}) such that xk −ρku ∈ C and ϕ(xk −ρku) ≤ ϕ(xk) for all k ≥ k0,
then argminC ϕ is nonempty and closed (possibly unbounded).

Finally, to perturb intervals, we recall the Pompeiu-Hausdorff distance between inter-
vals A and B from Kc defined in [19] by

dI∞(A, B) := max
{
|aL − bL |, |aU − bU |

}
.

By using it, we define a metric on R
n ×Kc by

dI((x, A), (y, B)) := ||x − y|| + dI∞(A, B).
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Clearly, for {(xk, Ak)} and (x, A) from R
n ×Kc, we have

dI((xk, Ak), (x, A))→ 0 ⇐⇒ xk → x, aLk → aL , aUk → aU .

3 Properties of level, colevel and solution sets

We obtain various properties and formulas for level, colevel and solution sets.

Proposition 1 If x̄ ∈ WEffs(C, f ) and f (x̂) ≤s f (x̄) for some x̂ ∈ C, then x̂ ∈
WEffs(C, f ); i.e., Levs(C, f , f (x̄)) ⊂WEffs(C, f ).

Proof On the contrary, if there exists x̂ ∈ C such that f (x̂) ≤s f (x̄) but that x̂ /∈
WEffs(C, f ), then there exists x0 ∈ C such that f (x0) <s f (x̂). Hence, f (x0) <s

f (x̄), which is a contradiction. ��
We obtain formulas for level, colevel and solution sets.

Lemma 1 For Y = [α, β] ∈ Kc, we have

Levs(C, f ,Y ) = lev(C, f L , α) ∩ lev(C, f U , β), (8)

Colevs(C, f ,Y ) = lev(C, f L , α) ∪ lev(C, f U , β), (9)

WEffs(C, f ) =
⋂

x̄∈C Colevs(C, f , f (x̄)). (10)

In addition, if (C, f L) and (C, f U ) are lsc with C closed, then level, colevel and
solution sets are closed.

Proof Formulas (8)–(9) are easy to check. Formula (10) follows from definition
and (9). The closedness of the sets follows from these formulas. ��
We relate the minimizers of the end point functions with the solution set.

Lemma 2

(argminC f L ∪ argminC f U ) ⊂WEffs(C, f ). (11)

Proof On the contrary, if there exists x̄ in the left-side such that f (x0) <s f (x̄) for
some x0 ∈ C , then f L(x0) < f L(x̄) and f U (x0) < f U (x̄), a contradiction. ��
Remark 3 (i) If argminC f L or argminC f U is nonempty, then WEffs(C, f ) is
nonempty. However, the solution set may be nonempty even though argminC f L

and argminC f U are empty. Indeed, for the function (C, f ) with C = R and
f (x) = [min{e−x − 1, 0},min{ex , 1}], the sets argminC f L and argminC f U are
empty but WEffs(C, f ) = R.

(i i) The inclusion in (11) may be strict even if (C, f L) and (C, f U ) are continuous
and convex with C closed and convex. Indeed, for (C, f ) with

C = [0, 4], f L(x) =
{− x

2 + 1, if 0 ≤ x < 2;
0, if 2 ≤ x ≤ 4,

f U (x) =
{
2, if 0 ≤ x < 1;
2x
3 + 4

3 , if 1 ≤ x ≤ 4,

we have argminC f L = [2, 4], argminC f U = [0, 1] and WEffs(C, f ) = [0, 4].
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We obtain a formula for the solution set that is related to inclusion (11). It is well-
known in multiobjective optimization (see [5, Propositions 3.9–3.10]). So, it can be
transferred to problem (P) via (1) but we prove it for completeness. To do this, for
ξ = (ξ1, ξ2)

� ∈ R
2+\{0}, we define the linear scalarization function: ϕξ, f (·) :=

ξ1 f L(·)+ ξ2 f U (·).
Lemma 3

⋃

ξ∈R2+\{0}
argminC ϕξ, f ⊂WEffs(C, f ), (12)

where the equality holds, ifWEffs(C, f ) is nonempty and f̃ (C)+ R
2+ is convex.

Proof The proof of (12) runs similarly as for (11). So, it remains to prove the reverse
inclusion. If x̄ is in the right-hand set, then by Remark 2 (i i i), we obtain that f̃ (C)∩
( f̃ (x̄)− intR2+) = ∅; thus, ( f̃ (C)+ R

2+) ∩ ( f̃ (x̄)− intR2+) = ∅. As f̃ (C)+ R
2+ is

convex, by a separation theorem there exists ξ ∈ R
2\{0} such that 〈ξ, f̃ (x) + p〉 ≥

〈ξ, f̃ (x̄) − q〉 for all x ∈ C , p ∈ R
2+ and q ∈ intR2+. From this, we conclude that

ξ ∈ R
2+\{0} and x̄ ∈ argminC ϕξ, f . ��

Remark 4 (i)ForC=R and f (x)=[−ex , ex ], we have argminC f L=argminC f U =
∅ but WEffs(C, f ) = argminC ϕξ, f = R for all ξ = (γ, γ )� with γ > 0. Note that
f̃ (C)+ R

2+ is convex although (C, f L) is non-convex.
(i i) [24] A vector function (C, f̃ ) is said to beR

2+-convexlike, if for every x, y ∈ C
and t ∈ [0, 1] there exists z ∈ C such that t f̃ (x) + (1 − t) f̃ (y) ⊂ f̃ (z) + R

2+. It is
known that (C, f̃ ) is R

2+-convexlike iff f̃ (C)+ R
2+ is convex.

(i i i) [7] If C is convex, then x̄ ∈ ∪ξ∈R2+\{0} argminC ϕξ, f iff x̄ ∈ WEffs(C, f )

and cone( f̃ (C)− f̃ (x̄)+ intR2+) is convex.

We obtain an existence result when the constraint set is bounded.

Theorem 5 If (C, f L) or (C, f U ) is lsc with C compact, then WEffs(C, f ) is
nonempty and bounded. If both end point functions are lsc, it is closed as well.

Proof If (C, f L) (resp. (C, f U )) is lsc with C compact, then argminC f L (resp.
argminC f U ) is nonempty. Hence WEffs(C, f ) is nonempty by Lemma 2. Clearly, it
is bounded. If both end point functions are lsc, then it is closed by Lemma 1. ��

Remark 5 (i)This result with lsc end point functions follows from (1) and an existence
result for multicriteria optimization problems with compact constraint sets and lsc
components (see [5, Theorem 2.19]).

(i i) If C is compact and only one of the end point functions is lsc, then the solution
set is nonempty but may not be closed. Indeed, for (C, f ) with

C = [0, 1], f L(x) = x, and f U (x) =
{
3, if x = 1;
2, if 0 ≤ x < 1,

only (C, f L) is lsc and WEffs(C, f ) = [0, 1).
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4 Classes of interval functions

We recall some classes of interval functions and study their properties.

Definition 3 An interval function (C, f ) with C closed is said to be

– s-upper semicontinuous (s-usc) at x̄ ∈ C , if for any interval A ∈ Kc such that
A <s f (x̄), there exists an open set U ⊂ R

n containing x̄ such that A <s f (x)
for every x ∈ C ∩U .

– s-lower semicontinuous (s-lsc) at x̄ ∈ C , if (C, f L) and (C, f U ) are lsc at x̄ .
– s-usc (resp. s-lsc), if it is s-usc (resp. s-lsc) at every x ∈ C .

Remark 6 [4,22] An interval function (C, f ) with C closed is said to be continuous
at x̄ ∈ C , if limC�x→x̄ dI∞( f (x), f (x̄)) = 0. Clearly, (C, f ) is continuous at x̄ iff
(C, f L) and (C, f U ) are continuous at x̄ .

Example 3 The functions in Example 2 are continuous on their domains. We will only
prove that (Rn, f1) is continuous. To do this, we first show that function (R, g) with
g(t) := t[a, b] (a < b) is continuous. Clearly, g(t) = [gL(t), gU (t)], where

gL(t) =
{
at, if t ≥ 0;
bt, if t < 0,

and gU (t) =
{
bt, if t ≥ 0;
at, if t < 0.

As these functions are continuous on R, function (R, g) is continuous. Setting
gi (xi ) := xi [aLi , aUi ] = [gLi (xi ), gUi (xi )] as above for i ∈ {1, . . . , n}, we have
f1(x) = [ f L1 (x), f U1 (x)] where f L1 (x) = ∑n

i=1 gLi (xi ) and f U1 (x) = ∑n
i=1 gUi (xi ).

As these functions are continuous on R, function (Rn, f1) is continuous.

We list some properties of these notions. To do this, in R
n ×Kc, we use the topology

induced by metric dI.

Proposition 2 Consider (C, f ) with C closed.

(a) The following statements are equivalent:

(i) Coepis(C, f ) is closed;
(ii) (C, f ) has closed colevel sets;
(iii) (C, f ) is s-usc;
(iv) (C, f ) is s-lsc.

(b) If (C, f ) is s-lsc, then Epis(C, f ) is closed.
(c) Epis(C, f ) is closed iff (C, f ) has closed level sets.

Proof (a): (i)⇒ (i i) Let Y ∈ Kc and {xk} ⊂ Colevs(C, f ,Y ) be such that xk → x .
We have {(xk,Y )} ⊂ Coepis(C, f ). By hypothesis, we obtain (x,Y ) ∈ Coepis(C, f );
thus, x ∈ Colevs(C, f ,Y ).

(i i) ⇒ (i i i) Suppose the implication were false. Then there exist x0 ∈ C and
Y 0 ∈ Kc, with f (x0) >s Y 0 such that for every k there exists a vector xk ∈ C ∩
B(x0, 1

k ) satisfying f (xk) �>s Y 0. Thus, {xk} ⊂ Colevs(C, f ,Y 0), xk → x0 but
x0 /∈ Colev(C, f ,Y 0), a contradiction.
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(i i i)⇔ (iv) It is trivial.
(iv)⇒ (i) It follows from Lemma 1.
(b): Let {(xk, Ak)} ⊂ Epis(C, f ) be such that dI((xk, Ak), (x, A)) → 0. We have

xk ∈ C , f L(xk) ≤ aLk and f U (xk) ≤ aUk for all k, xk → x , aLk → aL and aUk → aU .
After taking the lower limit and since C is closed, we obtain x ∈ C , f L(x) ≤ aL and
f U (x) ≤ aU ; thus, (x, A) ∈ Epis(C, f ).

(c): (⇒) Let Y ∈ Kc and {xk} ⊂ Levs(C, f ,Y ) be such that xk → x . As
{(xk,Y )} ⊂ Epis(C, f ), by hypothesis, we obtain (x,Y ) ∈ Epis(C, f ); thus,
x ∈ Levs(C, f ,Y ).

(⇐) Let {(xk, Ak)} ⊂ Epis(C, f ) be such that dI((xk, Ak), (x, A)) → 0. As
aLk → aL and aUk → aU , for an arbitrary ε > 0 there exists Nε ∈ N such that
aLk < aL + ε and aUk < aU + ε for all k ≥ Nε. Clearly, f (xk) <s [aL + ε, aU + ε];
i.e., xk ∈ Levs(C, f , [aL + ε, aU + ε]) for such k. As xk → x , by hypothesis,
we obtain x ∈ Levs(C, f , [aL + ε, aU + ε]); thus, x ∈ C , f L(x) < aL + ε and
f U (x) < aU+ε. After taking the limit ε → 0+, we get f L(x) ≤ aL and f U (x) ≤ aU ,
thus, (x, A) ∈ Epis(C, f ). ��
Remark 7 Parts (b)–(c) can be derived from properties of the associated vector func-
tion (C, f̃ ) (see Remark 2 (i i i) and [6, Proposition 2.5]).

Definition 4 An interval function (C, f ) with C convex is said to be

– s-convex, if f (t x + (1 − t)y) ≤s t f (x) + (1 − t) f (y) for all x, y ∈ C and
t ∈ (0, 1).

– strictly s-convex, if f (t x + (1 − t)y) <s t f (x) + (1 − t) f (y) for all x, y ∈ C ,
with x �= y and t ∈ (0, 1).

Clearly, strictly s-convex functions are s-convex.

Example 4 An interval function (C, f ) with C convex is said to be convex, if t f (x)+
(1 − t) f (y) ⊂ f (t x + (1 − t)y) for all x, y ∈ C and t ∈ (0, 1). Clearly, a convex
function is s-convex.

We list some properties of these notions.

Proposition 3 Consider (C, f ) with C convex.

(a) (C, f ) is s-convex iff (C, f L) and (C, f U ) are convex iff Epis(C, f ) is convex.
(b) If (C, f ) is s-convex, then its level sets, f̃ (C)+R

2+ and Colevs(C, f , [α, α]) are
convex.

(c) (C, f ) is strictly s-convex iff (C, f L) and (C, f U ) are strictly convex. Under this
property, we have WEffs(C, f ) = Effs(C, f ).

(d) If (C, f ) is strictly s-convex and the point x̄ is from WEffs(C, f ), then the set
{x ∈ C : f (x) = f (x̄)} is a singleton.

(e) If n = 1 and (C, f ) is s-convex, then WEffs(C, f ) is convex.

Proof Parts (a)–(b) are easy to check.
(c): The equivalence is trivial. To prove the equality, it is sufficient to prove that

WEffs(C, f ) ⊂ Effs(C, f ). On the contrary, if there exists x̄ ∈ WEffs(C, f ) such
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that x̄ /∈ Effs(C, f ), then there exists x ∈ C such that f (x) ≤s f (x̄) and f (x) �=
f (x̄). Defining z := t x + (1− t)x̄ for t ∈ (0, 1) and since x �= x̄ , by hypothesis, we
have z ∈ C and f (z) <s t f (x)+ (1− t) f (x̄) ≤s f (x̄), which is a contradiction.

(d): On the contrary, if for some x̄ ∈ WEffs(C, f ) there exists x ∈ C such that
x �= x̄ and f (x) = f (x̄), then for t ∈ (0, 1) and z̃ := t x̄ + (1− t)x , we have z̃ ∈ C
and f (z̃) <s t f (x̄)+ (1− t) f (x) = f (x̄), which is a contradiction.

(e): Let x1, x2 ∈ WEffs(C, f ), with x1 < x2 and x ∈ (x1, x2). If y ∈ C with
y > x , then x = αx1+(1−α)y for someα ∈ (0, 1). If we suppose that f (y) <s f (x),
then by s-convexity we obtain f (y) <s f (x1), a contradiction. Hence f (y) �<s f (x).
Similarly, we prove that if y ∈ C with y < x , then f (y) �<s f (x). Therefore,
x ∈WEffs(C, f ) and the solution set is convex. ��
Remark 8 (i) The uniqueness of solutions is an unusual property for IOPs. Part (d)

is a kind of ‘uniqueness property’ for these problems since under this condition the
function x �→ f̃ (x) restricted to the solution set is bijective.

(i i) Part (e) appears in [6, Theorem 3.9] for vector optimization problems. For
n ≥ 2, the solution set may not be convex even if (C, f ) is s-convex. Indeed, for
(C, f ) with C = [−1, 1]2 and f (x, y) = [min{y2, x2 + 1},max{y2, x2 + 1}], we
have WEffs(C, f ) = ({0} × [−1, 1]) ∪ ([−1, 1] × {0}).
It is important to point out that s-convexity is a restrictive property for interval func-
tions. Indeed, the ‘simple’ interval functions g(t) = t[a, b] (see Example 3) and
g(t) = t2[a, b] (a < 0 < b) are not s-convex since (R, gL) is non-convex in both
cases. For this reason, in what follows, we do not assume this property.

5 Main results

We first study the boundedness of level and colevel sets. To this end, we observe that
as f L ≤ f U , for all λ ∈ R and ξ = (ξ1, ξ2)

� ∈ R
2+\{0} it holds that

f L ≤ φξ, f

ξ1 + ξ2
≤ f U and ( f L)∞ ≤ φ∞ξ, f

ξ1 + ξ2
≤ ( f U )∞, (13)

lev(C, f U,λ) ⊂ lev(C, ϕξ, f , (ξ1 + ξ2)λ) ⊂ lev(C, f L, λ), (14)

R(C, f U ) ⊂ R(C, ϕξ, f ) ⊂ R(C, f L). (15)

From (13)–(15), we see that, if (C, f L) is level-bounded (resp. coercive), then
(C, ϕξ, f ) is level-bounded (resp. coercive) which in turn implies that (C, f U ) is level-
bounded (resp. coercive). From Levs(C, f ,Y ) ⊂ Colevs(C, f ,Y ) for Y = [α, β],
we conclude that, if (C, f ) has bounded colevel sets, then it has bounded level sets.
Moreover, by Lemma 1 and (13), we have

lev(C, f U , α) ⊂ Levs(C, f ,Y ) ⊂ lev(C, f U , β), (16)

lev(C, f L, α)⊂Colevs(C, f ,Y )⊂ lev(C, f L, β). (17)

From (16)–(17), we deduce the next result.
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Lemma 4 (a) (C, f ) has bounded level sets iff (C, f U ) is level-bounded.
(b) (C, f ) has bounded colevel sets iff (C, f L) is level-bounded.

We obtain bounds for the asymptotic cones of level and colevel sets.

Proposition 4 For Y ∈ Kc, we have

(a) Levs(C, f ,Y )∞ ⊂ R(C, f U ), where the equality holds, if (C, f U ) is lsc and
convex with C closed and convex, and the level set is nonempty.

(b) Colevs(C, f ,Y )∞ ⊂ R(C, f L), where the equality holds, if (C, f L) is lsc and
convex with C closed and convex, and the colevel set is nonempty.

Proof Parts (a) and (b) follow after taking the asymptotic cones to (16) and (17) and
applying (7), respectively. ��
Remark 9 From Proposition 4 and (3), we conclude that: If R(C, f U ) = {0}
(resp. R(C, f L) = {0}), then (C, f ) has bounded level (resp. colevel) sets. In
addition, if (C, f U ) (resp. (C, f L)) is lsc and convex with C closed and con-
vex, then for every nonempty level (resp. colevel) sets at heights Y and Z in
Kc, we have Levs(C, f ,Y )∞ = Levs(C, f , Z)∞ (resp. Colevs(C, f ,Y )∞ =
Colevs(C, f , Z)∞).

We study the boundedness of level sets.

Proposition 5 Consider the statements:

(a) R(C, f U ) = {0};
(b) (C, f ) has bounded level sets;
(c) lim||x ||→+∞ f U (x) = +∞;
(d) argminC f U is nonempty and compact.

The following implications hold: (a) �⇒ (b) ⇐⇒ (c). If (C, f U ) is lsc with C
closed, then (c) �⇒ (d). In addition, if (C, f U ) is convex with C convex, then all the
assumptions are equivalent.

Proof For implication (a) ⇒ (b) see Remark 9 and for equivalence (b) ⇔ (c) see
Lemma 4(a). For the remaining implications see Sect. 2. ��
Remark 10 Implication (b) ⇒ (a) does not hold without the convexity assumption.
Indeed, (C, f ) with C = R and f (x) = [0,√|x | ] has bounded level sets but
R(C, f U ) = R.

We study the boundedness of colevel sets.

Proposition 6 Consider the statements:

(a) R(C, f L) = {0};
(b) (C, f ) has bounded colevel sets;
(c) lim||x ||→+∞ f L(x) = +∞;
(d) argminC f L is nonempty and compact.
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The following implications hold: (a) �⇒ (b) ⇐⇒ (c). If (C, f L) is lsc with C
closed, then (c) �⇒ (d). In addition, if (C, f L) is convex with C convex, then all the
assumptions are equivalent.

Proof The proof runs as in Proposition 5. ��
We obtain bounds for the asymptotic cone of the solution set.

Proposition 7 (a) WEffs(C, f )∞ ⊂ R(C, f L), where the equality holds, if (C, f L)

is lsc and convex with C closed and convex, and argminC f L is nonempty.
(b) If (C, f U ) is lsc and convex with C closed and convex, and WEffs(C, f ) is

nonempty, then R(C, f U ) ⊂WEffs(C, f )∞.

Proof (a): By (10), properties of asymptotic cones [2, Proposition 2.1.9] and Propo-
sition 4(b), we have WEffs(C, f )∞ ⊂ ⋂

x∈C Colevs(C, f , f (x))∞ ⊂ R(C, f L).
We prove the reverse inclusion. After taking the asymptotic cones to both sides of
argminC f L ⊂WEffs(C, f ) and since argminC f L = lev(C, f L ,minC f L), by the
equality in (7), we obtain R(C, f L) ⊂WEffs(C, f )∞.

(b): If x̄ ∈ WEffs(C, f ), then by Propositions 1 and 4 (a), we obtain that
R(C, f U )=Levs(C, f , f (x̄))∞ ⊂WEffs(C, f )∞. ��
Remark 11 From part (a) and (3), we conclude that, if R(C, f L) = {0} then
WEffs(C, f ) is bounded.

We obtain a necessary condition that extends Theorem 1.

Proposition 8 IfWEffs(C, f ) is nonempty, then ( f U )∞ ≥ 0 on C∞.

Proof If x̄ ∈WEffs(C, f ), then f (x) �<s f (x̄); thus, f U (x) ≥ f L(x̄) for all x ∈ C .
Let u ∈ C∞ be fixed and {uk} and {tk} be such that {tkuk} ⊂ C , uk → u and
tk →+∞. As 1

tk
f U (tkuk) ≥ 1

tk
f L(x̄) for all k, after taking the lower limit, we obtain

lim infk 1
tk
f U (tkuk) ≥ 0. From this and (5), we have ( f U )∞(u) ≥ 0. ��

Remark 12 (i) If ( f U )∞(0) = 0 (e.g. when (C, f U ) is lsc and convex with C closed
and convex, see [20,Corollary 3.27]), then ( f U )∞ is proper (see [2, Proposition 2.5.1])
and thus ( f U )∞(u) = +∞ for all u /∈ C∞. In this case, the necessary condition reads
as follows: ( f U )∞ ≥ 0 on R

n .
(i i) The necessary condition is not sufficient. Indeed, (C, f ) with C = R and

f (x) = [ 12e−x , e−x ] satisfies the necessary condition since ( f U )∞ = δR+ but
WEffs(C, f ) = ∅.

(i i i)Condition: ( f L)∞ ≥ 0 onC∞, is not a necessary condition. Indeed, for (C, f )
with C = R and f (x) = [min{0,−x},max{0, x}], we have WEffs(C, f ) = R but
( f L)∞(v) < 0 for v > 0.

We now obtain various existence results when the constraint set is unbounded. It
is important to point out that the solution set may be empty even if the function is
continuous, as shown by (C, f ) with C = R and f (x) = [x, x + 1].

First, we obtain a coercive existence result that extends Theorem 2(a).
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Theorem 6 If (C, f ) is s-lsc with C closed and Colevs(C, f , f (x0)) is bounded for
some x0 ∈ C, then WEffs(C, f ) is nonempty and compact.

Proof The set A := Colevs(C, f , f (x0)) is compact byLemma1.This andTheorem5
imply that there exists x̄ in WEffs(A, f ). We assert that x̄ ∈ WEffs(C, f ). On the
contrary, there exists x ∈ C\A such that f (x) <s f (x̄). From this and since f (x0) <s

f (x), we obtain f (x0) <s f (x̄), which is a contradiction. Hence WEffs(C, f ) is
nonempty. This set is bounded since for x ∈ C\A we have that f (x0) <s f (x), so x
cannot be a solution. This set is closed by Lemma 1. ��

Second, we obtain a noncoercive existence result without convexity assumptions
that is related to Theorem 2(b).

Theorem 7 If (C, f ) is given with C closed, there exists ξ ∈ R
2+\{0} such that

(C, ϕξ, f ) is lsc and R(C, ϕξ, f ) = {0}, then WEffs(C, f ) is nonempty (possibly
unbounded).

Proof As (C, ϕξ, f ) is coercive, by Theorem 2 we conclude that argminC ϕξ, f is
nonempty. This and Lemma 3 imply that WEffs(C, f ) is nonempty. ��
Remark 13 (i) Taking ξ equal to (1, 0)� and then equal to (0, 1)�, and using
Remark 11, we obtain:
− If (C, f L) is lsc withC closed and R(C, f L) = {0}, thenWEffs(C, f ) is nonempty
and bounded.
− If (C, f U ) is lscwithC closed and R(C, f U ) = {0}, thenWEffs(C, f ) is nonempty.
The solution set may be unbounded in the second item. Indeed, for (C, f ) with
C = R and f (x) = [0, x2], we have R(C, f U ) = {0} since ( f U )∞ = δ{0} and
WEffs(C, f ) = R.

(i i) By (15), we see that R(C, f L) = {0} implies R(C, ϕξ, f ) = {0} that implies
R(C, f U ) = {0} that in turn implies the necessary condition.

(i i i) By rewriting [6, Theorems 3.1 and 3.11], devoted to vector optimization
problems (cf. Remark 2 (i i i)), we supplement the existence results above as follows:
− If (C, f ) is s-lsc withC closed and for all x ∈ C\Cr , whereCr := rB∩C for some
r > 0, there exists y ∈ Cr such that f (y) <s f (x), then WEffs(C, f ) is nonempty
and compact.
− If n = 1, C ⊂ R is a closed ray or the entire R and (C, f ) is s-lsc and s-convex,
then statements (a)–(d) of Proposition 6 are equivalent to each of the following:

(e) ∃r > 0, ∀x ∈ C\Cr , ∃y ∈ Cr : f (y) <s f (x);
( f ) WEffs(C, f ) is nonempty and compact (it is already convex).

Example 5 Let (C, g) be from Example 3. For ξ = (ξ1, ξ2)
� ∈ R

2+\{0}, we have

ϕξ,g(x) =
{

(ξ1a + ξ2b)x, if x ≥ 0;
(ξ1b + ξ2a)x, if x < 0.

As ϕ∞ξ,g = ϕξ,g , we have R(C, ϕξ,g) = {0} iff ϕξ,g(v) > 0 for all v �= 0 iff

{
Aξ > 0
ξ ≥ 0

where A =
(

a b
−b −a

)

.
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This and Theorem 7 imply that, if a < 0 < b then WEffs(C, f ) is nonempty.

Third, we obtain a noncoercive existence result that extends Theorem 3.

Theorem 8 If (C, f ) is given with C closed convex, there exists ξ ∈ R
2+\{0} such that

(C, ϕξ, f ) is lsc and convex, ϕ∞ξ, f ≥ 0 on C∞, and K (C, ϕξ, f ) = −K (C, ϕξ, f ), then
WEffs(C, f ) is nonempty (possibly unbounded).

Proof This result follows straightforwardly from Theorem 3 and Lemma 3. ��
Remark 14 (i) By (13), condition ϕ∞ξ, f ≥ 0 on C∞ implies the necessary condition.

(i i) There are problems which existence of solutions can be ensured by Theorem 8
but not by Theorem 7. Indeed, for (C, f ) with C = R and f (x) = [0,max{0, x}]
the hypothesis of Theorem 8 holds for ξ = (1, 0)�; thus, WEffs(C, f ) is nonempty
and equal to R. We cannot apply Theorem 7 since R(C, ϕξ, f ) = R if ξ2 = 0 whereas
R(C, ϕξ, f ) = R− if ξ2 > 0 for ξ ∈ R

2+\{0}.
(i i i) Without the convexity assumption, the solution set may be empty. Indeed,

(C, f ) with C = R and f (x) = [ 12e−|x |, e−|x |] has continuous non-convex end point
functions, ϕ∞ξ, f = 0 and K (C, ϕξ, f ) = R for all ξ ∈ R

2+\{0} but WEffs(C, f ) = ∅.
Finally, we obtain a noncoercive existence result without convexity assumptions

that extends Theorem 4. To this end, we approximate problem (P) by the family of
problems where εk ↘ 0:

(Pk)
Minimize f k(x) := f (x)+ εk

2 ||x ||2[1, 1]
subject to x ∈ C .

We first study the behavior of sequences {xk} with xk ∈WEffs(C, f k) for all k.

Lemma 5 (a) If ||xk || → +∞ and xk

||xk || → u, then u ∈ R(C, f L).

(b) If (C, f ) is s-lsc with C closed and xk → x̄ , then x̄ ∈WEffs(C, f ).

Proof (a): Clearly, u ∈ C∞. For z ∈ C being fixed, we have f k(z) �<s f k(xk);
thus, ( f k)U (z) ≥ ( f k)L(xk) for all k. From this, multiplying by 1

||xk || and setting

uk := xk

||xk || for all k, we have

1

||xk || f
L(||xk ||uk) ≤ 1

||xk || f
L(||xk ||uk)+ εk

2
||xk || ≤ 1

||xk || f
U (z)+ εk

2||xk || ||z||
2.

After taking the lower limit, by (5) we obtain ( f L)∞(u) ≤ 0; thus, u ∈ R(C, f L).
(b): As C is closed, we have x̄ ∈ C . For a fixed z ∈ C , we have f k(z) �<s f k(xk);

thus, ( f k)L(z) ≥ ( f k)L(xk) or ( f k)U (z) ≥ ( f k)U (xk) for all k. If ( f k)L(xk) ≤
( f k)L(z); i.e., f L(xk) ≤ f L(z)+ εk

2 ||z||2 for infinitely many k, then after taking the
lower limit and as (C, f L) is lsc, we obtain f L(x̄) ≤ f L(z). On the other hand, if
( f k)U (xk) ≤ ( f k)U (z) for infinitely many k, then, similarly, we obtain f U (x̄) ≤
f U (z). From both cases, we conclude that f (z) �<s f (x̄) and since z ∈ C was
arbitrary, we have x̄ ∈WEffs(C, f ). ��

123



A study of interval optimization problems 875

Theorem 9 If (C, f ) is s-lsc with C closed, lim||x ||→+∞( f k)U (x) = +∞ for all k
and the following condition holds: for any sequence {xk} in C with ||xk || → +∞,
xk

||xk || → u such that u ∈ R(C, f L) and { f U (xk)} is bounded from above, there

exist scalars ρk ∈ (0, ||xk ||) and k0 = k0({ρk}, {xk}) such that xk − ρku ∈ C and
f (xk − ρku) ≤s f (xk) for all k ≥ k0, then WEffs(C, f ) is nonempty and closed
(possibly unbounded).

Proof By Theorem 2(a) and hypothesis, there exists xk ∈ argminC ( f k)U for all k.
From this and Lemma 2, we have xk ∈WEffs(C, f k) for such k. We assert that {xk} is
bounded. On the contrary, we have ||xk || → +∞ and xk

||xk || → u, up to subsequences,

for some u. By Lemma 5(a), we have u ∈ R(C, f L). Let {ρk} and k0 be those from
the hypothesis. Clearly, f k(xk − ρku) �<s f k(xk) for all k ≥ k0; i.e.,

f L(xk)+ εk

2
||xk ||2 ≤ f L(xk − ρku)+ εk

2
||xk − ρku||2 (18)

or

f U (xk)+ εk

2
||xk ||2 ≤ f U (xk − ρku)+ εk

2
||xk − ρku||2. (19)

If (18) holds for infinitely many k ≥ k0, then by hypothesis, we have

f L(xk)+ εk

2
||xk ||2 ≤ f L(xk)+ εk

2
||xk − ρku||2,

i.e., ||xk || ≤ ||xk − ρku|| for such k. From this and

||xk−ρku||=
∥
∥
∥xk− ρk xk

||xk ||+ρk(
xk

||xk ||−u)

∥
∥
∥≤||xk ||(1− ρk

||xk || )+ ρk

∥
∥
∥

xk

||xk || − u
∥
∥
∥,

we obtain 1 ≤ || xk

||xk || − u|| for such k, which is a contradiction.
If (19) holds for infinitely many k ≥ k0, then similarly, we obtain a contradiction.

Therefore, {xk} is bounded. Hence xk → x̄ , up to subsequences, for some x̄ . From
this and Lemma 5(b), we have x̄ ∈ WEffs(C, f ) and the solution set is nonempty. It
is also closed by Lemma 1. ��
Remark 15 (i) By (13), we see that the weakest coercivity condition to impose is

lim||x ||→+∞( f k)U (x) = +∞.
(i i) The conclusion of Theorem 9 remains correct, if the limits are replaced by
( f U )∞(u) > −∞ for all u (see [11, Corollary 2.1]).
(i i i)The condition in Theorem 9 holds vacuously, if R(C, f L) = {0}.
(iv) Theorems 8 and 9 are not comparable. On the one hand, (C, f ) with C =
R and f (x) = [min{0, x3}, e−x ] satisfies the hypothesis of Theorem 9; thus,
WEffs(C, f ) is nonempty and equal to R+ but it does not satisfy the hypothesis
of Theorem 8 since ϕξ, f is non-convex when ξ1 > 0 and K (C, ϕξ, f ) = R+ when
ξ1 = 0 for ξ ∈ R

2+\{0}. On the other hand, (C, f ) from Remark 4(i) satisfies
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the hypothesis of Theorem 8 for ξ = (γ, γ )� with γ > 0; thus, WEffs(C, f ) is
nonempty and equal to R but it does not satisfy the hypothesis of Theorem 9.

6 Conclusions

Wehave studied set-type solutions of IOPs that are defined using theKulisch–Miranker
order. To deal with such problems with unbounded data, we have used tools from
asymptotic analysis. We have obtained bounds for the asymptotic cones of level,
colevel, and solution sets that have allowed us to deduce coercivity properties and
coercive existence results. We have employed scalarizations and regularizations of the
objective function to obtain two noncoercive existence results.

The results are easy to check for concrete problems, since they only require to
calculate the asymptotic cone of constraint sets and the asymptotic functions of end
point functions. To this end, there are plenty of formulas and calculus rules.

Some asymptotic tools have been developed in [9] to study set-type solutions of
set optimization problems considering the order �l ,≺l . This work is a first step in the
study of such problems but considering the order �s , ≺s .
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