
Optimization Letters (2020) 14:1681–1699
https://doi.org/10.1007/s11590-019-01462-5

ORIG INAL PAPER

Scheduling with common due date assignment to minimize
generalized weighted earliness–tardiness penalties

Shi-Sheng Li1 · Ren-Xia Chen1

Received: 9 February 2019 / Accepted: 7 August 2019 / Published online: 12 August 2019
© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Abstract
We investigate a single-machine common due date assignment scheduling problem
with the objective of minimizing the generalized weighted earliness/tardiness penal-
ties. The earliness/tardiness penalty includes not only a variable cost which depends
upon the job earliness/tardiness but also a fixed cost for each early/tardy job. We pro-
vide an O(n3) time algorithm for the case where all jobs have equal processing times.
Under the agreeable ratio condition, we solve the problem by formulating a series of
half-product problems, which permits us to devise a fully polynomial-time approxi-
mation scheme with O(n3/ε) time. NP-hardness proof is proved for a very special
case and fast FPTASes with O(n2/ε) running time are identified for two special cases.

Keywords Single-machine scheduling · Earliness–tardiness · Half-product · FPTAS

1 Introduction

In just-in-time (JIT) manufacturing systems, the decision-maker would like to find
a production plan such that all orders are completed neither too early nor too tardy.
Usually, JIT scheduling models presume the existence of order due dates and penalize
both early orders and tardy orders. The orders that are completed early/tardywill result
in penalties. These penalties include not only a variable penalty cost which depends
upon the earliness/tardiness of the order [2,9], but also a fixed charge which is incurred
once an order is not on time regardless of how early/tardy it is [21,23]. As a result,
in order to avoid earliness–tardiness penalties, assigning attainable order due dates
are very crucial for the manufacturer. On the one hand, prescribing shorter due dates
would increase the probability that the order will be delivered late. But then, setting
longer due dates would be undesirable to the customer or cause a customer to shut
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down operations. Therefore, there is an essential tradeoff between offering shorter due
dates and longer due dates. Furthermore, due date quotation is also an important issue
in a make-to-order JIT environment [4]. The due date assignment methods usually
used consist of common due date (CON), equal slack (SLK), total work time (TWK),
individual due date (DIF), etc.

The JIT scheduling problems have been an object of extensive research since the
early 1990s. In scheduling terms, a manufacturing facility is seen as a machine and an
order is seen as a job. Various scheduling criteria andmachine environments have been
studied in the literature [10]. In this paper, we address a single-machine JIT scheduling
problem with generalized earliness–tardiness penalties.

1.1 Notation and problem formulation

To formally describe the problem under study, we start with defining the notations that
will be used throughout this paper.

• J = {J1, J2, . . . , Jn}: the set of n jobs,
• p j : the processing time of job J j ,
• P: the total processing time of all jobs in J , i.e., P = ∑n

j=1 p j ,
• C j : the completion time of job J j in a given schedule,
• D: the assignable common due date for all jobs,
• Vj : the early indictor variable of job J j , where Vj = 1 if C j < D and Vj = 0
otherwise,

• Uj : the tardy indictor variable of job J j , where Uj = 1 if C j > D and Uj = 0
otherwise,

• E j : the earliness of job J j , where E j = max{0, D − C j },
• Tj : the tardiness of job J j , where Tj = max{0,C j − D},
• A: the set of early jobs, i.e., A = {J j : C j < D},
• B: the set of tardy jobs, i.e., B = {J j : C j > D},
• α: the unit due date assignment cost,
• β j : the unit earliness cost of job J j ,
• γ j : the unit tardiness cost of job J j ,
• δ j : the early weight of job J j ,
• θ j : the tardy weight of job J j ,
• [ j]: the subscript of the job scheduled in the j th position in a given sequence π .

The studied problem can be stated as follows. A set J = {J1, J2, . . . , Jn} of n
jobs has to be scheduled without preemption on a single machine. All jobs in J are
simultaneously available at time zero. Each job J j has an integer processing time p j .
A common due date D has to be determined for all jobs.

For a feasible schedule π of the n jobs, let C j be the completion time of job J j .
If C j < D, then job J j is said to be early; if C j = D, then job J j is said to be on
time; if C j > D, then job J j is said to be tardy. No penalty cost is incurred if a job
is on time. However, if job J j is early, it incurs a variable penalty cost β j E j and a
fixed penalty cost δ j ; and if job J j is tardy, it incurs a variable penalty cost γ j Tj and a
fixed penalty cost θ j . The goal is to determine a schedule π and a common due date D
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simultaneously that minimizes the generalized weighted earliness–tardiness penalties
which can be expressed as follows:

F(π, D) =
n∑

j=1

(αD + β j E j + γ j Tj + δ j V j + θ jU j ), (1)

where all parameters α, β j , γ j , δ j and θ j are assumed to be nonnegative integers.
Adopting the traditional 3-field scheme for scheduling problem, the studied problem

is denoted by 1|CON|∑n
j=1(αD+β j E j+γ j Tj+δ j V j+θ jU j ), whereCON indicates

that all jobs are assigned a common due date.
As a practical application of the scheduling problem under study, we consider the

production and delivery of the rotten perishable goods in the manufacturing industry.
Assume that all these goods constitute a single client’s order, so a common delivery
date to be prescribed for all the jobs has to be negotiated between the manufacturer
and client. When a job is finished after the delivery date, it will incur a tardiness
penalty which is composed of two components, tardiness and weighed number of
tardy job. The first component is usually concerned with the manufacturer’s contract
compensation for the client, which relies on how late the finished jobs are delivered,
while the second component is owing to the loss of client’s goodwill or the cost of
delivery, both of them are fixed charges. When a job is finished before the delivery
date, it will incur an earliness penalty which is also composed of two components,
earliness and weighted number of early job. The first component is associated with
the inventory cost which depends on how early the jobs are produced, and the second
component is due to the rotten perishable goods of short shelf life. The disposal of
these rotten goods has to be dealt with a discounted price, or even results in a loss of
fixed manufacturing cost. Based on these reasons, the above described situation can be
modeled a CON scheduling problem with the objective of minimizing the integrated
cost that consists of due date assignment, earliness, tardiness, weighed number of early
jobs and weighted number of tardy jobs.

Note that the studied problem is clearlyNP-hard since problem 1|CON|∑n
j=1 β j

(E j + Tj ) is alreadyNP-hard [11]. Designing fully polynomial-time approximation
schemes for theNP-hard problems that require strongly polynomial time are of special
interest [8,27].

For a minimization problem, a polynomial-time algorithm H is called a (1 + ρ)-
approximation algorithm if it delivers a solution that is at most of (1 + ρ) times the
optimal solution. A family of algorithms {Hε : ε > 0} is called a fully polynomial-
time approximation scheme (FPTAS) if, for each ε > 0, algorithm Hε is a (1 +
ε)-approximation algorithm that runs in polynomial time in the input size and 1/ε.

1.2 Literature review

Models related to JIT scheduling in the context of CON assignment have been an
topic of extensive research since the early 1980s. Panwalkar et al. [26] provided an
O(n log n) timematching algorithm for the problem1|CON|∑n

j=1(αD+βE j+γ Tj ).
De et al. [5] showed that the problem 1|CON|∑n

j=1(αmax{0, D − D0} + θ jU j ) is
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NP-hard in the ordinary sense, where D0 is a fixed threshold value that represents a
standard or an expected waiting period.When the threshold value D0 is zero, they gave
an O(n) time algorithm for the problem 1|CON|∑n

j=1(αD + θ jU j ). Hall and Pos-
ner [11] showed that the symmetric weighted problem 1|CON|∑n

j=1 β j (E j + Tj )

is NP-hard and presented an O(nP) pseudo-polynomial-time dynamic program-
ming (DP) algorithm, while the complexity issue of the asymmetric weighted problem
1|CON| ∑n

j=1(β j E j +γ j Tj ) is still open whether it is pseudo-polynomial-time solv-
able or stronglyNP-hard. Under the agreeable assumption that βi/pi ≥ β j/p j ⇐⇒
γi/pi ≥ γ j/p j for all i, j = 1, 2, . . . , n, Lee et al. [22] designed an O(nP) time DP
algorithm for the problem 1|CON|∑n

j=1(β j E j +γ j Tj +θ jU j ). They also developed

an (n2) time algorithm for the unweighted problem 1|CON|∑n
j=1(βE j +γ Tj+θUj ).

For themean squared deviation problem 1|CON|∑n
j=1(E

2
j +T 2

j ), which is equivalent

to the completion time variance problem 1||∑n
j=1(C j −C)2, whereC = ∑n

j=1 C j/n
is mean completion time of all the jobs, Kubiak [20] showed that it is NP-hard;
De et al. [6] first proposed an (n2P) pseudo-polynomial DP algorithm, then by
using the interval partitioning technique, they designed an FPTAS with O(n3/ε)
time. Kahlbacher and Cheng [13] addressed a CON assignment scheduling prob-
lem with a nonlinear objective function g(D) + ∑n

j=1(h(E j ) + θ jU j ), where g(·)
and h(·) are nondecreasing functions with g(0) = h(0) = 0. They showed that the
problems 1|CON|g(D) + ∑n

j=1 θ jU j and 1|CON|∑n
j=1(h(E j ) + θ jU j ) are both

NP-hard. For the problem 1|CON|∑n
j=1(αD + βE j + θ jU j ), Kahlbacher and

Cheng [13] solved the problem in O(n4) time by modeling a series of assignment
problems; Koulamas [17] presented a faster DP algorithm with O(n2) time. For the
NP-hard problem 1|CON|∑n

j=1 β j (E j +Tj ), Kovalyov and Kubiak [19] developed

an FPTAS that requires O(n2 log3(max j {p j , w j , n, 1/ε})/ε2) time; Erel and Ghosh
[7] proposed an improved FPTAS that requires O(n2 log(max j {p j , w j , n, 1/ε})/ε)
time; Kellerer and Rustogi [14] provided an FPTAS with O(n2/ε) time. Mosheiov
and Yovel [25] proposed an O(n4) time algorithm for the problem 1|CON, p j =
p| ∑n

j=1(αD+β j E j +γ j Tj ), while Tuong and Soukhal [28] developed an improved

algorithm with O(n3) time. Recently, Koulamas [18] presented an O(n3) time algo-
rithm for the problem 1|CON|∑n

j=1(αD + βE j + γ Tj + δ j V j + θ jU j ), and O(n2)
time algorithm for the problem 1|CON|∑n

j=1(αD + θ jU j + λC j ). For more about
CON assignment with JIT scheduling, the reader is referred to Gordon et al. [9,10],
Janiak et al. [12], and the references therein.

1.3 Motivation and contribution

The motivation and contributions of this research are made as follows. The first one is
to explore the real-life JIT scheduling problem concerning some existing unexplored
problems that need to be addressed. In the previous research, almost all JIT scheduling
models consider only the cost of earliness and tardiness, or weighted number of early
jobs and tardy jobs, respectively, whereas all these components are incorporated in
our objective function. The second one is to ascertain the computational complexity
boundaries and provide solution algorithms for various special cases. Specifically,
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Table 1 Summary of the computational complexity boundaries of the problem 1|CON| ∑n
j=1(αD +

β j E j + γ j T j + δ j V j + θ jU j )

Parameter requirements Complexity References

β j = β, γ j = γ, δ j = θ j = 0 O(n log n) [26]

β j = γ j = δ j = 0 O(n) [5]

α = 0, β j = γ j , δ j = θ j = 0 O(nP)∗ [11]

α = 0, δ j = 0, Arg∗∗ O(nP)∗ [22]

α = 0, β j = β, γ j = γ, δ j = 0, θ j = θ O(n2) [22]

β j = β, γ j = δ j = 0 O(n4) [13]

O(n2) [17]

p j = p, δ j = θ j = 0 O(n4) [25]

O(n3) [28]

β j = β, γ j = γ O(n3) [18]

p j = p O(n3) Theorem 3.2

Arg∗∗ O(n2P)∗ Theorem 4.5

β j = γ j O(n2P)∗ Corollary 4.6

δ j = δ, Arg∗∗ O(nP)∗ Theorem 4.9

β j = γ j , δ j = δ O(nP)∗ Corollary 4.10

γ j = δ j = 0 O(nP)∗ Corollary 4.12

Where ∗ denotes that the problem is NP-hard in the ordinary sense, and ∗∗ denotes that the ratios of the
job processing times to the earliness–tardiness penalties are agreeable, i.e., βi /pi ≥ β j /p j ⇐⇒ γi /pi ≥
γ j /p j for i, j = 1, 2, . . . , n

a comprehensive comparison in terms of models and the computational complexity
boundaries between the known research and our work is summarized in Table 1.
Third, by incorporating penalties for the weighted number of early and tardy jobs,
we propose an O(n3) time algorithm for the problem 1|CON, p j = p| ∑n

j=1(αD +
β j E j + γ j Tj + δ j V j + θ jU j ) by modeling it as a rectangular assignment problem,
which generalizes the problem 1|CON, p j = p| ∑n

j=1(αD + β j E j + γ j Tj ) studied
by Mosheiov and Yovel [25] and Tuong and Soukhal [28]. Fourth, when the ratios of
the job processing times to the earliness–tardiness penalties are agreeable, we solve
the asymmetric weighted problem 1|CON,Arg|∑n

j=1(αd + β j E j + γ j Tj + δ j V j +
θ jU j ) by first formulating it in terms of a series of half-product problems. Then by
employing the continuous relaxation of the convex quadratic programming method
and the rounding technique [15,16], we obtain a pair of valid lower and upper bounds
for the optimal solution. Finally, we obtain an FPTAS that runs in O(n3/ε) time
by employing the approach used in Erel and Ghosh [7]. Note that the running time
is strongly polynomial, which allows us solving large-size instances with a chosen
accuracy in a reasonable computation time. Also, this result also partially resolves
the open asymmetric weighted problem 1|CON|∑n

j=1(β j E j + γ j Tj ) posed in the
literature [11,16].

The remainder of this paper is organized as follows. In Sect. 2, we give some
preliminary results. In Sect. 3, we show that the equal processing time problem
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1|CON, p j = p| ∑n
j=1(αd + β j E j + γ j Tj + δ j V j + θ jU j ) can be solved in O(n3)

time by formulating it as a rectangular assignment problem. In Sect. 4, under the
agreeable ratio assumption, we first show that the problem 1|CON,Arg|∑n

j=1(αd +
β j E j + γ j Tj + δ j V j + θ jU j ) can be solved in O(n3/ε) time, then we show that
the problem 1|CON,Arg|∑n

j=1(αd + β j E j + γ j Tj + δVj + θ jU j ) can be solved in

O(n2/ε) time, finally we show that the problem 1|CON|∑n
j=1(αd+β j E j +θ jU j ) is

NP-hard even if α = 0 and admits an FPTAS with O(n2/ε) running time. In Sect. 5,
we give some concluding remarks.

2 Preliminaries

In this section, we establish several useful structural properties for the optimal solu-
tions. The following result implies that there exists an optimal solutionwithout inserted
idle times. It can be easily proved and the details are omitted.

Lemma 2.1 For problem 1|CON|∑n
j=1(αD + β j E j + γ j Tj + δ j V j + θ jU j ), there

exists an optimal solution in which the jobs are processed continuously from time zero
until the last job is completed.

In view of Lemma 2.1, we can focus our attention on those schedules without idle
times. Therefore, we can define a solution by the job processing sequence and the
common due date D. The following result implies that the optimal common due date
is equal to the completion time of some job.

Lemma 2.2 For problem 1|CON|∑n
j=1(αD + β j E j + γ j Tj + δ j V j + θ jU j ), there

exists an optimal solution in which the common due date D is equal to C[h] for a
certain h ∈ {0, 1, . . . , n}, where J[ j] is the j th job in a sequence and C[0] = 0.

Proof Consider an optimal job sequence π = (J[1], J[2], . . . , J[n]) in which the
required property is violated. Then there exists a certain h, 0 ≤ h ≤ n − 1, with
C[h] < D < C[h+1] in π . Write x = D − C[h] and y = C[h+1] − D. Clearly,
min{x, y} > 0 and x + y = p[h+1]. By simple calculation, the objective function (1)
can be formulated as

F(π, D) = nαD +
h∑

j=1

(β[ j](D − C[ j]) + δ[ j]) +
n∑

j=h+1

(γ j (C[ j] − D) + θ[ j]).

If nα + ∑h
j=1 β[ j] ≥ ∑n

j=h+1 γ[ j], we set D′ = C[h]. By simple calculation, we
have

F(π, D) − F(π, D′) =
⎛

⎝nα +
h∑

j=1

β[ j] −
n∑

j=h+1

γ[ j]

⎞

⎠ x + δ[h] ≥ 0.
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If nα +∑h
j=1 β[ j] <

∑n
j=h+1 γ[ j], we set D′ = C[h+1]. By simple calculation, we

have

F(π, D) − F(π, D′) = −
⎛

⎝nα +
h∑

j=1

β[ j] −
n∑

j=h+1

γ[ j]

⎞

⎠ y + θ[h+1] ≥ 0.

Hence, we can obtain an alternative optimal solution by setting D either to C[h] or
to C[h+1]. 	


In view of Lemma 2.2, we can characterize an optimal solution S∗ in the form
S∗ = A ∪ {J } ∪ B with D = ∑

J j∈A p j + p, where A is the set of early jobs, J is
some job that is completed on time and p is its processing time, and B is the set of
tardy jobs. Note that A or B may be empty.

The following result gives the processing sequence of the jobs in setA andB, which
can be proved by the job interchange argument.

Lemma 2.3 For problem 1|CON|∑n
j=1(αD+β j E j +γ j Tj +δ j V j +θ jU j ), the early

jobs in set A are sequenced in nondecreasing order of β j/p j , and the tardy jobs in
set B are sequenced in non-increasing order of γ j/p j .

The next two lemmas state that when no job is early or tardy, then the optimal
schedule can be found in O(n log n) time.

Lemma 2.4 For problem 1|CON|∑n
j=1(αD + β j E j + γ j Tj + δ j V j + θ jU j ), an

optimal schedule can be obtained in O(n log n) time if no job is early (i.e., A = ∅).
Proof In this case, by Lemmas 2.1 and 2.2, if there exists an on time job, i.e., D =
C[1] = p[1], then the objective function (1) can be written as

F(π, D) = nα p[1] +
n∑

j=2

(γ[ j]T[ j] +θ[ j]) = nα p[1] −θ[1] +
n∑

j=2

γ[ j]
j∑

k=2

p[k] +
n∑

j=1

θ j ,

(2)
otherwise, all jobs are tardy, i.e., D = 0, then the objective function (1) can be written
as

F(π, D) =
n∑

j=1

(γ[ j]T[ j] + θ[ j]) =
n∑

j=1

γ[ j]
j∑

k=1

p[k] +
n∑

j=1

θ j . (3)

By Lemma 2.3, the jobs in set B should be sequenced in non-increasing order of
γ j/p j . W.l.o.g., assume that the jobs in J are indexed in non-increasing order of
γ j/p j , i.e., γ1/p1 ≥ γ2/p2 ≥ · · · ≥ γn/pn . Clearly, the minimum objective function

(3) is F(0) = ∑n
j=1 γ j

∑ j
k=1 pk + ∑n

j=1 θ j . Set

F(k) = nα pk − θk +
k−1∑

j=1

γ j

j∑

i=1

pi +
n∑

j=k+1

γ j

⎛

⎝
j∑

i=1

pi − pk

⎞

⎠ +
n∑

j=1

θ j ,
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which represents the objective function value when job Jk is on time. To compute
the minimum value of function (2), we have to enumerate all possible k. By simple
calculation, we deduce

F(k + 1) = F(k) + nα(pk+1 − pk) − (θk+1 − θk) + (γk − γk+1)

k−1∑

j=1

p j + (γk pk − γk+1 pk+1).

Note that all F(k) can be computed in O(n) time for k = 1, 2, . . . , n (given that the
values

∑h
j=1 p j are computed in advance for all h = 1, 2, . . . , n). Then the optimal

objective function value is given by min{F(k) : 0 ≤ k ≤ n}. Since the indexing
operation requires O(n log n) time, the result holds. 	

Lemma 2.5 For problem 1|CON|∑n

j=1(αD + β j E j + γ j Tj + δ j V j + θ jU j ), an
optimal schedule can be obtained in O(n log n) time if no job is tardy (i.e., B = ∅).
Proof In this case, by Lemmas 2.1 and 2.2, we have D = C[n] = ∑n

j=1 p j , then the
objective function (1) can be written as

F(π, D) = nα

n∑

j=1

p j +
n−1∑

j=1

(β[ j]E[ j] + δ[ j]) =
n∑

j=1

(nα p j + δ j ) − δ[n] +
n−1∑

j=1

β[ j]
n∑

k= j+1

p[k]. (4)

By Lemma 2.3, the jobs in set A should be sequenced in nondecreasing order of
β j/p j . W.l.o.g., assume that the jobs in J are indexed in nondecreasing order of
β j/p j , i.e., β1/p1 ≤ β2/p2 ≤ · · · ≤ βn/pn . Set

F(k) =
n∑

j=1

(nα p j + δ j ) − δk +
k−1∑

j=1

β j

⎛

⎝
n∑

i= j+1

pi − pk

⎞

⎠ +
n∑

j=k+1

β j

n∑

i= j+1

pi ,

which represents the objective function value when job Jk is on time. To compute
the minimum value of function (4), we have to enumerate all possible k. By simple
calculation, we deduce

F(k + 1) = F(k) + (δk − δk+1) + (pk − pk+1)

k−1∑

j=1

β j + (βk − βk+1)

n∑

j=k+2

p j .

Similar to analysis of Lemma 2.4, all F(k) can be computed in O(n) time for k =
1, 2, . . . , n. Then the optimal objective function value is givenmin{F(k) : 1 ≤ k ≤ n}.
Since the indexing operation requires O(n log n) time, the result holds. 	


3 1|CON,pj = p|∑n
j=1(˛D + ˇjEj + �jTj + ıjVj + �jUj)

In this section, we study the scenario where all jobs have equal processing times,
i.e., p j = p for 1 ≤ j ≤ n. Scheduling problems with equal processing times arise

123



Scheduling with common due date assignment to minimize… 1689

in many real-life fields of application, such as, shampoo packing in batch oriented
production systems [28], burn-in operations in integrated circuit manufacturing [24],
production planning in the microbiological laboratory [3], etc. We solve the problem
1|CON, p j = p| ∑n

j=1(αD + β j E j + γ j Tj + δ j V j + θ jU j ) in O(n3) time by
formulating it as a rectangular assignment problem.

By Lemmas 2.4 and 2.5, the general problem can be solved in O(n log n) time if
no job is early or tardy, thus we only consider the solutions in which there exist at
least one early job and one tardy job. Assume that the number of early and tardy jobs
in A and B are n1 and n2, respectively, where 1 ≤ n1 ≤ n − 2, 1 ≤ n2 ≤ n − 2, and
n1 + n2 + 1 = n.

Let πA = (J(n1), J(n1−1), . . . , J(1)) denote the processing sequence of early jobs
in set A, and let πB = (J〈1〉, J〈2〉, . . . , J〈n2〉) denote the processing sequence of tardy
jobs in set B. Then we use π = (πA, J , πB) to represent the job sequence on the
machine, where J is the on time job.

From the definition of π , we have C( j) = (n1 − j + 1)p for j = 1, 2, . . . , n1;
D = (n1 + 1)p; C〈 j〉 = (n1 + j + 1)p for j = 1, 2, . . . , n2. Then we obtain that
E( j) = D − C( j) = j p for j = 1, 2, . . . , n1, and T〈 j〉 = C〈 j〉 − D = j p for
j = 1, 2, . . . , n2. Hence, the following result holds.

Lemma 3.1 For problem 1|CON, p j = p| ∑n
j=1(αD+β j E j +γ j Tj +δ j V j +θ jU j ),

if π = (πA, J , πB) is the given job sequence, then the objective function (1) can be
written as

F(π, D) = nα p +
n1∑

j=1

(nα p + β( j) j p + δ( j)) +
n2∑

j=1

(γ〈 j〉 j p + θ〈 j〉).

Next, we formulate this problem as a rectangular assignment problem with an
n × m cost matrix C = (c j,k) with n rows, each corresponding to a job J j ∈ J , and
m = 2n − 3 columns. Let x j,k be a Boolean variable indicating whether job J j is
assigned to the kth position(i.e., x jk = 1 if J j is at position k, and x jk = 0 otherwise,
j, k = 1, 2, . . . , n). Note that x j,k = 1 indicates that job J j is the (n − 2 − k + 1)th
last job sequenced in set A if 1 ≤ k ≤ n − 2; x j,k = 1 indicates job J j is the on time
job if k = n − 1; and x j,k = 1 indicates that job J j is the (k − n + 1)th job sequenced
in set B if n ≤ k ≤ 2n − 3. Let c j,k denote the cost of assigning job J j to position k.
Then by Lemma 3.1, we have

c j,k =
⎧
⎨

⎩

nα p + (n − 2 − k + 1)pβ j + δ j , for k = 1, 2, . . . , n − 2;
nα p, for k = n − 1;
(k − n + 1)pγ j + θ j , for k = n, n + 1, . . . , 2n − 3.

(5)

Therefore, the problem of minimizing the objective function (1) can be formulated
as a rectangular assignment problem given below.
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Min
n∑

j=1

2n−3∑

k=1

c j,k x j,k (6)

s.t.
2n−3∑

k=1

x j,k = 1, j = 1, 2, . . . , n, (7)

n∑

j=1

x j,k ≤ 1, k = 1, 2, . . . , 2n − 3, (8)

x j,k ∈ {0, 1}, j = 1, 2, . . . , n; k = 1, 2, . . . , 2n − 3. (9)

In the above rectangular assignment problem, expression (6) minimizes the objec-
tive function (1), constraint set (7) ensures that each job is assigned to a position, and
constraint set (8) ensures that no position is selected more than once. Since the rect-
angular assignment problem with an n ×m cost matrix can be solved in O(n3 +mn)

time [27], the following result holds.

Theorem 3.2 Problem 1|CON, p j = p| ∑n
j=1(αD + β j E j + γ j Tj + δ j V j + θ jU j )

can be solved in O(n3) time.

4 1|CON,Arg|∑n
j=1(˛D + ˇjEj + �jTj + ıjVj + �jUj)

In this section, we study the problem under the assumption that the ratios of the job
processing times to the earliness–tardiness penalties are agreeable, i.e.,

βi/pi ≥ β j/p j ⇐⇒ γi/pi ≥ γ j/p j for i, j = 1, 2, . . . , n. (10)

Note that if the agreeable assumption does not hold, the complexity status of the basic
problem 1|CON|∑n

j=1(β j E j + γ j Tj ) remains open [11,14]. A practical motivation
for this assumption is the anticipation that if job Ji is comparatively more important
than job J j , both its unit earliness and tardiness will be larger than that of job J j [22].
This problem is denoted by 1|CON,Arg|∑n

j=1(αD+β j E j +γ j Tj + δ j V j + θ jU j ).
We formulate the problem as a series of a Boolean programming problem with a
quadratic objective, known as half-product in the literature [1], which permits us to
devise an FPTAS that runs in O(n3/ε) time.

Let x = (x1, x2, . . . , xk) denote a vector with k Boolean variables. A half-product
is a pseudo-Boolean function of the following form:

H(x) =
∑

1≤i< j≤k

ai b j xi x j −
k∑

j=1

c j x j , (11)

where for each j , 1 ≤ j ≤ k, the coefficients a j and b j are non-negative integers, and
c j is an integer which can be either positive or negative.
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Let x∗ = (x∗
1 , x

∗
2 , . . . , x

∗
k ) denote a Boolean vector that minimizes the objective

function (11). Badics and Boros [1] showed that the problem of minimizing function
(11) is NP-hard even if a j = b j for j = 1, 2, . . . , k. Erel and Ghosh [7] presented
an FPTAS with O(k2/ε) time for minimizing function (11). Since computing the
objective value for a given solution x requires O(k2) time, the running time is seen as
the best possible. Numerous applications has been found for half-product in machine
scheduling problems [16]. Notice that in most scheduling applications, the objective
function is usually written as

F(x) = H(x) + K , (12)

where K is a given additive constant.

Lemma 4.1 [7] For the problem of minimizing function (12) (or equivalently, (11)),
it admits two pseudo-polynomial DP algorithms that run in O(k(

∑k
j=1 a j )) and

O(k(
∑k

j=1 b j )) time, respectively.

For problem 1|CON,Arg|∑n
j=1(αD + β j E j + γ j Tj + δ j V j + θ jU j ), due to the

arbitrary weights δ j and θ j , we cannot determine the on time job in advance. Thus in
order to solve the problem, we select each job as a possible on time job. Let p denote
the processing time of the job J that is the chosen on time job. W.l.o.g., assume that
the remaining m = n − 1 jobs are indexed in such a way that

β1/p1 ≥ β2/p2 ≥ · · · ≥ βm/pm, (13)

or equivalently, the jobs are indexed in such a way that

γ1/p1 ≥ γ2/p2 ≥ · · · ≥ γm/pm . (14)

By Lemma 2.3, the jobs in B are sequenced in the order of their numbering, and the
jobs in A are sequenced in the order opposite to their numbering. Introduce Boolean
variables x j , j = 1, 2, . . . ,m, in such a way that

x j =
{
1, if job J j is early, i.e., J j ∈ A;
0, if job J j is tardy, i.e., J j ∈ B.

(15)

For simplicity, let R(x) = ∑n
j=1(αD + β j E j + γ j Tj + δ j V j + θ jU j ) denote the

objective function (1). Taking the jobs in order of their numbering given by (13) (or
equivalently, (14)), it follows that if job J j is early, its earliness is given by E j =
p+∑ j−1

i=1 pi xi ; if job J j is tardy, its tardiness is given by Tj = ∑ j
i=1 pi (1− xi ); and

the final common due date is given by D = p + ∑m
j=1 p j x j .

Lemma 4.2 For problem 1|CON,Arg|∑n
j=1(αD+β j E j +γ j Tj +δ j V j +θ jU j ), if J

is the chosen on time job and p is its processing time, then the objective function R(x)
can be reformulated as R(x) = H(x)+K, where H(x) is the half-product function of
the form (11), with k := m = n − 1, a j := p j , b j := β j + γ j , c j := γ j (

∑ j−1
i=1 pi ) +

p j (
∑m

i= j γi )+θ j −nα p j − pβ j −δ j , 1 ≤ j ≤ m, and K := nα p+∑m
j=1(p jγ j +θ j ).
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Proof Recall that x2j = x j and (1 − x j )2 = 1 − x j . From the previous discussion, it
follows that the objective function (1) can be written as

R(x) =
n∑

j=1

(αD + β j E j + γ j Tj + δ j V j + θ jU j )

= nα(p +
m∑

j=1

p j x j ) +
m∑

j=1

β j x j (p +
j−1∑

i=1

pi xi ) +
m∑

j=1

γ j (1 − x j )
j∑

i=1

pi (1 − xi )

+
m∑

j=1

δ j x j +
m∑

j=1

θ j (1 − x j ) (16)

=
m∑

j=1

β j x j

j−1∑

i=1

pi xi +
m∑

j=1

γ j (1 − x j )
j−1∑

i=1

pi (1 − xi )

+
m∑

j=1

(nα p j + pβ j + δ j )x j +
m∑

j=1

(p jγ j + θ j )(1 − x j ) + nα p (17)

=
∑

1≤i< j≤m

pi (β j + γ j )xi x j −
m∑

j=1

(γ j (

j−1∑

i=1

pi ) + p j (

m∑

i= j

γi ) + θ j − nα p j

−pβ j − δ j )x j + nα p +
m∑

j=1

(p jγ j + θ j ). (18)

Therefore, the result follows from (18). 	

Notice that the problem of minimizing function (11) is equivalent to the problem

of minimizing function (12). However, it is known that an FPTAS for minimizing the
function (11) does not necessarily behave as an FPTAS for minimizing the function
(12). This is due to the fact that the optimal value of function (11) is negative and K
can be positive (see [7,16] for details).

Let FL and FU be the lower and upper bounds on the optimal solution value of the
function (12), i.e., FL ≤ F(x∗) ≤ FU. To minimize the objective function (12), the
following approach that is employed in Erel and Ghosh [7] is very useful for designing
an FPTAS.

Lemma 4.3 [7]For the problem of minimizing function (12), if the lower bound FL and
the upper bound FU can be obtained in T (k) time, then there exists an approximation
algorithm that outputs a solution x̂ such that F(x̂) ≤ (1+ ε)FL in O(T (k) + vk2/ε)
time, where FU/FL ≤ v.

According to Lemmas 4.2 and 4.3, for the purpose of obtaining an FPTAS for the
problem 1|CON,Arg|∑n

j=1(αd +β j E j + γ j Tj + θ jU j ), we only need to determine
a valid lower bound RL and an upper bound RU on the optimal solution value of R(x∗)
and to ensure that the ratio RU/RL is as small as possible.

Assume that the integrality condition of theBoolean variables x j is relaxed (referred
as continuous relaxation), i.e., the condition x j ∈ {0, 1} is replaced by 0 ≤ x j ≤ 1,
j = 1, 2, . . . , k. Let xr = (xr1, x

r
2, . . . , x

r
k ), 0 ≤ xrj ≤ 1, be the corresponding

solution vector of the continuous relaxation of the problem of minimizing function
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(18). Obviously, R(xr ) ≤ R(x∗), so we can set RL = R(xr ) as a lower bound on
R(x∗).

If the items are numbered such that b1/a1 ≥ b2/a2 ≥ · · · ≥ bk/ak , Kellerer
and Strusevich [15] showed that the half-product function (12) is convex, and the
continuous relaxation of the problem of minimizing a convex function (12) can be
solved in O(k2) time. In our case, the required numbering is ensured by (13) and
(14), so that the objective function as given in (18) is convex, and the lower bound
RL = R(xr ) can be computed in O(n2) time.

In order to obtain a valid upper bound RU, a simple rounding of the fractional
components of vector xr is performed, which can be described as follows.

Algorithm HJ ,p

Step 1. Solve the continuous relaxation of the problem of minimizing a convex func-
tion R(x) of the form (18), and let xr = (xr1, x

r
2, . . . , x

r
m), 0 ≤ xrj ≤ 1, be

the corresponding solution vector.
Step 2. Determine the sets A = {J j ∈ J \{J } : xrj ≤ 1

2 } and B = {J j ∈ J \{J } :
xrj > 1

2 }, and define a vector x′ = (x ′
1, x

′
2, . . . , x

′
m) with x ′

j = 0 if J j ∈ A,
and x ′

j = 1 if J j ∈ B.
Step 3. Deliver vector x′ = (x ′

1, x
′
2, . . . , x

′
m) as an approximation solution to the

problem of minimizing function (18), and therefore, function (17).

Recall that m = n − 1. Then the running time of AlgorithmHJ ,p is O(n2), which
is dominated by Step 1. Obviously, we have R(xr ) ≤ R(x∗) ≤ R(x′). Therefore, we
can set RU = R(x′) as an upper bound on R(x∗). Then, we can estimate the ratio
v = RU/RL = R(x′)/R(xr ).

Theorem 4.4 Let xr be an optimal solution to the continuous relaxation of the problem
of minimizing function R(x) of the form (18), and x′ be the approximation solution
found by Algorithm HJ ,p. Then, we have v = R(x′)/R(xr ) ≤ 4.

Proof For a vector xr , letA and B be the job sets found in Step 2 of AlgorithmHJ ,p.
For an arbitrary vector x = (x1, x2, . . . , xm), 0 ≤ x j ≤ 1, using the expression (17),
define

R1(x) =
∑

1≤i< j≤m
Ji ,J j∈A

piβ j xi x j +
∑

1≤i< j≤m
Ji ,J j∈A

piγ j (1 − xi )(1 − x j );

R2(x) =
∑

1≤i< j≤m
Ji∈A,J j∈B

piβ j xi x j +
∑

1≤i< j≤m
Ji∈A,J j∈B

piγ j (1 − xi )(1 − x j );

R3(x) =
∑

1≤i< j≤m
Ji∈B,J j∈A

piβ j xi x j +
∑

1≤i< j≤m
Ji∈B,J j∈A

piγ j (1 − xi )(1 − x j );

R4(x) =
∑

1≤i< j≤m
Ji ,J j∈B

piβ j xi x j +
∑

1≤i< j≤m
Ji ,J j∈B

piγ j (1 − xi )(1 − x j );
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R5(x) =
∑

J j∈A
(nα p j + pβ j + δ j )x j +

∑

J j∈A
(p jγ j + θ j )(1 − x j );

R6(x) =
∑

J j∈B
(nα p j + pβ j + δ j )x j +

∑

J j∈B
(p jγ j + θ j )(1 − x j ).

By the rounding conditions in Step 2 of Algorithm HJ ,p, we deduce

R2(x′) = R3(x′) = 0,

while

R1(x′) =
∑

1≤i< j≤n
Ji ,J j∈A

piγ j ; R1(xr ) ≥ 1

4

∑

1≤i< j≤n
Ji ,J j∈A

piγ j ;

R4(x′) =
∑

1≤i< j≤n
Ji ,J j∈B

piβ j ; R4(xr ) ≥ 1

4

∑

1≤i< j≤n
Ji ,J j∈B

piβ j ;

R5(x′) =
∑

J j∈A
(p jγ j + θ j ); R5(xr ) ≥ 1

2

∑

J j∈A
(p jγ j + θ j );

R6(x′) =
∑

J j∈B
(nα p j + pβ j + δ j ); R6(xr ) ≥ 1

2

∑

J j∈B
(nα p j + pβ j + δ j ).

Therefore, we obtain

R(x′) =
6∑

i=1

Ri (x′) + nα p

= R1(x′) + F4(x′) + R5(x′) + R6(x′) + nα p

≤ 4R1(x′) + 4R4(x′) + 2R5(x′) + 2R6(x′) + nα p

≤ 4
6∑

i=1

Ri (xr ) + 4nα p = 4R(xr ),

as required. 	

For each choice of the on time job J with processing time p, integrating the results

obtained in Lemmas 4.1–4.3 and Theorem 4.4, the problem admits an FPTAS and a
pseudo-polynomial DP algorithm that run in O(n2/ε) and O(nP) time, respectively.
To find an approximate solution to the problem 1|CON,Arg|∑n

j=1(αD + β j E j +
γ j Tj + δ j V j + θ jU j ), we need to run the FPTAS for each chosen on time job. Thus,
we obtain the following statement.

Theorem 4.5 Problem 1|CON,Arg|∑n
j=1(αD + β j E j + γ j Tj + δ j V j + θ jU j ) pos-

sesses an FPTAS that requires O(n3/ε) time and a pseudo-polynomial algorithm that
requires O(n2P) time.
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When β j = γ j for all j = 1, 2, . . . , n, the agreeable ratio assumption clearly holds,
so the following result holds.

Corollary 4.6 Problem 1|CON|∑n
j=1(αD+β j E j+β j Tj+δ j V j+θ jU j ) possesses an

FPTAS that requires O(n3/ε) time and a pseudo-polynomial algorithm that requires
O(n2P) time.

4.1 1|CON,Arg|∑n
j=1(˛D+ ˇjEj + �jTj + ıVj + �jUj)

In this subsection, we study the scenario where the agreeable ratio assumption (10)
holds and δ j = δ for all j = 1, 2, . . . , n. This case often occurs in the disposal of
rotten perishable goods of short shelf life. Each early job may have to be dealt with a
common discounted price, or result in a loss of fixedmanufacturing cost. This problem
is denoted by 1|CON,Arg|∑n

j=1(αD + β j E j + γ j Tj + δVj + θ jU j ). In this case,
we can strengthen the result of Lemma 2.3 as follows.

Lemma 4.7 For problem 1|CON|∑n
j=1(αD+β j E j +γ j Tj + δVj + θ jU j ), the non-

tardy jobs (including early jobs and on time job) are sequenced in nondecreasing
order of β j/p j , and the tardy jobs are sequenced in non-increasing order of γ j/p j .

Under the agreeable ratio assumption (10), by Lemma 4.7, we can assume that the
jobs in J are indexed according to (13) with m = n. In contrast with (15), we define
the Boolean variables

x j =
{
1, if job J j is non-tardy;
0, if job J j is tardy.

(19)

Similar to analysis of Lemma 4.2, the following result holds.

Lemma 4.8 For problem 1|CON,Arg|∑n
j=1(αD+β j E j +γ j Tj + δVj + θ jU j ), the

objective function R(x) can be reformulated as R(x) = H(x) + K, where H(x) is
the half-product function of the form (11), with k := n, a j := p j , b j := β j + γ j ,

c j := γ j (
∑ j−1

i=1 pi ) + p j (
∑n

i= j γi ) + θ j − nα p j − δ, 1 ≤ j ≤ n, and K :=
∑n

j=1(p jγ j + θ j ) − δ.

Clearly, the rounding algorithm and Theorem 4.4 still hold. Thus, integrating the
results of Lemmas 4.1–4.8 and Theorem 4.4, we immediately obtain the following
statement.

Theorem 4.9 Problem 1|CON,Arg|∑n
j=1(αD + β j E j + γ j Tj + δVj + θ jU j ) pos-

sesses an FPTAS that requires O(n2/ε) time and a pseudo-polynomial algorithm that
requires O(nP) time.

When β j = γ j for all j = 1, 2, . . . , n, the agreeable ratio assumption (10) clearly
holds, so the following result holds.

Corollary 4.10 Problem1|CON|∑n
j=1(αD+β j E j+β j Tj+δVj+θ jU j )possesses an

FPTAS that requires O(n2/ε) time and a pseudo-polynomial algorithm that requires
O(nP) time.
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4.2 1|CON|∑n
j=1(˛D+ ˇjEj + �jUj)

In this subsection,we study the problem1|CON|∑n
j=1(αD+β j E j+θ jU j ). This case

occurs in the situations in which one has to pay an inventory cost that is proportional to
the inventory time (i.e., earliness) E j of job J j , and an additional amount of resource θ j

has to be spent to handle a tardy job J j . Recall thatwhenβ j = β for all j = 1, 2, . . . , n,
Kahlbacher and Cheng [13] and Koulamas [17] have proposed O(n4) and O(n2)
time algorithms for the unweighted problem 1|CON|∑n

j=1(αD + βE j + θ jU j ),
respectively. We next show that the weighted problem 1|CON|∑n

j=1(αD + β j E j +
θ jU j ) is NP-hard even if α = 0.

Theorem 4.11 Problem1|CON|∑n
j=1(αD+β j E j+θ jU j ) isNP-hard even ifα = 0.

Proof The decision variant of the problem 1|CON|∑n
j=1(αD + β j E j + θ jU j ) is

clearly inNP . The proof uses the reduction from the binaryNP-complete SUBSET
SUM problem [8], which is defined as follows:

SUBSET SUM: Given n positive integers y1, y2, . . . , yn with
∑n

j=1 y j = Z and an
integer Y , is there a subset Y of the index set {1, 2, . . . , n} with ∑

y j∈Y y j = Y ?
For any given instance of the SUBSET SUM problem, we construct an instance

of the problem 1|CON|∑n
j=1(αD + β j E j + θ jU j ) with a set J = {J1, J2, . . . , Jn}

of n jobs. The unit due date assignment cost is α = 0; for each job J j ∈ J , its
processing time is p j = y j , its unit earliness cost is β j = y j , and its tardy weight is
θ j = Y y j − 1

2 y
2
j . The threshold value is L = Y Z + 1

2Y
2 − 1

2

∑n
j=1 y

2
j .

LetN and B denote the set of non-tardy and tardy jobs in a given schedule, respec-
tively. Since β j = p j = y j for all J j ∈ J , then by Lemma 4.7, we know that
the sequence of the non-tardy jobs does not affect the objective value. Based on this
fact and substituting the relevant parameters, the objective function can be written as
follows:

n∑

j=1
(β j E j + θ jU j ) = ∑

J j∈N
β j E j + ∑

J j∈B
θ j

= ∑

J j∈N
β j

∑

Ji ,J j∈N
1≤i< j≤n

pi + ∑

J j∈B

(
Y y j − 1

2 y
2
j

)

= ∑

J j∈N
y j

∑

Ji ,J j∈N
1≤i≤ j≤n

yi + ∑

J j∈B

(
Y y j − 1

2 y
2
j

)
− ∑

J j∈N
y2j

= 1
2

(
∑

J j∈N
y j

)2

+ ∑

J j∈B

(
Y y j − 1

2 y
2
j

)
− 1

2

∑

J j∈N
y2j

= 1
2

(
∑

J j∈N
y j

)2

+ Y
∑

J j∈B
y j − 1

2

n∑

j=1
y2j .

(20)
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Define ρ = ∑
j∈N y j , then

∑
j∈B y j = Z − ρ. Because the last term in (20) does

not depend on the the choice of N , we only have to minimize the following function

1

2

⎛

⎝
∑

J j∈N
y j

⎞

⎠

2

+ Y
∑

J j∈B
y j = 1

2
ρ2 + Y (Z − ρ) = 1

2
(ρ − Y )2 + Y Z + 1

2
Y 2. (21)

The function (21) has a unique minimum of Y Z + 1
2Y

2 at ρ = Y , i.e, when∑
j∈N y j = Y . Therefore, the instance of SUBSET SUM has a solution if and only

if the objective value to the instance of 1|CON|∑n
j=1(αD + β j E j + θ jU j ) does not

exceed Y Z + 1
2Y

2 − 1
2

∑n
j=1 y

2
j . 	


Since γ j = 0 for all j = 1, 2, . . . , n, the agreeable assumption (10) clearly holds,
by Theorem 4.9, the following result holds.

Corollary 4.12 Problem 1|CON|∑n
j=1(αD+β j E j +θ jU j ) possesses an FPTAS that

requires O(n2/ε) time and a pseudo-polynomial algorithm that requires O(nP) time.

5 Conclusions

In this paper, we address the single-machine common due date assignment problem
with the generalized weighted earliness–tardiness penalties. The earliness/tardiness
penalty includes not only a variable costwhichdepends upon the job earliness/tardiness
but also a fixed cost for each early/tardy job. A comprehensive comparison in terms
of models and computational complexity boundaries between the known research and
our work is summarized in Table 1.

Since the running times of the proposed optimal algorithm for the case with equal
processing times is strongly polynomial and the approximation schemes designed
for those NP-hard problems are also strongly polynomial, they can be used by the
industry decision-maker to solve large-size instances exactly orwith a chosen accuracy
in a reasonable computation time.

As for future research, it is interesting to study the common due date assign-
ment problem with the generalized earliness–tardiness objective function in parallel
machines. Another interesting research direction is to investigate the problem of min-
imizing the generalized weighted earliness–tardiness penalties under other due date
assignment methods such as SLK and DIF.
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