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Abstract
In this note, we show that the singular value condition σmax(B) < σmin(A) leads to
the unique solvability of the absolute value equation Ax + B|x | = b for any b. This
result is superior to those appeared in previously published works by Rohn (Optim
Lett 3:603–606, 2009).
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1 Introduction

In this note, we consider the following absolute value equation (AVE)

Ax − B|x | = b, (1)

where A, B ∈ R
n×n and b ∈ R

n . We show that if matrices A and B satisfy

σmax(B) < σmin(A),

then the AVE (1) for any b has a unique solvability, where σmax and σmin, respec-
tively, denote the maximal and minimal singular values. This result is weaker than the
following condition

σmax(|B|) < σmin(A),

which was provided in [1] by Rohn, one can see [1] for more details.
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At present, the AVE (1) has attracted considerable attention because the AVE (1)
is used as a useful tool in optimization, such as the linear complementarity problem,
linear programming and convex quadratic programming, and so on.

Recently, it has been studied from two aspects: one is theoretical analysis, the other
is to develop many efficient methods for solving the AVE (1). The former focuses on
the theorem of alternatives, various equivalent reformulations, and the existence and
nonexistence of solutions, see [1–7]. Especially, in [6], the authors presented some
necessary and sufficient conditions for the unique solution of the AVE (1) with B = I ,
where I denotes the identity matrix. The later focuses on exploring some numerical
methods for solving the AVE (1), such as the smoothing Newton method [8], the
generalized Newton method [9], the sign accord method [10], the Picard-HSS method
[11], the relaxed nonlinear PHSS-like method [12], Levenberg–Marquardt method
[13], the finite succession of linear programs [14], the modified generalized Newton
method [15,16], the preconditioned AOR method [17] and the modified Newton-type
method [18].

2 Themain result

In this section, we will give our main result.
To give our main result, the following lemma is required.

Lemma 2.1 If matrices A and B satisfy

σmax(B) < σmin(A),

then the matrix (A − B)−1(A + B) is positive definite.

Proof Since σmax(B) < σmin(A), for all nonzero x ∈ R
n , we have

xT AAT x ≥ λmin(AA
T ) > λmax(BB

T ) ≥ xT BBT x .

Clearly,

xT (AAT − BBT )x > 0.

Noting that xT BAT x = xT ABT x . Further, we have

0 < xT (AAT − BBT + BAT − ABT )x = xT (A + B)(AT − BT )x . (2)

Let (AT − BT )x = y. By the simple computations, we have

xT (A + B)(AT − BT )x = yT (A − B)−1(A + B)y.

It follows that yT (A− B)−1(A+ B)y > 0 from Eq. (2), which implies that the matrix
(A − B)−1(A + B) is positive definite. ��
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Theorem 2.1 If matrices A and B satisfy

σmax(B) < σmin(A),

then the AVE (1) for any b has a unique solution.

Proof Let x+ = |x |+x
2 and x− = |x |−x

2 . Then

x = x+ − x−, |x | = x+ + x−. (3)

Substituting (3) into (1), we obtain

x+ = (A − B)−1(A + B)x− + (A − B)−1b. (4)

Based on the results in Lemma 2.1, (A − B)−1(A + B) is a P-matrix. Therefore, the
linear complementarity problem (4) is uniquely solvable for any b in [19] and so is
the AVE (1) for any b. ��

On the unique solvability of the AVE (1), the following result was provided in [1].

Theorem 2.2 [1] Let A, B ∈ R
n×n satisfy

σmax(|B|) < σmin(A),

then the AVE (1) for any b has a unique solution.

Remark 2.1 It is noted that the condition in Theorem 2.1 may be weaker than the
condition in Theorem 2.2. In fact, for B ∈ R

n×n , we have

BT B ≤ |BT B| ≤ |BT | · |B|.

Based on Theorem 8.1.18 in [20], we have

ρ(BT B) ≤ ρ(|BT B|) ≤ ρ(|BT | · |B|),

where ρ(·) denotes the spectral radius of the matrix. It follows that σmax(B) ≤
σmax(|B|).
Remark 2.2 When B = I , Theorem 2.1 reduces to Proposition 3 (i) in [2]. That is to
say, Theorem 2.1 is a generalization of Proposition 3 (i) in [2].

The following example shows that Theorem 2.2 in [1] may be invalid to judge
the unique solution of the certain AVE, whereas, Theorem 2.1 can judge the unique
solution of the certain AVE.

Example 2.1 Consider the following AVE

[
2.5 0
0 2.5

]
︸ ︷︷ ︸

A

[
x1
x2

]
−

[
2 −1
1 1

]
︸ ︷︷ ︸

B

[ |x1|
|x2|

]
=

[
1.5
0.5

]
. (5)
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By the simple computations, σmin(A) = σmax(A) = 2.5, σmax(B) = 2.3028 and
σmax(|B|) = 2.618. When we use Theorem 2.2 in [1], we find that σmin(A) <

σmax(|B|). Clearly, Theorem 2.2 is invalid to judge the unique solution of the AVE (5).
Whereas, when using Theorem 2.1, i.e., σmin(A) > σmax(B), we find that the AVE
(5) is unique solution. In fact, the unique solution of the AVE (5) is x1 = x2 = 1. This
further shows that Theorem 2.1 is indeed superior to Theorem 2.2 in [1] under certain
conditions.
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