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Abstract

In this paper, we first introduce and analyze a new algorithm for solving equilibrium
problems involving Lipschitz-type and pseudomonotone bifunctions in real Hilbert
space. The algorithm uses a new step size, we prove the iterative sequence generated
by the algorithm converge strongly to a common solution of equilibrium problem
and a fixed point problem without the knowledge of the Lipschitz-type constants of
bifunction. Finally, another similar algorithm is proposed and numerical experiments
are reported to illustrate the efficiency of the proposed algorithms.

Keywords Equilibrium problems - Pseudomonotone bifunction - Subgradient

extragradient method - Convex set

1 Introduction

In this paper, we consider the equilibrium problems (E P) of find x* € C such that
f(&x*,y)>0, VyeCcC, (1

where C is anonempty closed convex subset in areal Hilbert space H, f : Hx H —

R is a bifunction. The set of solutions of (1) is denoted by E P (f). This problem is

also known as the Ky Fan’s inequality due to his contribution to this field [1]. It
unifies many important mathematical problems, such as optimization problems, com-
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plementary problems, variational inequality problems, Nash equilibrium problems,
fixed point problems [2—4]. In recent decades, many methods have been proposed and
analyzed for approximating solution of equilibrium problems [5—13]. One of the most
common methods is proximal point method [5,6], but the method cannot be adapted
to peudomonotone equilibrium problems [7].

Another fundamental method for equilibrium problem is the extragradient-like
methods [6,7,9—12]. Some known methods use step sizes which depend on the
Lipschitz-type constants of the bifunctions [6,12]. That fact can make some restrictions
in applications because the Lipschitz-type constants are often unknown or difficult to
estimate.

Recently, iterative methods for finding a common element of the set of solutions of
equilibrium problems and the set of fixed points of operators in a real Hilbert space
have further developed by many authors [14—-16]. Very recently, Dang [8,10,11] pro-
posed algorithms which use a step size sequence for solving strong pseudomonotone
equilibrium problems in real Hilbert space.

The main purpose of this paper is to propose a new step size for finding a com-
mon element of the set of fixed points of a quasinonexpansive mapping and the set
of solutions of equilibrium problems involving pseudomonotone and Lipschitz-type
bifunctions.

The paper is organized as follows. In Sect. 2, we present some definitions and
preliminaries that will be needed in the paper. In Sect. 3, we propose the new algorithms
and analyze their convergence. Finally, some numerical experiments are provided.

2 Preliminaries

In this section, we recall some definitions and preliminaries for further use.
Definition 2.1 A bifunction f : C x C — R is said to be as follows:

(i) monotone on C if f(x,y)+ f(y,x) <0, Vx,y € C.
(ii) pseudomonotone on C if f(x,y) > 0= f(y,x) <0, Vx,y e C.
(iii) strongly pseudomonotone on C if there exists a constant y > 0 such that
[, z20= f(y,x) < —ylx —y|* Vx,y € C.
(iv) Lipschitz-type condition on C, if there exist two positive constants cy, ¢z such
that f(x,y) + f(y,2) = f(x,2) = ctllx = yI> = eally = 2|1*, Vx,y,z € C.

From the above definitions, we see that (i)=>(ii) and (iii)=>(ii).

Definition 2.2 A mapping & : C —> R is called subdifferentiable at x € C if there
exists a vector w € H such that h(y) — h(x) > (w,y —x),Vy € C.

Definition 2.3 Let S : H — H is a mapping with F(S) # (. Then

(1) S is called quasi-nonexpansive if |[S(x) — y|| < |lx — yll, Vx € H,y € F(S),
where F(S) is denoted the fixed point of S.

(ii) I — S is called demiclosed at zero if {x,} C H, x,—x and ||S(x,) — x,| — O,
it follows that x € F(S).
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Here, we assume that the bifunction f satisfies the following conditions:

(A1) f is pseudomonotone on C and f(x,x) =0 forallx € C.

(A2) f satisfies the Lipschitz-type condition on H.

(A3) f(x,.)is convex and subdifferentiable on H for every fixed x € H.

(A4) f isjointly weakly continuous on H x C in the sense that,ifx € H, y € C and
{xn}, {yn} converge weakly to x, y, respectively, then f(x,, y,) — f(x,y) as
n — oQ.

Remark 2.1 If f satisfies (A1) — (A4), then the set of solutions EP(f) of EP(1)
is closed and convex (see, [9,12]). If S is quasi-nonexpansive, then F(S) is a closed
convex subset of H [17, Proposition 1].

For a proper, convex and lower semicontinuous function g : C — (—o0, +o00] and
A > 0, the proximal mapping of g with A is defined by

. 1
prox;(x) = argmin{rg(y) + 5llx = yI* : y € C). x € H. )

The following lemma is a property of the proximal mapping [10,11,18].
Lemma 2.1 Forallx € H,y € C and A > 0, the following inequality holds:

Mg(y) — g(prox;g(x))} = (x — prox;g(x), y — proxg(x)). 3)

Remark 2.2 From Lemma 2.1, we note that if x = prox;,(x), then
x € Argmin{g(y) 1y e C}:={x € C:g(x) = ryrggg(y)}. “4)

For a closed and convex C C H, the (metric) projection Pc : H —> C is defined,
for all x € H such that Pc(x) = argmin{|| y — x ||: y € C}. It is known that P¢ has
the following property.

Lemma 2.2 Let C be a nonempty, closed and convex setin H and x € H. Then
(Pc(x) —x,y — Pc(x)) =0, VyeC.

Lemma2.3 Letu, v € H. Then |lu+v|> < |lul|®> +2(v, u + v).

Lemma 2.4 [19] Let {a,} be a nonnegative real sequence and AN > 0, Yn > N, such
that ay+1 < (1 — ap)a, + ayby, where {a,} C (0, 1), Z —o0n = o0 and {b,} is a

sequence such that lim sup b, < 0. Then 11m a, =0.
n— o0

Lemma 2.5 [20] Let {a,} be a nonnegative real sequence such that there exists a
subsequence {an } of {an} such that An; < Gnj+1 for all j € N. Then there exists
a nondecreasmg sequence {my} of N such that hm my = 00, and the following

properties are satisfied by all (sufficiently large) number k e N:

Amy = Amy+1 and a; < Amy+1-
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In fact, my is the largest number n in the set {1,2, ..., k} such that a, < a,+1.

The normal cone N¢ to C at a point x € C is defined by

Nex)={we H:(w,y—x) <0, Vy e C}.

Lemma 2.6 [21, Chapter 7] Let C be a nonempty convex subset of a real Hilbert space
H and g : C — R be a convex subdifferentiable and lower semicontinuous function
on C. Then, x* is a solution to the following convex problem

min{g(x) : x € C}

if and only if 0 € 9g(x™) 4+ Nc(x™), where dg(.) denotes the subdifferential of g and
Nc (x*) is the normal cone of C at x*.

3 Algorithm and its convergence

Inspired by the algorithms in [12-16,22-26] and viscosity scheme [27], we propose
the following method.

Algorithm 3.1

(Step 0) Take Ao > 0,x0 € H, u € (0, 1).
(Step 1) Given the current iterate x,, compute

. 1
yn = argmin{i, f (x,, y) + E”xn —yI1%, y € C} = proxs, (. (). (5)
(Step 2) Choose wy, € 92 f (x,,, yn) such that x, — A, w, — y, € Nc(y,), compute
. 1 2
zp = argmin{i, f (yn, y) + Ellxn = ylI7, y € Ty} = proxs, f,.)(xn),  (6)

where T,, = {v € H|(xp, — Xywp — yu, v — y,) < 0}
(Step 3) Compute #, = ayxo + (1 — ap)zn, Xp41 = Bpzn + (1 — B,)St, and

12— 2 ]
i = o =z Ml i F G )= f o 3) =S O 2)=0.(7)

Ans otherwise.

Any1=

Setn :=n + 1 and return to step 1.

Remark 3.1 The domain of the first proximal mapping y, = proxy, r(x,,.)(x,) is C.
The domain of the second proximal mapping z, = proxy, f(y,,.)(xx) is Tj.
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Remark 3.2 'We note that w,, exists and C C Tj,. Since y, = argmin{i, f (x,, y) +
Hlxn=yl%, y € C},by Lemma2.6, we obtain 0 € d2{A, f (xn, )+ 215, — ¥ 112} () +
Nc(yn). That is , there exists w;, € 92 f (x,,, yn) such that x,, — A,w;,, — ¥, € Nc(vn)-
Hence, there exists w € N¢(yy,) such that A, w;, + y, — x, + w = 0. Thus,

(Xn = Yn> Y — W) = (AW, Y — Yn) H (W, ¥y — Yu) < Ap{wp, y — yn). Yy € C.

That is (x;, — Apwy — Yn, ¥ — Yn) <0, Vy € C. Hence, C C T,,.
Lemma 3.1 The sequence {A,} generated by Algorithm 3.1 is amonotonically decreas-

ing sequence with lower bound min{m, Ao}

Proof 1t is easy to see that {)\,} is a monotonically decreasing sequence. Since
f satisfies the Lipschitz-type condition with constants ¢; and ¢, in the case of

S nszn) — fGus Yu) — f(Yns zn) > 0, we have

N(||xn_yn||2+||zn_yn ”2) > m(llxn, — )’n||2+||Zn_Yn||2) > M
20f ns 2n) = f Gy Yu) = f s 20)) ~ 2(ctl1xn =y 12 +c2llyn—2a1?) ~ 2 max{c, 02}(8)

Thus, the sequence {A,} has the lower bound min{m, o). O

Remark 3.3 1t is obvious the limit of {1, } exists and we denote . = lim A,. Clearly
n—oQ

A>0.If g < Then {A,} is a constant sequence.

P
2 max{cy,c2}’
The following lemma plays a crucial role in the proof of the Theorem 3.1.

Lemma 3.2 Suppose that S : H — H is a quasi-nonexpansive mapping. Let {x,},
{vn}, {zn} and {t,} be sequences generated by Algorithm 3.1 and F(S)NEP(f) # 0.
Then the sequences {x,}, {yn}, {zn} and {t,} are bounded.

Proof Since z,, = argmin{, f (yn,y) + %Hxn — y||2, y € T, }. By Lemma 2.1, we
get
A(fOny YY) = fOnszn)) = (X0 — 20,y — 2n), Yy € Ty ©)]

Note that F(S)NEP(f) S EP(f) S C CT,.Letu € F(S)N EP(f), substi-
tuting y = u into the last inequality, we have

An(f ns ) — [ (Yns2n)) = (Xn — Zns U — 2Zp). (10)

As u € EP(f), we obtain f(u,y,) > 0. Thus f(y,,u) < 0 because of the
pseudomonotonicity of f. Hence, from (10) and A,, > 0, we obtain

_)\nf(ynvZn)z (Xn — Zn, U — 2p). (11)
Note that w, € 92 f (Xn, yn), we get f(xn, ¥) — f(Xn, Yn) = (Wn, ¥y — yn), Vy €
H. In particular, substituting y = z, into the last inequality, we have f(x,, z,) —

f(Xn, Yn) = (wp, 2y — yn). That s,

A (fGns zn) — s Yn)) = An{Wyy Zn — Y- (12)
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By the definition of T,,, we have (x, — A, w;, — Yu, 2Zn — Yn) < 0. Then

AWy, Zn — Yn) = Xn — Yns Zn — Yn)-

Combining (11), (12) and (13), we have

2)\n(f(xna Zn) — f(xna yn) - f(yn’ Zn))
> 2()6,1 — Yn,Zn — .Vn> + 2<xn — Zn, U — Zp)
= X0 — Yull® + llyn — zall® = %0 — zall?

2 2 2
= lxn —ull” + llxn — zull” + llzn — ull”.
Thus

lzn — ull® < lxn — ull* = 10 — yall* = llyn — zall?
+ 2)w(f(xns Zn) - f(xnv yn) - f(yn’ Zn))-

By the definition of A,, and (15), we obtain

lzn — ull® < lxn — wll® = %0 — yull® = llyn — zall?
+ Z)Ln(f(xn, Zn) - f(xns YH) - f(ynv Zn))

2 2 2
= [lxn —ull” = xn — Yull” = lyn — zall

An
3 A1 (f Ceny z0) — s Yn) — fns 20))
n+1

2 2 2
< xw —ull” = llxn = Yull” = lyn — zall

+2

A
+ =l = yll® + llzn = yal?)-
n+1
Note that the limit
lim A, =u, O<u<l.

n—>00 " Ay

That is, AN > 0, such that Vn > N, 0 < A”’f‘—l < 1.
We obtain Vn > N, ||z, — ul| < ||x, — u].
Thus, Vn > N,

IXn1 —ull = 11Bpzn + (1 = Bn) Sty — ull
< Ballzn —ull + A = B)lISty — ull
< Bullza —ull + (A = B)lltn — ull
< Ballzn —ull + (A = Bu)llanxo + (1 — an)zn — ul|

(13)

(14)

(15)

(16)

a7

< Bullzn —ull + (1 = Bu)(nllxo — ull + (1 — ap)llzn — ull)
= Bu+ A= B)d —an)llzn —ull + (I = Bo)anllxo — ull
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max{llxo — ull, I, — ull}

<
< - = max{llxo — ull, [lxny —ull}. (18)

Hence the sequence {x,} is bounded. Clearly, {y,}, {z,} and {#, } are bounded. That
is the desired result. O

Theorem 3.1 Let S be a quasi-nonexpansive mapping such that I — S is demi-
closed at zero. Assume that {a,} C (0, 1), Zﬁio o, = oo, lim a, = 0 and
n— o0

Bn € [a, b] C (0, 1). Moreover, the assumptions (A1) —(A4) and F(S)NEP(f) # 0
hold. Then the sequence {x,} generated by Algorithm 3.1 converges strongly to
x* = Prsynepr(f)(Xo).

Proof Let x* = Pr(s)nep(f)(x0), by Lemma 2.2, we have
(xo —x*,z—x*) <0, Vz€ F(SYNEP(f). (19)

By the proof of Lemma 3.2, we get AN; > 0, Vn > Ny, ||z, — x*|| < [lx, — x*].
From Lemma 3.2, we have the sequence {x,}, {v,}, {z,} and {#,} are bounded. By
lemma 2.3, we have

Ixp1 — 3% = 1Bz + (1 — Bu) Sty — x*||?
= Bullzn — X117 + (1 = B)IStn — x*II* = Bu(1 = B) ISty — zal*
< Ballzn — x* 12+ (1 = B)llty — x*11* — Bu(1 — B) ISty — za?
= Bullzn — x> + (1 = B)lletnxo + (1 — otp)z, — x*?
— Bu(1 = BISta — zall?
< Bullzn = x*1* = Bu(l = B ISty — 2l
+ (1= ) Qa{xo — x*, ty — x*) + (1 — ) llzw — x*||%)
=(Bu+(1—=B) A—an)) za—x* |7 +2(1 =B )atn (xo—x*, ty—x*)
— Bu(1 = B)ISty — zall* (20)

Hence, for Vn > Nj, we have

241 =X 12 < (Bu-(1—Bp) (=) [0 —x* [P 42(1— B atn (x0 — x*, 1, — x*)
— Bu(1 = Bty — 241 21)

Moreover, by (20) and (16), we get

||xn+l_x*||2§(ﬁn+(l_lgn)(l_an))”Zn_X*||2+2(1_,Bn)an {(xo — X*v Iy — X*>

"
< lxn — x*1? = (1 = Ay ——)(lyn — xalI?
An+l
+1vn = zall®) + 201 = Bu)an (xo — x*, 1, — x*). (22)
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Case 1 Suppose that there exists N € N(N, > Nj), such that |[x,4+; — x*|| <
llx, —x*||, Vn > N,.Then lim |x, —x*|| exists and we denote lim |x, —x*|| = /.
n—0oo n—od

From (22), we get
7

)\n+1
< o — x*% = xng1 — 512 4 2(1 = Bu)on (xo — x*, 1, — x*). (23)

(1= 2y =) (lyn = X 1>+ llyn — 22l

Combining (23)and lim (1—1,5%=) = 1—u > 0, weobtain lim |lx,—y,| =0,
n— 00 n+1 n— 00
lim ||z, — yxll = 0and lim |z, — x,| = 0. Since {x,} is bounded, there exists a
n—o0 n—o0
subsequence {x,,} that converges weakly to some zo € H, such that

lim sup(xp — x™*, x, — x™) = lim (xo — x*, xp, — x™) = (x0 — x*, 20 — x¥). (24)
n—o00 k—o00

Then y,, —z0 and zg € C. Since y,, = ProXy, f(x,..) (xy,), by Lemma 2.1, we have

knk(f(xnk, y) - f(xnk, ynk)) > <)an - ynks y - yl‘tk>a Vy € C. (25)
Passing to the limit in the last inequality as k —> oo and using assumptions (A1),
(A4) and klirn A, = A > 0, we get f(zo,y) >0, Vy € C. Thatis zo € EP(f).
—00
Next we prove zg € F(S). Indeed, it follow from (21) that

: 2 2 2
0= lim [xps1 — 2|7 = llxn — 2" + aa (1 = B lxn — x|
n—oo

—2(1 = Bo)ag (xo — x*, 1y — x*¥)
< liminf(—B, (1 — B) ISty — zall*)
n—oo

= —limsup B, (1 — B) 1Sty — za I

n—o0

< —a(l — b) limsup || St, — za1°. (26)

n—o0

Hence lim ||St,—z,|| = 0.Sincet,—z, = o, (x0—2z,),weget lim ||f,—z,| = 0.
n—oQo . . n?)oo
Consequently, t,, —~zp and lim ||#, — St,]| = 0. Using the demiclosedness of the
n—0o0

mapping I — S, we have zg € F(S). Thatis zo € F(S) N EP(f). Using (19) and

(24), we obtain lim sup{xg — x™*, x,, — x™) = (xg — x*, zo — x™) < 0. Hence, we get
n—oo

lim sup(xo—x*, t, —x™) < lim sup(xo—x*, t, —x, )+ lim sup{xo—x*, x, —x*) <0.
n—o00 n—00 n—0oo
27

By (21), for Vn > N, we have
(1541 _x*||2§(/3n+(1_,3n)(1_O(n))||xn_x*||2+2(1_,3n)an (xo—X*, tn_X*>
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= (1 =y (1 = B)llxn — x*[ + (1 = Br)an2(x0 — x*, 1, — x*).
(28)

It follows from (27), (28) and Lemma 2.4, we obtain lim ||x, — x* ||2 =0.
n—oo

Case 2 There exists a subsequence {||x,; —x™ ||} of {[|x, —x™ ||} such that || x,; —x*|| <

%041 — x*|| for all j € N. From Lemma 2.5, there exists a nondecreasing sequence

my of N such that klim myj = oo and the following inequalities hold for all k¥ € N:
—00

0 < [lxm — X*[| < lIxm+1 — x*| and |xx — x*|| < [[Xm+1 — x| (29)
By (22), we have

"
i )Lmk+1
< Doty — X1 = Dot — X512 4 201 = B )ty (X0 — X*, t — x*). (30)

(1—2 YUy — X 12 4 19 — 2 1)

Combining (30) and lim (1 — A, )\L) =1—pu > 0, we obtain lim |x,, —
k—o00 mi+1 k—00
Ym Il = 0and klim |Zm; — Ym, | = 0. Using the same argument as in the proof of Case
— 00

1, we have lim sup;_, o (xo — x™, t,, — x™) < 0. Using (29) and the same argument
as in the proof of (28), for all my > Nj, we have

2mg1 =2 12 < (L= (L= B D) 12m, = 121 =By Yy 2(xX0—X*, ty —x )

< (1= (1= B D) 1K1 =5 1P+ (L= B Yt 2 (k0 =™, i —x™).
€1y

This implies that
Pmgr1 = X1 < 2000 — X%ty — %), Vg = Ny (32)
Since lim sup 2(xg — x*, t,,,, — x*) < 0, we obtain klim Xy +1 — x*|* = 0 and
— 00

k— 00
lim [|x,,, —x*||? = 0. Since [|xg —x*|| < [[Xp, +1—x*|, wehave lim [x;—x*|| = 0.
k— 00 k— 00

Therefore x; — x*. That is the desired result. O

If f(x,y) = (A(x),y —x),Vx,y € H, where A : H — H is a mapping. Then the
equilibrium problem become the variational inequality. That is, find x* € C such that

(A(x®),y —x*)>0, VyeC.

Moreover, we have
. 1 2
argmin{h, f (x,,y) + §||xn —ylI*, yeC}
2

, 1 A
= argmin{in(ACin), y = ) + 5|0 = yI* + 7"||Axn||2, y € C}
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o1
= argmin{||Cin = kA () - yI?, yeC)
= PC(xn - AnA(xn))

and
. 1 2
argmin{i, f (yu,y) + EHXn —yII%, ¥y € Tn} = Pr,(xn — A A(Yn)).

Remark 3.4 Let f(x,y) = (A(x),y — x), Vx,y € H.If A is Lipschitz-continuous,
i.e., there exists L > 0 such that

AG) =AW I<Llx—=yl, Vx,y€H.

Then the condition (A2) holds for f with ¢; = ¢; = % If A is monotone
and Lipschitz-continuous, the conditions (Al), (A3) and (A4) can be dropped in
Theorem 3.1. It is obvious that f(x, y) satisfies (A1) and (A3). Since f(x,y) =
(A(x), y — x) and (25), we get

)Vnk((A(xnk)s y - xnk> - <A(xnk)v Yo — xnk>) > <xnk — Yo Y — Ynk>v Vy e C.

That is
)‘nk<A(xn1<)’ y - }’nk> Z (xnk - ynk, y - Ynk), Vy € C

Using the monotonicity of A, for Vy € C we have

0< <)’nk — Xng, Y — YHk> +)\nk(A(xnk)s y = )’nk>
= <}’nk —Xns Y — )’nk> + )\nk (A(xnk)s y - xnk> + )‘nk (A(xnk)» Xnp — ynk>
5 ()’nk - -xnka y - ynk> +)¥nk (A(y), y _xnk> +)\nk (A(xnk),xnk - )’nk)

Let k — oo, using the facts lim ||y, — X, | =0, {y,,} is bounded and lim A, =
k—o0 k—o00

A > 0, we obtain (A(y),y — zo) = 0, Vy € C. Using the similar proof in [22]
(Using Minty Lemma), we have zg € EP(f).

Corollary 3.1 Let S be a quasi-nonexpansive mapping such that I — S is demiclosed
atzeroand f(x,y) = (A(x),y—x),Vx,y € H. Let A : H — H is a monotone and
Lipschitz-continuous mapping and F(S) N EP(f) # @. Assume that {a,} C (0, 1),
Z;O:o o, = 00, nli)rréoan = 0and B, € [a,b] C (0, 1). Then the sequence {x,}

generated by
M >0,x0€ H,ue (0,1),
Yn = Pc(xy — Ay A(xp)),
T, ={x € H{{(xy — 2y A(xp) — Yn, X — yu) < 0},

in = PTH (xn — A A(n)),
ty = opx0 + (1 —0p)zn, Xpp1 = Bnzn + (1 = By) Sty

converges strongly to x* = Pps)nEp(f)(X0)-
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Now we introduce another algorithm, which is Algorithm 3.1 does not consider the
fixed point. The proof of convergence is similar to Algorithm 3.1. We omitted the
proof. The algorithm is of the form

Algorithm 3.2

(Step 0) Take Ap > 0,x0 € H, u € (0, 1).
(Step 1) Given the current iterate x,, compute

. 1
yn = argmin{o f Cen, ¥) + 516 = Y%, v € C} = proxs, f(x,.) (xn)-

If x, = y,, then stop: x, is a solution. Otherwise, go to Step 2.
(Step 2) Choose wy, € 92 f (x5, Yn) such that x, — A, w, — y, € Nc(y,), compute

. 1
2w = argmin{in f (v, ¥) + 20 = I,y € Ty} = proxs, sy, (),

where 7, = {v € H|(x;, — Aywy, — yn, v — yu) < 0}.
(Step 3) Compute x,+1 = apx9 + (1 — @)z, and

. Xn—Yn 2 Zn—Yn 2 7
ml”{2(1’&1(1‘!;")_)/'!)(::!%)_}(le"?zn)) st i f s z0)—f s Yn) = f (Vns zn) > 0,

7y otherwise.

Antl =

Setn := n + 1 and return to step 1.

Remark 3.5 The domain of the first proximal mapping y, = proxy, r(x,,) () is C.
The domain of the second proximal mapping z, = prox;, r(y,,.)(xn) is Tj.

Remark 3.6 Under assumptions (A1) — (A4), from Lemma 2.1 and Remark 2.2, we
obtain that if Algorithm 3.2 terminates at some iterate, i.e., x, = y,,thenx, € EP(f).

Theorem 3.2 Assume that {a,} C (0,1), Y02 sy = 00 and lim «, = 0. Moreover,
n— 00

the assumptions (A1) — (A4) and E P(f) # ¥ hold. Then the sequence {x,} generated
by Algorithm 3.2 converges strongly to x* = Pgp(f)(xo).

4 Numerical experiments

In this section, we present some numerical experiments. We compare our algorithms
with the Dang’s algorithm (Algorithm in [12]) and Algorithm 1 in [15]. We take
oy = WMH) for all the methods. To terminate the algorithms, we use the condition
lyn — x,| < € for all the algorithms.

Problem 1 We consider the equilibrium problem for the following bifunction f :
H x H — R which comes from the Nash-Cournot equilibrium model in [10,12]

fx,y)=(Px+Q0y+gq,y—x),

@ Springer



1814 J.Yang, H. Liu

Table 1 Problem 1

m £ Dang’s Alg. Algorithm 3.2 Alg.1in [15]
Iter. Time Tter. Time Tter. Time
10 10-6 425 3.73 360 2.81 396 3.33
107 350 245 405 3.14 349 3.42
100 10~ 1192 79.72 1184 66.88 1155 151.99
10 1212 80.76 1149 77.41 1211 99.96
200 10-° 1836 214.01 1728 310.04 1778 513.87
10-° 1816 339.85 1746 333.90 1670 604.50

Table2 Problem 2

X0 e Algorithm 3.2 Dang’s Alg.

Iter. Time Iter. Time
&1 1073 9 14.08 9 11.79
o1 =13 1073 8 474 8 3.87
dsin() 1073 10 4228 10 36.03

where g € R™ is chosen randomly with its elements in [—m, m], and the matrices
P and Q are two square matrices of order m such that Q is symmetric positive
semidefinite and Q — P is negative semidefinite. In this case, the bifunction f satisfies
(A1) — (A4) with the Lipschitz-type constants ¢ = ¢ = 1251 see [9, Lemma 6.2].
For Alg.3.2, we take Ag = ﬁ and . = 0.9. For Dang’s algorithm and Algorithm 1
in [15], we take A = ﬁ. For Algorithm 1 in [15], we take S = [ and F(x) = x — xp.

For numerical experiments: we suppose that the feasible set C C R™ has the form
of

C={xeR":Ax < b},

where A is a matrix of the size k x m ( m = 10, 100,200 and £k = 100 ) with
its entries generated randomly in [—2,2] and b € R¥ is a vector with its elements
generated randomly in [1, 3]. The numerical results are showed in Table 1.

Problem2 Let H = L%([0, 1]) with norm ||x|| = ( fo‘ lx(1)[2d7)? and inner product
(x,y) = folx(t)y(t)dt,x, y € H.Thebifunction f isdefined by f(x, y) = (Ax, y—
x) and the operator A : H — H is defined by Ax(¢t) = max(0, x(t)), t € [0, 1] for
allx € H. It can be easily verified that A is Lipschitz-continuous and monotone. The
feasible setis C = {x € H : fol(t2 + Dx(¢)dt < 1}. Observe that 0 € EP(f) and
so EP(f) # 0. We take Ao = 0.7 and u = 0.9 for Alg.3.2 and A = 0.7 for Dang’s
algorithm. The results are presented in Table 2.
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Table 3 Problem 3

X0 £ Algorithm 3.1 Alg.1in [15]
Iter. Time Iter. Time
10 107° 19 0.0007 690 0.0008
10~10 59 0.0037 6896552 401
20 10° 17 0.0007 1380 0.0014
10~10 118 0.0031 13793104 8.82

Problem 3 The third problem was considered in [28], where f (x, y) = (A(x), y —x),
Vx,y € R. The mapping A : R — Risdefinedby A(x) =x +sinxand S: R - R
is defined by S(x) = 7sinx. The feasible set is C = [-2x, 27r]. It is easy to show
that A is monotone and Lipschitz-continuous with L = 2, S is a quasinonexpansive
mapping such that / — S is demiclosed at zero and 0 = F(S) N EP(f) # ¥, see [28,
Example 4.1]. We take Ao = 0.4, 8, = % and . = 0.9 for Alg.3.1. For Algorithm 1
in [15], we take B = 0, B, = %, F(x) = x — xp and A,, = A = 0.4. The numerical
results are showed in Table 3.

From the aforementioned numerical results, we see that the proposed algorithms
are effective.

5 Conclusions

In this paper, we consider the convergence results for equilibrium problem involving
the Lipschitz-type condition and pseudomonotone bifunctions but the Lipschitz-type
constants are unknown. We modify the Halpern subgradient extragradient methods
with a new step size. We prove the sequence generated by Algorithm 3.1 converge
strongly to a common solution of an equilibrium problem and a fixed point problem.
Another algorithm is proposed and some numerical experiments confirm the effec-
tiveness of the proposed algorithms.
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