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Abstract
In this paper, we consider the generalized polynomial variational inequality, which
is a subclass of generalized variational inequalities; and it covers several classes of
variational inequalities with polynomial functions studied recently in the literature. A
well-known existence and uniqueness theorem for the generalized variational inequal-
ity was established by Pang and Yao (SIAM J Control Optim 33:168–184, 1995). It
is not difficult to show that the conditions of this theorem do not hold for general-
ized variational inequalities with general polynomial functions. In this paper, in terms
of properties of the involved polynomial and by making use of the theory related to
exceptional family of elements, we establish an existence and uniqueness theorem
for the generalized polynomial variational inequality. A specific example is given to
confirm our theoretical findings.

Keywords Generalized variational inequality · Polynomial function · Strongly
monotone function · Strictly monotone function · Tensor

1 Introduction

Let f , g : Rn → R
n be two continuous functions, and let K be a nonempty, closed

and convex subset of Rn . The so-called generalized variational inequality, denoted
by GV I (g, f , K ), is to find an x ∈ R

n such that

g(x) ∈ K , 〈 f (x), y − g(x)〉 ≥ 0 for all y ∈ K ,
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which was introduced by Noor [20] in 1988. When g(x) = x, GV I (g, f , K ) reduces
to the standard finite-dimensional variational inequality [5,9]. Furthermore, when K =
R
n+, GV I (g, f , K ) further reduces to the standard complementarity problem [7].
The existence and uniqueness of solutions to the variational inequality is an impor-

tant issue in the studies of the theory, algorithms and applications for the variational
inequality. It is known that a vector x ∈ R

n solves GV I (g, f , K ) if and only if it is a
solution of the generalized normal equation:

g(x) = PK [g(x) − f (x)],

where PK (u) denotes the projection of the vector u ∈ R
n onto the set K . A well-

known result on the existence and uniqueness for GV I (g, f , K ), achieved by Pang
and Yao in [21, Proposition 3.9], is described as follows.

Theorem 1 Let K be a nonempty, closed and convex subset of Rn, and let f and g be
two continuous functions from R

n into itself with g being injective. Suppose

(a) there exists a vector u ∈ g−1(K ) and positive scalars α and L such that

‖g(x) − g(u)‖ ≤ L‖x − u‖

holds for all x ∈ g−1(K ) with ‖x‖ ≥ α;
(b) f is strongly monotone with respect to g on K , i.e., there is a scalar c > 0 such

that

[ f (x) − f (y)]	[g(x) − g(y)] ≥ c‖x − y‖2 (1)

holds for all g(x), g(y) ∈ K with x 
= y.

Then, there exists a unique vector x̄ ∈ R
n satisfying g(x) = PK [g(x) − f (x)].

When f and g are both polynomials, the correspondingGV I (g, f , K ) is called the
generalized polynomial variational inequality in this paper, and we denote it by the
GPVI. In recent years, several subclasses of the GPVI have been studied extensively.
These subclasses include tensor complementarity problems [1,3,11,14,19,23–25] (also
see survey papers [12,13,22]), polynomial complementarity problems [6,15], general-
ized polynomial complementarity problems [16], tensor variational inequalities [26],
and polynomial variational inequalities [10].Many interesting results for these several
subclasses were achieved by using the special properties of polynomials. It is natural
to ask how to study the GPVI by using special properties of polynomials? In partic-
ular, we find that for general polynomials f and g, it is impossible that the function
f is strongly monotone with respect to g on the set K (see Proposition 1 in the next
section). This implies that the result of Theorem 1 cannot be generally applied to the
GPVI. A natural question is that how to investigate the existence and uniqueness of
solutions to the GPVI?

In this paper, our main purpose is to establish an existence and uniqueness theorem
for the GPVI by making use of properties of the involved polynomials. In the next sec-
tion, we introduce some symbols and concepts, and discuss the existence of solutions
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to the GPVI by using the concept of the exceptional family of elements and degree
theory. In Sect. 3, we develop an existence and uniqueness theorem for the GPVI, and
derive several corollaries for subclasses of the GPVI. Moreover, we give an example
in support of our theoretical findings. Conclusions are given in the last section.

2 Preliminaries

We first give an introduction of tensors, which plays an important role in our analysis.
A tensor is a natural extension of a matrix. For any given positive integers m and n
with m, n ≥ 2, we call A = (ai1i2···im ), where ai1i2···im ∈ R for i j ∈ {1, 2, . . . , n}
and j ∈ {1, 2, . . . ,m}, anm-th order n-dimensional real square tensor; and denote the
space of m-th order n-dimensional real square tensors by R[m,n].

For any A = (ai1i2···im ) ∈ R
[m,n] and x = (x1, x2, . . . , xn)	 ∈ R

n , Axm−1 is an
n-dimensional vector whose i th component is given by

(Axm−1)i =
n∑

i2,i3,...,im=1

aii2···im xi2xi3 · · · xim for all i ∈ {1, 2, . . . , n},

and Axm is a homogeneous polynomial of degree m, defined by

Axm =
n∑

i1,i2,...,im=1

ai1i2···im xi1xi2 · · · xim for all i ∈ {1, 2, . . . , n}.

A = (ai1i2···im ) ∈ R
[m,n] is said to be a positive definite tensor if and only ifAxm > 0

for all x ∈ R
n\{0}.

Let

f (x) :=
m−1∑

k=1

A(k)xm−k + a and g(x) :=
l−1∑

p=1

B(p)xl−p + b, (2)

where

⎧
⎪⎨

⎪⎩

� :=
(
A(1), . . . ,A(m−1)

)
∈ Fm,n := R

[m,n] × · · · × R
[2,n], a ∈ R

n;

� :=
(
B(1), . . . ,B(l−1)

)
∈ Fl,n := R

[l,n] × · · · × R
[2,n], b ∈ R

n,

(3)

then the correspondingGV I (g, f , K ) is a generalized polynomial variational inequal-
ity, denoted by GPV I (�, a,�,b, K ).

We have the following observation.
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Proposition 1 Let K be a nonempty, closed and convex subset of Rn, and let f , g :
R
n → R

n be two polynomials defined by

f (x) :=
m′∑

k=1

A(k)xm−k + a and g(x) :=
l ′∑

p=1

B(p)xl−p + b (4)

for some m′ ∈ {1, 2, . . . ,m − 1} and l ′ ∈ {1, 2, . . . , l − 1}, where
⎧
⎪⎨

⎪⎩

(
A(1), . . . ,A(m−m′+1)

)
∈ R

[m,n] × · · · × R
[m−m′+1,n];

(
B(1), . . . ,B(l−l ′+1)

)
∈ R

[l,n] × · · · × R
[l−l ′+1,n].

If g(0) ∈ K and m − m′ + l − l ′ > 2, then the function f is not strongly monotone
with respect to g on K .

Proof Suppose that f is strongly monotone with respect to g on K , i.e., there exists a
constant c > 0 such that (1) holds for any g(x), g(y) ∈ K with x 
= y. Take y = 0,
then we can get from (1) that

〈
l ′∑

p=1

B(p)xl−p,

m′∑

k=1

A(k)xm−k

〉
=

m′+l ′∑

q=2

C(q−1)xm+l−q ≥ c‖x‖2, (5)

where C(q−1) ∈ R
[m+l−q,n] for all q ∈ {2, 3, . . . ,m′ + l ′}. By dividing both sides of

(5) by ‖x‖m+l−m′−l ′ , we get

C(m′+l ′−1)
(

x
‖x‖

)m+l−m′−l ′

+
m′+l ′−1∑

q=2

C(q−1)xm+l−q

‖x‖m+l−m′−l ′ ≥ c
‖x‖2

‖x‖m+l−m′−l ′ . (6)

Let ‖x‖ → 0, it follows by the condition m − m′ + l − l ′ > 2 that the left-hand
side of the inequality (6) is bounded; but the right-hand side of (6) tends to ∞, which
leads to a contradiction. �

Proposition 1 demonstrates that if g(0) ∈ K , the degrees of both f and g defined
by (2) are greater or equal to 1, and at least one of f and g has no term of degree 1,
then f is not strongly monotone with respect to g on K . This implies that the result of
Theorem 1 for GV I (g, f , K ) cannot be generally applied to GPV I (�, a,�,b, K ).
In order to study the existence and uniqueness of solutions to GPV I (�, a,�,b, K ),
we need to use the concept of exceptional family of elements. In fact, the concept of
exceptional family of elements has been extensively used to investigate the existence
of the standard variational inequalities and complementarity problems. The following
definition is similar to the those in [8,27,28].
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Definition 1 Let f , g be two continuous functions. A set of points {xr } ⊆ R
n is

called an exceptional family of elements for the pair ( f , g) with respect to x̂ ∈ R
n , if

‖xr‖ → ∞ as r → ∞; and for each xr , there exists a positive scalar αr such that

πr := αr (xr − x̂) + g(xr ) ∈ K and − αr (xr − x̂) − f (xr ) ∈ NK (πr ), (7)

whereNK (πr ) denotes the normal cone of the convex set K at the point the point πr .

In order to establish the existence result for GPV I (�, a,�,b, K ) by using the
concept of exceptional family of elements, we need to use the degree theory. We now
review some basic concepts and results of degree theory [18]. Suppose� is a bounded
open set in a finite-dimensional Hilbert space H , we use �̄ and ∂� to denote its closure
and boundary in H , respectively. Let φ : �̄ → H be continuous, and p ∈ H with
p /∈ φ(∂�). Then, the topological degree of φ over�with respect to p can be defined,
which is denoted by deg(φ,�,p). Let H(x, t) : H × [0, 1] → H be continuous.
Suppose that for some bounded open set� in H , 0 /∈ H(∂�, t) for all t ∈ [0,1]. Then,
the homotopy invariance property of degree says that deg(H(·,t),�, 0) is independent
of t . In particular, if the set

	 := {x : H(x, t) = 0 for some t ∈ [0, 1]}

is bounded, then for any bounded open set � in H that contains the set 	, it follows
that

deg(H(·, 1),�, 0) = deg(H(·, 0),�, 0).

The following result is very useful for us to prove the main result in this paper.

Lemma 1 For two continuous mappings f , g : Rn → R
n and a nonempty, closed and

convex set K in Rn, there exists either a solution of GV I (g, f , K ) or an exceptional
family of elements with respect to any given x̂ ∈ R

n for the pair ( f , g).

Proof The proof is similar to the one in [27]. For the sake of completeness, we give
it here. Suppose that GV I (g, f , K ) has no solution, we need to show there exists an
exceptional family of elements with respect to any given x̂ ∈ R

n for the pair ( f , g).
Let 
 : Rn → R

n be defined by


(x) := g(x) − PK [g(x) − f (x)] for any x ∈ R
n .

Then, 
 is a continuous function; and x ∈ R
n solves GV I (g, f , K ) if and only if

it is a solution of 
(x) = 0. For any x, x̂ ∈ R
n , we define

H(x, t) := t(x − x̂) + (1 − t)g(x) − (1 − t)PK [g(x) − f (x)] for any t ∈ [0, 1].

We claim that the set F := {x ∈ R
n : H(x, t) = 0 for some t ∈ [0, 1]} is unbounded.

Suppose by the way of contradiction that F is bounded. Then there exists a bounded
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open set � in F such that x /∈ F for all x ∈ ∂�. Thus, by the homotopy invariance
theorem of degree, it follows that

1 = deg(x − x̂,�, 0) = deg(
(x),�, 0),

which implies that 
(x) = 0 has a solution in �. This is a contradiction with the
assumption at the beginning of the proof. So, the set F is unbounded. Thus, there
exists an unbounded sequence {xr } ⊆ F . Without loss of generality, we may assume
that ‖xr‖ > ‖x̂‖ for all r . By the definition ofF , for each xr there is a scalar tr ∈ [0, 1]
such that

0 = H(xr , tr ) = tr (xr − x̂) + (1 − tr )g(xr ) − (1 − tr )PK [g(xr ) − f (xr )]. (8)

Since GV I (g, f , K ) has no solution, we have 
(xr ) 
= 0. We deduce from (8) that
tr 
= 0, 1. Thus, in the rest of the proof, it is sufficient to consider the case of tr ∈ (0, 1).
In this case, we show that GV I (g, f , K ) has an exceptional family with respect to x̂.

From (8) it follows that

tr

1 − tr
(xr − x̂) + g(xr ) = PK [g(xr ) − f (xr )].

Denote αr := tr
1−tr and πr := αr (xr − x̂) + g(xr ). Then, πr = PK [g(xr ) − f (xr )],

which implies that πr ∈ K , and that πr is the unique solution to the following convex
program:

min
y∈K h(y) := 1

2
‖y − [g(xr ) − f (xr )]‖2.

Obviously, the function h is locally Lipschitz continuous, and hence, by the corollary
of Proposition 2.4.3 of [4] we have

∇h(πr ) = πr − [g(xr ) − f (xr )] = αr (xr − x̂) + f (xr ) ∈ −NK (πr ).

Therefore, {xr } is an exceptional family with respect to x̂ for GV I (g, f , K ).
The proof is complete. �

3 Main result

In this section, by using Lemma 1 we establish an existence and uniqueness result for
GPV I (�, a,�,b, K ); and then, we give an example in support of our theoretical
findings.

Theorem 2 Let f and g be defined by (2) and (3), and let K ⊆ R
n be a nonempty,

closed and convex set with g(0) ∈ K. Suppose that
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(a) f is strictly monotone with respect to g on K , i.e.,

[ f (x) − f (y)]	[g(x) − g(y)] > 0 for all g(x), g(y) ∈ K ;

(b) for any nonzero vector x ∈ R
n, 〈A(1)xm−1,B(1)xl−1〉 
= 0;

(c) one of A(1) and B(1), whose order is even and is larger than or equal to another,
is positive definite,

then for any given vectors a ∈ R
n and b ∈ K, GPV I (�, a,�,b, K ) has a unique

solution.

Proof Without loss of generality, we assume that m ≥ l. In this case, it follows from
the condition (c) that A(1) is positive definite.

We first prove the nonemptyness of SOL(�, a,�,b, K ). Suppose, on the contrary,
that SOL(�, a,�,b, K ) = ∅. Then, it follows from Lemma 1 that there exists an
exceptional family of elements for the pair ( f , g) with respect to 0 ∈ R

n , that is to
say, there exists a sequence {xr }∞r=1 ⊆ R

n satisfying ‖xr‖ → ∞ as r → ∞, and
scalars αr > 0 such that (7) holds, and hence, from the definition of the normal cone,
we have

〈αrxr + f (xr ), y − αrxr − g(xr )〉 ≥ 0 for any y ∈ K . (9)

By dividing both sides of (9) by ‖xr‖m+l−2 , we get

αr
‖xr‖l−2

〈
xr

‖xr‖ ,
y−∑m−1

k=1 A(k)(xr )m−k−∑l−1
p=1 B(p)(xr )l−p−a−b

‖xr‖m−1

〉

+
〈∑m−1

k=1 A(k)(xr )m−k+a
‖xr‖m−1 ,

y−∑l−1
p=1 B(p)(xr )l−p−b

‖xr‖l−1

〉
− α2

r
‖xr‖m+l−4 ≥ 0,

that is,

〈
xr

‖xr‖ ,
y−∑m−1

k=1 A(k)(xr )m−k−∑l−1
p=1 B(p)(xr )l−p−a−b

‖xr‖m−1

〉

+‖xr‖l−2

αr

〈∑m−1
k=1 A(k)(xr )m−k+a

‖xr‖m−1 ,
y−∑l−1

p=1 B(p)(xr )l−p−b

‖xr‖l−1

〉
− αr

‖xr‖m−2 ≥ 0.
(10)

For any r , we let x̄r = xr
‖xr‖ . Without loss of generality, we may assume x̄r → x̄. Since

A(1) is positive definite and x̄ ∈ R
n\{0}, it holds from (10) that

lim
r→∞

〈
xr

‖xr‖ ,
y−∑m−1

k=1 A(k)(xr )m−k−a−∑l−1
p=1 B(p)(xr)l−p−b

‖xr‖m−1

〉

= −〈x̄,A(1)(x̄)m−1〉 < 0.
(11)

Moreover, since f is strictly monotone with respect to g on K and g(0) ∈ K , by
taking y = 0, it follows that

〈
l−1∑

p=1

B(p)(xr )l−p,

m−1∑

k=1

A(k)(xr )m−k

〉
> 0.
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By dividing both sides by ‖xr‖m+l−2 and let r → ∞, we have

〈A(1)(x̄)m−1,B(1)(x̄)l−1〉 ≥ 0,

which, together with the condition (b), implies that

〈A(1)(x̄)m−1,B(1)(x̄)l−1〉 > 0.

Furthermore, we have

lim
r→∞

〈∑m−1
k=1 A(k)(xr )m−k+a

‖xr‖m−1 ,
y−∑l−1

p=1 B(p)(xr )l−p−b

‖xr‖l−1

〉

= −〈A(1)(x̄)m−1,B(1)(x̄)l−1〉 < 0.

Thus, for all sufficiently large r , we deduce that

〈∑m−1
k=1 A(k)(xr )m−k + a

‖xr‖m−1 ,
y − ∑l−1

p=1 B(p)(xr )l−p − b

‖xr‖l−1

〉
< 0.

that is, for all sufficiently large r ,

ur := ‖xr‖l−2

αr

〈∑m−1
k=1 A(k)(xr )m−k+a

‖xr‖m−1 ,
y−∑l−1

p=1 B(p)(xr )l−p−b

‖xr‖l−1

〉
− αr

‖xr‖m−2

< 0.

Now, we consider the following two cases.

(i) If {ur } is unbounded, then, without loss of generality, we assume that ur → −∞
as r → ∞. Thus, it follows from (10) and (11) that

0 ≤
〈

xr
‖xr‖ ,

y−∑m−1
k=1 A(k)(xr )m−k−∑l−1

p=1 B(p)(xr )l−p−a−b

‖xr‖m−1

〉
+ ur

→ −∞,

which is a contradiction.
(ii) If {ur } is bounded, then there exists a convergent subsequence of {ur }, and we

denote it as {ur }. We assume that ur → −β as r → ∞, then β ≥ 0. So, we have

0 ≤ limr→∞
〈

xr
‖xr‖ ,

y−∑m−1
k=1 A(k)(xr )m−k−∑l−1

p=1 B(p)(xr )l−p−a−b

‖xr‖m−1

〉
+ lim

r→∞ ur

= −〈(x̄),A(1)(x̄)m−1〉 − β < 0,

which is also a contradiction.

Therefore, SOL(�, a,�,b, K ) is nonempty.
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Now, we show the uniqueness of solutions to GPV I (�, a,�,b, K ). Suppose that
x∗ and x̄ are two different solutions to GPV I (�, a,�,b, K ). Then,

〈 f (x∗) − f (x̄), g(x̄)〉 ≥ 0 and 〈 f (x̄) − f (x∗), g(x∗)〉 ≥ 0,

which yields that

〈 f (x∗) − f (x̄), g(x∗) − g(x̄)〉 ≤ 0.

This is a contradiction with the condition (a). Therefore, GPV I (�, a,�,b, K ) has
a unique solution. �

In the following, we give an example to show Theorem 2 cannot be covered by
Theorem 1.

Example 1 Consider GV I (g, f , K ), where

g(x) = (x31 + 1, x32 )
	, f (x) = (x31 + x1 + 2, x32)

	, K = {(k, 0)	 : k ≥ 1}.

We show that f and g satisfy all conditions in Theorem 2, but do not satisfy the
conditions of Theorem 1. We also give the unique solution of GPV I (g, f , K ).

(i) Consider the condition (a) of Theorem 2. We show that function f is strictly
monotone with respect to g on the set K . It is easy to see that

g−1(K ) =:
{
(x1, x2)

	|x1 ≥ 0, x2 = 0
}

.

For any g(x), g(y) ∈ K , it follows that x1 ≥ 0, y1 ≥ 0, x1 
= y1, and hence,

[g(x) − g(y)]	[ f (x) − f (y)] = (x31 − y31)(x
3
1 − y31 + x1 − y1)

= (x31 − y31)
2 + (x1 − y1)

2(x21 + x1y1 + y21 )

> 0.

Therefore, the function f is strictly monotone with respect to g on the set K .
(ii) Consider the condition (b) of Theorem 2. In this example, the leading tensors

of f and g are the same, i.e., A(1) = B(1) = (di1i2i3i4) ∈ R
[4,2] with d1111 = 1,

d2222 = 1, and other entries being zero. Thus, it is obvious that

〈A(1)x3,B(1)x3〉 = x61 + x62 
= 0

for any nonzero vector x ∈ R
2, i.e., the condition (b) of Theorem 2 holds.

(iii) Consider the condition (c) of Theorem 2. For any x ∈ R
2\{0}, it is obvious

that

A(1)x4 = B(1)x4 = x41 + x42 > 0,
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which implies that both the leading tensors of f and g are positive definite, i.e., the
condition (c) of Theorem 2 holds.

(iv) Consider the condition (a) of Theorem 1. By Proposition 1, it is easy to see that
f is not strongly monotone with respect to g on K , i.e., the condition (a) of Theorem 1
is not satisfied.

(v)Consider the condition (b) ofTheorem1. Suppose the condition (b) ofTheorem1
holds, i.e., there exists a vector u ∈ g−1(K ) and positive scalars α and L such that

‖g(x) − g(u)‖ ≤ L‖x − u‖ for all x ∈ g−1(K ) with ‖x‖ ≥ α.

Then, x1 ≥ 0, u1 ≥ 0, and

‖g(x) − g(u)‖ = |x31 − u31| = |x1 − u1||x21 + x1u1 + u21| ≤ L|x1 − u1|,

and hence,
|x21 + x1u1 + u21| ≤ L. (12)

Since u1 ≥ 0, it follows when x1 → +∞ that the left-hand side of inequality (12)
tends to +∞, which leads to a contradiction.

(vi) We give the unique solution of GPV I (g, f , K ). In this example, we need to
find x1 ∈ R such that

x31 + 1 ≥ 1, (x31 + x1 + 2)(y1 − x31 − 1) ≥ 0 for any y1 ≥ 1. (13)

Obviously, (13) has a unique solution x∗
1 = 0. Thus, x∗ = (0, 0)	 is the unique

solution of GPV I (g, f , K ).
When K = R

n+, GPV I (�, a,�,b, K ) becomes the generalized polynomial
complementarity problem investigated in [16], denoted by GPCP(�, a,�,b). The
following result is an immediate consequence of Theorem 2, which gives an existence
and uniqueness result for GPCP(�, a,�,b).

Corollary 1 Let f and g be defined by (2) and (3). Suppose that f is strictly monotone
with respect to g onRn+, 〈A(1)(x)m−1,B(1)(x)l−1〉 
= 0 for any nonzero vector x ∈ R

n,
and one ofA(1) and B(1), whose order is even and is lager than or equal to another, is
positive definite, then for any given vectors a ∈ R

n and b ∈ R
n+, GPCP(�, a,�,b)

has a unique solution.

When g(x) = x, GPV I (�, a,�,b, K ) becomes the polynomial variational
inequality investigated in [10], denoted by PV I (K ,�, a). The following result is
an immediate consequence of Theorem 2, which gives an existence and uniqueness
result for PV I (K ,�, a).

Corollary 2 Let K ⊆ R
n be a nonempty, closed and convex set with 0 ∈ K. Sup-

pose that the function
∑m−1

k=1 A(k)xm−k is strictly monotone on K where � :=(
A(1), . . . ,A(m−1)

)
∈ Fm,n defined by (3), and the tensorA(1) is positive definite on

K . Then for any given a ∈ R
n, PV I (K ,�, a) has a unique solution.
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We would like to emphasize that the results in Corollaries 1 and 2 are new ones on
the existence and uniqueness for the generalized polynomial complementarity problem
and the polynomial variational inequality, respectively.

When g(x) = x and f (x) = Axm−1 + a with A ∈ R
[m,n] and a ∈ R

n ,
GPV I (�, a,�,b, K ) reduces to the tensor variational inequality investigated in
[26]. In this case, Corollary 2 reduces to [26, Theorem 4.1], since A ∈ R

[m,n] is pos-
itive definite on K under the assumptions that 0 ∈ K and f is strictly monotone on
K . Furthermore, when K = R

n+, this problem reduces to the tensor complementarity
problem, and in this case, Corollary 2 can further reduce to [2, Corollary 1(b)] if the
involved tensor is a Gram tensor. Moreover, for the tensor complementarity problem,
some existence and uniqueness results were established in [1,17].

4 Conclusions

The generalized polynomial variational inequality is a generalized variational inequal-
ity with the involved functions being polynomials, however, the known existence and
uniqueness theorem for the generalized variational inequality cannot be generally
applied to the generalized polynomial variational inequality, since the hypotheses of
Theorem 1 do not hold for the general polynomial functions. In this paper, in terms of a
characterization theorem related to exceptional family of elements and by using prop-
erties of polynomial functions, we established an existence and uniqueness theorem
for the generalized polynomial variational inequality, by which we also obtained new
existence and uniqueness theorems for the generalized polynomial complementarity
problem and the polynomial variational inequality. They can be seen as extensions of
the corresponding results for the tensor variational inequality and the tensor comple-
mentarity problem. By exploiting properties of polynomials, more theoretical results
for the generalized polynomial variational inequality can be further developed.
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