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Abstract
Under the fulfilment of the limiting constraint qualification, a necessary condition for a
quasi ε-solution to a semi-infinite programming problem (SIP) bymeans of employing
some advanced tools of variational analysis and generalized differential is established.
Sufficient conditions for such a quasi ε-solution to problem (SIP) are also investigated
in light of generalized convex functions defined in terms of the limiting subdifferential
of locally Lipschitz functions. Finally, a Wolfe type dual model in approximate form
is formulated, and weak, strong and converse-like duality theorems are proposed.
Besides, we give some simple examples to illustrate the obtained results.
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1 Introduction

In this paper, we are interested in the study of a semi-infinite programming problem
admiring the following form:

min
x∈C f (x) subject to gt (x) � 0, t ∈ T , (SIP)

where C that we call the constraint set of problem (SIP) is a nonempty closed (not
necessarily convex) subset of Rn, f : Rn → R is a locally Lipschitz function, and
gt : Rn → R, t ∈ T , are locally Lipschitz with respect to x uniformly in t, and T
is an index set (possibly infinite). We denote F as the feasible set of problem (SIP),
given by

F := {x ∈ C : gt (x) � 0, t ∈ T }. (1)

Recently, optimization problems with an infinite number of constraints have been
studied in many research papers; see [1,4,10–12,15,16,23,25–27] and the references
therein. In particular, some recent contributions to semi-infinite optimization problems
are investigated by Goberna and López [11,12].

Besides, it is worth noting that semi-infinite programs with linear and convex
inequality constraints have been widely studied and applied, problems with Lips-
chitzian data are pretty new in the literature. Especially, for the case of exact solutions,
necessary optimality conditions were derived quite recently; see [20, Chapter 8] and
the papers [21,22]. However, the results on optimality conditions for approximate solu-
tions to problem (SIP) with Lipschitzian data seem to be developed, since sometimes
the exact solutions do not exist while the approximate ones do even in the convex case,
for example minimizing f (x) = 1

x over x > 0. Motivated by this, we will focus on a
class of approximate solutions, i.e., quasi ε-solutions, to problem (SIP) in the paper.
Note that some characterizations of such an approximate solution to robust convex
optimization problems have been studied by Lee and Jiao [17] (see also [13,14]).

Below, let us recall the concept of a quasi ε-solution to problem (SIP), the geometric
meaning of such an approximate solution is referred to [8,14,17].

Definition 1.1 Let ε � 0 be given. A point x̄ ∈ F is said to be a quasi ε-solution to
problem (SIP) if

f (x̄) � f (x) + √
ε‖x − x̄‖, ∀x ∈ F .

Remark 1.1 (i) We say that x̄ ∈ F is an ε-solution to problem (SIP) if f (x̄) �
f (x) + ε, for all x ∈ F . In addition, the concepts of the ε-solution and the quasi
ε-solution are essentially different; see, for example [17].

(ii) The notion of a quasi ε-solution was motivated by the well-known Ekeland Vari-
ational Principle [9].

(iii) For nonconvex functions, it is crucial to use local concepts as the following one:
a point x̄ is a quasi ε-solution of f if x̄ is a local minimum of the function
x �→ f (x) + √

ε‖x − x̄‖.
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(iv) If x̄ is a quasi ε-solution to problem (SIP), then there exists a ball B(x̄) ⊂ R
n

around x̄ with radius equal to
√

ε such that f (x̄) � f (x)+ε for all x ∈ B(x̄)∩F .

In this case, we can say that x̄ is a locally ε-solution to problem (SIP).

Example 1.1 This example aims to illustrate Remark 1.1 (iv). Let f : R → R, and
f (x) = x2, F = R. Moreover, let ε = 1

4 be given. Then, by definition, the quasi
ε-solution set is [− 1

4 ,
1
4 ], and we pick x̄ = 1

4 , observe that Remark 1.1 (iv) holds,
since there exists a ball B(x̄) ⊂ R around x̄ = 1

4 with radius equal to
√

ε = 1
2 , i.e.,

B(x̄) = {x ∈ R : − 1
4 � x � 3

4 } such that f (x̄) � f (x) + ε for all x ∈ B(x̄) ∩ F =
B(x̄).

Wemake the following contributions to the semi-infinite programming (SIP) in the
paper.

• We establish a necessary condition for a quasi ε-solution to problem (SIP) by
means of employing some advanced tools of variational analysis and generalized
differentiation (due to Mordukhovich [19,20]), under the fulfilment of the limiting
constraint qualification.

• We also investigate sufficient conditions for such a quasi ε-solution to prob-
lem (SIP) in light of generalized convex functions defined in terms of the limiting
subdifferential of locally Lipschitzian data.

• After the dual model in the sense of Wolfe (stated in approximate form) being
formulated, we propose the weak, strong and converse-like duality theorems.

The rest of the paper is organized as follows. Section 2 presents some notations and
preliminaries. Section 3 establishes necessary and sufficient conditions for a quasi
ε-solution to problem (SIP). Section 4 studies duality results between the primal
problem and its dual one in the sense of Wolfe. Finally, conclusions are given in
Sect. 5.

2 Preliminaries

In this section, we recall briefly some standard notation of variational analysis and
generalized differentiation widely used in the present paper; see [19,20] for more
details. Let Rn denote the Euclidean space equipped with the usual Euclidean norm
‖ · ‖. The notation 〈·, ·〉 signifies the inner product in R

n . The nonnegative orthant of
R
n is denoted by R

n+. Denote by B(x̄) := {x ∈ R
n : ‖x − x̄‖ � 1} as a ball in R

n

around x̄ with radius equal to 1. As usual, the polar cone of a set Ω ⊂ R
n is defined

by

Ω◦ := {y ∈ R
n : 〈y, x〉 � 0, ∀x ∈ Ω}. (2)

Let ϕ be a function from R
n to R, where R := [−∞,+∞]. We say ϕ : Rn → R is

lower semicontinuous (l.s.c.) at x̄ ∈ R
n if lim infx→x̄ ϕ(x) � ϕ(x̄).

Alongwith single-valuedmappings usually denoted by f : Rn → R
m,we consider

set-valued mappings (or multifunctions) F : Rn ⇒ R
m, with values F(x) ⊂ R

m in
the collection of all the subsets of Rm . The limiting construction
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Lim sup
x→x̄

F(x) :=
{
y ∈ R

m : ∃xk → x̄, yk → y with yk ∈ F(xk) for all k ∈ N

}

(3)

is known as the Painlevé–Kuratowski upper/outer limit of F at x̄,
where N := {1, 2, . . .}.

Given a set Ω ⊂ R
n, associate with it the distance function

dist(x;Ω) := inf
z∈Ω

‖x − z‖, x ∈ R
n,

and define the Euclidean projector of x ∈ R
n to Ω by

Π(x;Ω) := {w ∈ Ω : ‖x − w‖ = dist(x;Ω)}.

Under the imposed local closedness of Ω around x̄ ∈ Ω, we have Π(x;Ω) �= ∅ for
all x ∈ R

n sufficiently close to this point.

Definition 2.1 [20, Definition 1.1] LetΩ ⊂ R
n with x̄ ∈ Ω.The (basic) normal come

to Ω at x̄ is defined by

NΩ(x̄) := Lim sup
x→x̄

[cone (x − Π(x;Ω)]

via the outer limit (3). Each v ∈ NΩ(x̄) is called a basic or limiting normal to Ω at
x̄ and is represented as follows: there are sequences xk → x̄, wk ∈ Π(xk;Ω), and
αk � 0 such that αk(xk − wk) → v as k → ∞.

For an extended real-valued function ϕ : Rn → R we set

epi ϕ := {(x, r) ∈ R
n × R : ϕ � r}.

The limiting/Mordukhovich subdifferential of ϕ at x̄ ∈ R
n with |ϕ(x̄)| < ∞ is defined

by

∂ϕ(x̄) := {y ∈ R
n : (y,−1) ∈ Nepi ϕ(x̄, ϕ(x̄))}.

If |ϕ(x̄)| = ∞, one puts ∂ϕ(x̄) := ∅. It is known [19,20] that when ϕ is a convex
function, the above-defined subdifferential coincides with the subdifferential in the
sense of convex analysis [24].

Let δΩ be the indicator function defined by δΩ(x) := 0 if x ∈ Ω, and δΩ(x) := ∞
if x /∈ Ω. We have a relation between the basic normal cone and the limit-
ing/Mordukhovich subdifferential of the indicator function as follows (see e.g., [20,
Proposition 1.19]):

∂δΩ(x̄) = NΩ(x̄), ∀x̄ ∈ Ω. (4)
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The nonsmooth version of Fermat’s rule (see e.g., [19, Proposition 1.114]), which
is an important fact for many applications, can be formulated as follows: If x̄ ∈ R

n is
a local minimizer for ϕ : Rn → R, then

0 ∈ ∂ϕ(x̄). (5)

The following limiting subdifferential sum rule is needed for our study.

Lemma 2.1 [20, Corollary 2.21] Let ϕi : Rn → R, i = 1, 2, . . . , k, k � 2, be lower
semicontinuous around x̄ ∈ R

n, and let all these functions except, possibly, one be
Lipschitz continuous around x̄ . Then one has

∂(ϕ1 + ϕ2 + · · · + ϕk)(x̄) ⊂ ∂ϕ1(x̄) + ∂ϕ2(x̄) + · · · + ∂ϕk(x̄). (6)

Now,we recall the following linear space that is used for semi-infinite programming;
see [10] for details. We denote by R

|T |
+ the collection of all the functions λ : T → R,

which are positive at finitely many points of T and equal to zero at infinitely other
points, mathematically say,

R
|T | := {λ = (λt )t∈T : λt = 0 for all t ∈ T but only finitely many λt �= 0}.

With λ ∈ R
|T |, its supporting set, T (λ) = {t ∈ T : λt �= 0}, is a finite subset of T .

The nonnegative cone of R|T | is denoted by:

R
|T |
+ = {λ = (λt )t∈T ∈ R

|T | : λt � 0, t ∈ T }.

For gt , t ∈ T ,

∑
t∈T

λt gt =
{∑

t∈T (λ) λt gt if T (λ) �= ∅,

0 if T (λ) = ∅.

3 �-Optimality conditions

In this section, we establish the necessary and sufficient optimality conditions for a
quasi ε-solution to problem (SIP). In connection with the constraint set C of prob-
lem (SIP), we use the set of active constraint multipliers at x̄ ∈ C defined by

A(x̄) := {λ ∈ R
|T |
+ : λt gt (x̄) = 0 for all t ∈ T }. (7)

Below,we recall the concept of the so-called limiting constraint qualification,which
can be seen in [2–4,6].
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Definition 3.1 Let x̄ ∈ F . We say that the following limiting constraint qualification
(LCQ) is satisfied at x̄ iff

NF (x̄) ⊆
⋃

λ∈A(x̄)

[∑
t∈T

λt∂gt (x̄)

]
+ NC (x̄). (LCQ)

Remark 3.1 It is worth noting that, when considering F defined in (1) with C := R
n,

the condition given in (LCQ) is exactly the limiting constraint qualification introduced
in [3] if we keep the parameter fixed. Indeed, the paper [3] used the parameter-
ized constraint qualification to evaluate the limiting subdifferential of the optimal
value/marginal function of a parametric optimization problem; moreover, the authors
also pointed out that the (LCQ) covers almost the existing constraint qualifications
of the Mangasarian–Fromovitz and the Farkas–Minkowski types. Furthermore, the
reader is referred to [7,18] for some sufficient conditions ensuring the (LCQ) in the
case when gt are convex for all t ∈ T .

Now, we give a Karush–Kuhn–Tucker (KKT) necessary optimality condition for a
quasi ε-solution to problem (SIP) under the fulfilment of the (LCQ).

Theorem 3.1 (Necessary Optimality Condition) Let f and gt , t ∈ T be locally Lip-
schitz functions, where T is an arbitrary index set. Let the (LCQ) be satisfied at
x̄ ∈ F := {x ∈ C : gt (x) � 0, t ∈ T }. If x̄ is a quasi ε-solution to f over F, then
there exist λ ∈ A(x̄) defined in (7) such that

0 ∈ ∂ f (x̄) +
∑
t∈T

λt∂gt (x̄) + NC (x̄) + √
εB(x̄). (8)

Proof Let x̄ be a quasi ε-solution to f over F, then by definition

f (x̄) + √
ε‖x̄ − x̄‖ � f (x) + √

ε‖x − x̄‖, ∀x ∈ F;

in other words, x̄ is a minimizer of the following problem

min
x∈F

{
f (x) + √

ε‖x − x̄‖} .

Equivalently, x̄ is an optimal solution of the following unconstrained optimization
problem

min
x∈Rn

{
f (x) + √

ε‖x − x̄‖ + δF (x)
}
. (9)

Using the nonsmooth version of Fermat’s rule (5) to problem (9), we have

0 ∈ ∂
(
f + √

ε‖ · −x̄‖ + δF (·))(x̄). (10)
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Since functions f and ‖ · −x̄‖ are Lipschitz continuous around x̄ and the function
δF (·) is l.s.c around this point, it follows from the sum rule (6) applied to (10), from
the fact that ∂‖ · −x̄‖ = B(x̄) at x̄, and from the relation in (4) that

0 ∈ ∂ f (x̄) + NF (x̄) + √
εB(x̄). (11)

On the other hand, the (LCQ) being satisfied at x̄ ∈ F yields that

NF (x̄) ⊆
⋃

λ∈A(x̄)

[∑
t∈T

λt∂gt (x̄)

]
+ NC (x̄),

where the set A(x̄) was defined in (7). This, along with (11), tells that

0 ∈ ∂ f (x̄) +
⋃

λ∈A(x̄)

[∑
t∈T

λt∂gt (x̄)

]
+ NC (x̄) + √

εB(x̄).

Thus, the desired result is obtained. ��
The following simple example shows that the fulfilment of (LCQ) at the point in

question is essential in Theorem 3.1.

Example 3.1 We consider problem (SIP) with C = R, and let f : R → R be defined
by f (x) := 2x, and let gt : R → R be given by gt (x) := t x2 for x ∈ R and for
t ∈ T := [1, 2]. Then the feasible set F = {0} and thus, x̄ := 0 is the optimal solution
of f over F, and x̄ = 0 is also a quasi ε-solution of f over F; in addition, x̄ = 0 is
the optimal solution of f (·) + √

ε‖ · −x̄‖ over F . Since ∂gt (x̄) = 2t x̄ = 0 at x̄ = 0
for all t ∈ T ,

⋃
λ∈A(x̄)

[∑
t∈T

λt∂gt (x̄)

]
+ NC (x̄) = {0}.

On the other hand, NF (x̄) = R. Therefore, the (LCQ) does not hold at x̄, and also
Theorem 3.1 goes awry.

Before we discuss the sufficient conditions for quasi ε-solutions to problem (SIP),
we would introduce the concept of generalized convexity, which is motivated by [4].

Definition 3.2 Let gT := (gt )t∈T . We say that the pair ( f , gT ) is generalized convex
on C at x̄ ∈ C iff, for any x ∈ C, ξ ∈ ∂ f (x̄) and ξt ∈ ∂gt (x̄), t ∈ T , there exists
ω ∈ NC (x̄)◦ satisfying

f (x) − f (x̄) � 〈ξ, ω〉,
gt (x) − gt (x̄) � 〈ξt , ω〉, ∀t ∈ T ,

〈b, ω〉 � ‖x − x̄‖, ∀b ∈ B(x̄).
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Remark 3.2 Observe that, if C is convex and f and gt , t ∈ T are convex, then ( f , gT )

is generalized convex onC at any x̄ ∈ C withω := x− x̄ for each x ∈ C . Furthermore,
[4, Example 3.2] showed that the class of generalized convex functions is properly
larger than the one of convex functions.

The next theorem in this section provides a KKT type sufficient optimality condi-
tion for a quasi ε-solution to problem (SIP) under the satisfaction of the generalized
convexity; and the proof is motivated by [5, Theorem 3.13] and [27, Theorem 3.3].

Theorem 3.2 (Sufficient Optimality Condition) Let x̄ ∈ F satisfy (8). If ( f , gT ) is
generalized convex on C at x̄, then x̄ is a quasi ε-solution to problem (SIP).

Proof Since the point x̄ ∈ F satisfies condition (8), there exist λ ∈ A(x̄) defined in
(7), and ξ ∈ ∂ f (x̄), ξt ∈ ∂gt (x̄), t ∈ T , b ∈ B(x̄) such that

−
(

ξ +
∑
t∈T

λtξt + √
εb

)
∈ NC (x̄). (12)

Assume to the contrary that x̄ is not a quasi ε-solution to problem (SIP), then there
exists an x̂ ∈ F such that

f (x̂) + √
ε‖x̂ − x̄‖ < f (x̄). (13)

Since ( f , gT ) is generalized convex on C at x̄, for x̂ above, there exists ω ∈ NC (x̄)◦
such that

〈ξ, ω〉 � [ f (x̂) − f (x̄)], (14)∑
t∈T

λt 〈ξt , ω〉 �
∑
t∈T

λt [gt (x̂) − gt (x̄)], (15)

〈b, ω〉 � ‖x̂ − x̄‖, ∀b ∈ B(x̄). (16)

By definition of polar cone (2), it follows from (12) and the relation ω ∈ NC (x̄)◦ that

0 � 〈ξ, ω〉 +
∑
t∈T

λt 〈ξt , ω〉 + 〈√εb, ω〉. (17)

Hence, along with (17), it follows from (14)–(16) that

0 � [ f (x̂) − f (x̄)] +
∑
t∈T

λt [gt (x̂) − gt (x̄)] + √
ε‖x̂ − x̄‖.

� [ f (x̂) − f (x̄)] + √
ε‖x̂ − x̄‖, (18)

where (18) follows due to the fact λt gt (x̄) = 0, and λt gt (x̂) � 0 for all t ∈ T .

Clearly, (18) contradicts to (13). Thus, x̄ is a quasi ε-solution to problem (SIP). ��
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We close this section by designing an example, which aims to demonstrate the
importance of the generalized convexity assumption imposed in Theorem 3.2. In other
words, a feasible point x̄ satisfying condition (8) in Theorem 3.1 may not be a quasi
ε-solution to problem (SIP) if the generalized convexity of ( f , gT ) on C at x̄ was
violated.

Example 3.2 Let f : R → R be given by f (x) = x3, let gt : R → R be given by
gt (x) := t x2, x ∈ R, t ∈ T := [−2,−1], and let C = R. Observe that the feasible
set F = R. Take x̄ = 0 ∈ F, clearly x̄ = 0 satisfies condition (8) in Theorem 3.1.
However, x̄ = 0 is not a quasi ε-solution to problem (SIP). The reason is that the
generalized convexity of ( f , gT ) on C at x̄ was violated.

4 �-Wolfe type duality

In this section, we address a Wolfe type dual problem (stated in approximate form) to
the primal one and establish duality relations between them. For y ∈ R

n and λ ∈ R
|T |
+ ,

put

L(y, λ) := f (y) +
∑
t∈T

λt gt (y).

In connection with the primal problem (SIP), we consider a dual problem in the sense
of Wolfe (in approximate form) as follows:

max L(y, λ) subject to (y, λ) ∈ FW , (DW )

where the feasible set FW is given by

FW :=
{

(y, λ) ∈ C × R
|T |
+ : 0 ∈ ∂ f (y) +

∑
t∈T

λt∂gt (y) + NC (y) + √
εB(x̄)

}
.

Similar to the notion of a quasi ε-solution to the primal problem (SIP) stated in
Definition 1.1, we define such an approximate solution to the dual problem (DW ).

Definition 4.1 Let ε � 0 be given. We say (ȳ, λ̄) ∈ FW is a quasi ε-solution to
problem (DW ) if

L(y, λ) � L(ȳ, λ̄) + √
ε‖ȳ − y‖, ∀(y, λ) ∈ FD.

The following theorem tells a weak duality relation between the primal prob-
lem (SIP) and the dual problem (DW ).

Theorem 4.1 (Weak Duality) For any feasible point x of the primal problem (SIP) and
any feasible point (y, λ) of the dual problem (DW ), if ( f , gT ) is generalized convex
on C at y, then

f (x) � L(y, λ) − √
ε‖x − y‖.
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Proof Since (y, λ) ∈ FW , there exist λ ∈ R
|T |
+ , ξ ∈ ∂ f (y), ξt ∈ ∂gt (y), t ∈ T , and

b ∈ B(x̄) such that

−
(

ξ +
∑
t∈T

λtξt + √
εb

)
∈ NC (y). (19)

Assume to the contrary that

f (x) < L(y, λ) − √
ε‖x − y‖,

i.e.,

f (x) − f (y) −
∑
t∈T

λt gt (y) + √
ε‖x − y‖ < 0. (20)

By definition of polar cone (2) and the generalized convexity of ( f , gT ) on C at y, it
follows from (19) that, for such x, there exists ω ∈ NC (y)◦ such that

0 � 〈ξ, ω〉 +
∑
t∈T

λt 〈ξt , ω〉 + 〈√εb, ω〉

� [ f (x) − f (y)] +
∑
t∈T

λt [gt (x) − gt (y)] + √
ε‖x − y‖

� [ f (x) − f (y)] −
∑
t∈T

λt gt (y) + √
ε‖x − y‖, (21)

where (21) holds for x ∈ C implying λt gt (x) � 0.
Combining (21) and (20) arrives at a contradiction, hence the desired result holds.

��
The forthcoming theorem shows a strong duality relation between the primal prob-

lem (SIP) and the dual problem (DW ).

Theorem 4.2 (Strong Duality) Let x̄ be a quasi ε-solution to the primal problem (SIP)
such that the (LCQ) is satisfied at this point. Then there exists λ̄ ∈ R

|T |
+ such that

(x̄, λ̄) ∈ FW and f (x̄) = L(x̄, λ̄). If in addition, ( f , gT ) is generalized convex on C
at any y ∈ C, then (x̄, λ̄) is a quasi ε-solution to problem (DW ).

Proof Thanks to Theorem 3.1, there exist λ̄ ∈ A(x̄) defined in (7) such that

0 ∈ ∂ f (x̄) +
∑
t∈T

λ̄t∂gt (x̄) + NC (x̄) + √
εB(x̄).

Then (x̄, λ̄) ∈ FW . In addition, since λ̄ ∈ A(x̄) defined in (7), then λ̄t gt (x̄) = 0 for
all t ∈ T . This implies that

∑
t∈T λ̄t gt (x̄) = 0, and hence

f (x̄) = f (x̄) +
∑
t∈T

λ̄t gt (x̄) = L(x̄, λ̄).
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Furthermore, as ( f , gT ) is generalized convex on C at any y ∈ C, it follows from
Theorem 4.1 that

L(x̄, λ̄) = f (x̄) � L(y, λ) − √
ε‖x̄ − y‖,

for any (y, λ) ∈ FW ; in other words, (x̄, λ̄) is a quasi ε-solution to the dual prob-
lem (DW ). ��
Remark 4.1 Note that the (LCQ) imposed in Theorem 4.2 plays a key role. Namely, if
x̄ is a quasi ε-solution to the primal problem (SIP) at which the (LCQ) is not satisfied,
then one may not find out a λ̄ ∈ R

|T |
+ described in Theorem 4.2 such that (x̄, λ̄) ∈ FW

and f (x̄) = L(x̄, λ̄), even in the convex case. One may refer to [5, Example 4.4]
for more information. Besides, it is also worth noting that the generalized convexity
of ( f , gT ) on C stated in Theorem 4.2 cannot be omitted; see [5, Example 4.5] for
instance.

We now present the converse-like duality relation for a quasi ε-solution between
the primal problem (SIP) and the dual problem (DW ).

Theorem 4.3 (Converse-like Duality) Let (x̄, λ̄) ∈ FW such that f (x̄) = L(x̄, λ̄). If
x̄ ∈ F and ( f , gT ) is generalized convex on C at x̄, then x̄ is a quasi ε-solution to
problem (SIP).

Proof Since (x̄, λ̄) ∈ FW , there exist λ̄ ∈ R
|T |
+ , ξ ∈ ∂ f (x̄), ξt ∈ ∂gt (x̄), t ∈ T , and

b ∈ B(x̄) such that

−
(

ξ +
∑
t∈T

λ̄tξt + √
εb

)
∈ NC (x̄). (22)

Assume to the contrary that x̄ is not a quasi ε-solution to problem (SIP), then there
exists an x̂ ∈ F such that

f (x̂) + √
ε‖x̂ − x̄‖ < f (x̄). (23)

On the other hand, since ( f , gT ) is generalized convex on C at x̄, for x̂ above, there
exists ω ∈ NC (x̄)◦ such that

〈ξ, ω〉 � [ f (x̂) − f (x̄)], (24)∑
t∈T

λ̄t 〈ξt , ω〉 �
∑
t∈T

λ̄t [gt (x̂) − gt (x̄)], (25)

〈b, ω〉 � ‖x̂ − x̄‖, ∀b ∈ B(x̄). (26)

By definition of polar cone (2), it follows from (22) and the relation ω ∈ NC (x̄)◦ that

0 � 〈ξ, ω〉 +
∑
t∈T

λ̄t 〈ξt , ω〉 + √
ε〈b, ω〉. (27)
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Now, along with (27), it follows from (24)–(26) that

0 � [ f (x̂) − f (x̄)] +
∑
t∈T

λ̄t [gt (x̂) − gt (x̄)] + √
ε‖x̂ − x̄‖. (28)

In addition, since f (x̄) = L(x̄, λ̄), then
∑

t∈T λ̄t gt (x̄) = 0, and since x̂ ∈ F, then∑
t∈T λ̄t gt (x̂) � 0, it follows from (28) that

f (x̄) = f (x̄) +
∑
t∈T

λ̄t gt (x̄)

� f (x̂) +
∑
t∈T

λ̄t gt (x̂) + √
ε‖x̂ − x̄‖

� f (x̂) + √
ε‖x̂ − x̄‖.

This together with (23) gives a contradiction, and the proof is completed. ��
Remark 4.2 For y ∈ R

n and λ ∈ R
|T |
+ , put L(y, λ) := f (y). In connection with the

primal problem (SIP), we consider a dual problem in the sense of Mond–Weir (in
approximate form) as follows:

max L(y, λ) subject to (y, λ) ∈ FMW , (DMW )

where the feasible set FMW is given by

FMW :=
{

(y, λ) ∈ C × R
|T |
+ : 0 ∈ ∂ f (y) +

∑
t∈T

λt∂gt (y) + NC (y) + √
εB(x̄),

∑
t∈T

λt gt (y) � 0.

}

Then, similar results to Theorems 4.1, 4.2 and 4.3 in the sense of Mond–Weir type
dual problem (DMW ) can be verified.

5 Conclusions

In this paper, we studied a necessary optimality condition for a quasi ε-solution to
a semi-infinite programming problem (SIP), and we proposed it under the fulfilment
of limiting constraint qualification, which was different to the ones in [26,27]. Then,
a sufficient optimality condition for such a quasi ε-solution to problem (SIP) was
proposed in light of generalized convex functions defined in terms of the limiting
subdifferential of locally Lipschitz functions. Finally, we formulated a Wolfe type
dual model in approximate form, and studied weak, strong and converse-like duality
theorems. All in all, we investigated some characterizations of a quasi ε-solution to a
semi-infinite programming problem (SIP).
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