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Abstract
Differential evolution (de) is a popular population-based meta-heuristic that has been
successfully used in complex optimization problems. Premature convergence is one
of the most important drawbacks that affects its performance. In this paper, a novel
replacement strategy that combines the use of an elite population and a mechanism to
preserve diversity explicitly is devised. The proposal is integrated with de to generate
the dewith enhanced diversity maintenance. The main novelty is the use of a dynamic
balance between exploration and exploitation to adapt the optimizer to the require-
ments of the different optimization stages. Experimental validation is carried out with
several benchmark tests proposed in competitions of the well-known IEEE Congress
on Evolutionary Computation. Top-rank algorithms of each competition, as well as
other diversity-based schemes, are used to illustrate the usefulness of the proposal.
The newmethod avoids premature convergence and significantly improves further the
results obtained by state-of-the-art algorithms.

Keywords Diversity · Differential evolution · Premature convergence

1 Introduction

Evolutionary algorithms (eas) are one of the most widely used techniques to deal with
complex optimization problems. Several variants of these strategies have been devised
[30] and applied in many fields, such as in science, economic and engineering [5].
Among them, Differential Evolution (de) [28] is one of the most effective strategies
to deal with continuous optimization. In fact, it has been the winning strategy of
several optimization competitions [8]. Similarly to other eas, de is inspired by the
natural evolution process and it involves the application of mutation, recombination
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and selection. The main peculiarity of de is that it considers the differences among
vectors that are present in the population to explore the search space. In this sense
it is similar to the Nelder-Mead [23] and the Controlled Random Search (CRS) [24]
optimizers.

In spite of the effectiveness of de, there exists several weaknesses that have been
detected and partially solved by extending the standard variant [8,18]. Among them,
the sensitivity to its parameters [36], the appearance of stagnation due to the reduced
exploration capabilities [14,25] and premature convergence [35] are some of the most
well-known issues. This last one issue is tackled in this paper. Note that, attending
to the proper design of population-based meta-heuristics [30], special attention must
be paid to attain a proper balance between exploration and exploitation. A too large
exploration degree prevents the proper intensification of the best located regions, usu-
ally resulting in a too slow convergence. Differently, an excessive exploitation degree
provokes loss of diversity meaning that only a limited number of regions are sampled.
In the case of de, since its inception some criticism appeared because of its incapabil-
ity to maintain a large enough diversity due to the use of a selection with high pressure
[25]. Thus, several extensions of de to deal with premature convergence have been
devised such as parameter adaptation [35], auto-enhanced population diversity [34]
and selection strategies with a lower selection pressure [25]. Some of the last studies
on design of population-based meta-heuristics [6] show that explicitly controlling the
diversity to properly balance the exploration and intensification degree is particularly
useful. Specifically, in the field of combinatorial optimization some novel replacement
strategies that dynamically alter the balance between exploration and exploitation have
appeared [27]. Themain principle of such proposals is to use the stopping criterion and
elapsed generations to bias the decisions taken by the optimizers with the aim of pro-
moting exploration in the initial stages and exploitation in the last ones. Probably their
main weakness is that the time required to obtain high-quality solution increases. Our
novel proposal, which is called de with Enhanced Diversity Maintenance (de- edm),
integrates a similar principle into de. However, in order to avoid the excessive growth
of computational requirements typical of diversity-based replacement strategies, two
modifications that induce a larger degree of intensification are included.

The rest of the paper is organized as follows. Some basic concepts ofde and a review
of works related to diversity within de are given in Sect. 2. Section 3 presents an analy-
sis about the algorithmswith best performance on the last continuous optimization con-
tests held at the ieee Congress on Evolutionary Computation. More emphasis is given
on the variants based on de. Our proposal is described in Sect. 4. The experimental
validation, which includes comparisons against state-of-the-art approaches, is detailed
in Sect. 5. Finally, our conclusions and some lines of future work are given in Sect. 6.

2 Literature review

2.1 Differential Evolution: Basic Concepts

This section is devoted to summarize the classic de variant and to introduce some
of the most important terms used in the de field. The classic de scheme is called
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the de/rand/1/bin, which has been extensively used to generate more complex de
variants [8]. In fact, our proposal also extends the classic variant. de was originally
proposed as a direct search method for single-objective continuous optimization. The
variables governing a given problem performance are given as a vector like X =
[x1, x2, . . . , xD],where D is the dimensionof the problem. In continuous optimization,
each xi is a real number and usually box-constraints are given, i.e. there is a lower
bound (ai ) and upper bound (bi ) for each variable. The aim of the optimization process
is to obtain the vectorX∗ which minimizes a given objective function, mathematically
denoted by f : Ω ⊆ �D → �. In the box-constrained case Ω = ∏D

j=1[a j , b j ].
de is a population-based stochastic algorithm, so it iteratively evolves a multi-

set of candidate solutions. In de such candidate solutions are usually called vectors.
In the basic de variant for each member of the population—they are called target
vectors—a new mutant vector is created. Then, the mutant vector is combined with
the target vector to generate a trial vector. Finally, a selection phase is applied to
choose the survivors. In this way, several generations are evolved until a stopping
criterion is reached. The i-th vector of the population at the generation G is denoted as
Xi,G = [x1,i,G , x2,i,G , . . . , xD,i,G ]. In the following more details are given for each
component of de.

2.1.1 Initialization

de usually starts the optimization process with a randomly initiated population of N
vectors. Since there is commonly no information about the performance of different
regions, uniform random generators are usually applied. Hence, the j-th component of
the i-th vector is initialized as x j,i,0 = a j+randi, j [0, 1](b j−a j ), where randi, j [0, 1]
is an uniformly distributed random number lying between 0 and 1.

2.1.2 Mutation

For each target vector a mutant vector is created. Several ways of performing such a
process have been proposed. In the classic de variant the rand/1 strategy is applied. In
this case, the mutant vector Vi,G is created as follows:

Vi,G = Xr1,G + F × (Xr2,G − Xr3,G) r1 �= r2 �= r3 (1)

The indices r1, r2, r3 ∈ [1, N ] are mutually different integers randomly chosen from
the range [1, N ]. In addition, they are all different from the index i . It is important
to take into account that the difference between vectors is scaled with the number F,
which is usually defined in the interval [0.4, 1]. The scaled difference is added to a
third vector, meaning that when diversity decreases and consequently differences are
low, mutant vectors are similar to target vectors. As a result, maintaining some degree
of diversity is specially important in de.
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2.1.3 Crossover

In order to combine information of different candidate solutions and with the aim of
increasing diversity, the crossover operator is applied. Specifically, each target vector
Xi,G is mixed with its corresponding mutant vector Vi,G to generate the trial vector
Ui,G = [u1,i,G , u2,i,G , . . . , uD,i,G ]. The most typical crossover is the binomial one,
which operates as follows:

U j,i,G =
{

v j,i,G , if(rand[0, 1] ≤ CR or j = jrand)

x j,i,G , otherwise
(2)

where rand[0, 1] is a uniformly distributed random number, jrand is a randomly
chosen index which ensures that Ui,G inherits at least one component from Vi,G and
CR ∈ [0, 1] is the crossover rate.

2.1.4 Selection

Finally, a greedy selection is performed to determine the survivors of the next gener-
ation. Each trial vector is compared with its corresponding target vector and the best
one survives:

Xi,G+1 =
{
Ui,G , if f (Ui,G) ≤ f (Xi,G)

Xi,G , otherwise
(3)

Hence, eachpopulationmember either gets better or remainswith the sameobjective
value in each generation. Since members never deteriorate, it is considered to be a
selection with high pressure. Note that in case of a tie, the trial vector survives.

2.2 Diversity preservation in evolutionary algorithms

Most eas start with a set of diverse candidate solutions, and as the generations evolve,
such a diversity is reduced [6]. This reduction on diversity might lead to premature
convergence, which in fact is a common drawback in eas. Thus, several variants to
deal with this issue have been designed [11]. Depending on the component of the
ea that is modified, these methods are usually classified in one the following groups
[6]: selection-based, population-based, crossover/mutation-based, fitness-based, and
replacement-based. Recently, the replacement-based strategies have attained quite
good performance, therefore this section is devoted to this kind of methods. Particu-
larly, two different strategies that are used to validate our proposal are discussed. One
of the first techniques categorized as replacement-based are the crowdingmethods. A
quite popular realization is the Restricted Tournament Selection [12] (rts) strategy.
In rts after a new individual (C) is created, CF individuals from the current pop-
ulation are randomly selected. Then, C and its most similar individual—from those
in the selected set—compete for a place in the population using a traditional binary
tournament, i.e. the best one survives.
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Other strategies are based on considering the diversity to calculate a fitness value
for the replacement stage. Specifically, in the Hybrid Genetic Search with Adaptive
Diversity Control (hgsadc) [32], the individuals—union of parents and offspring—
are sorted by their contribution to diversity and by their original cost. In order to
calculate the contribution to diversity of an individual, its mean distance to the closest
NClose individuals is calculated. For an individual I , the ranking in terms of diversity
is denoted as RD(I ), whereas the ranking for the original cost is denoted as RC(I ).
Then, the rankings are combined to generate the biased fitness value BF(I ) using
Eq. 4. In each step of the replacement phase, the individual with the lowest biased
fitness is erased and the ranks are re-calculated. This process is performed until the
desired population size is attained. It is important to remark that this scheme requires
the setting of the parameters: NClose and NElite, whereas Npopulation refers to the
number of individuals that has not been erased yet by the replacement scheme.

BF(I ) = RC(I ) +
(

1 − NElite

Npopulation

)

RD(I ) (4)

2.3 Diversity in differential evolution

de is highly susceptible to the loss of diversity, partially due to the greedy strategy
applied in the selection phase. Thus, several analyses to better deal with this issue
have been carried out. Since the general implications of each de parameter on the
diversity are known, one of the alternatives is to theoretically estimate proper values
for the de parameters [35]. Differently, some analyses regarding the effects of the
magnitude of the difference vectors used in the mutation have also been performed
[20]. Such analyses and additional empirical studies regarding the crossover allowed
to conclude that some kind of movements should be disallowed to delay the conver-
gence [22]. In this last study the kind of accepted movements varies along the run.
Specifically, it discards movements with a norm below a threshold and this threshold
decreases taking into account the elapsed generations. Other ways of altering the kind
of accepted movements have been proposed [2]. Note that these kinds of methods
have similarities with our proposal in the sense that decisions are biased by the num-
ber of elapsed generations. However, our method operates on the replacement strategy
and not on the mutation phase. Moreover, these methods do not consider explicitly
the differences appearing on the whole population. Instead, restrictions apply to the
differences appearing in the reproduction phase.

A different alternative operates by altering the selection operator [25]. Particularly,
the selection pressure is relaxed through a probabilistic selection to maintain the pop-
ulation diversity and consequently to allow escaping from basin of attraction of local
optima. Since it considers the fitness to establish the acceptance probabilities, it is very
sensitive to scale transformations. In this case, decisions are not biased by the elapsed
generations. Finally, in the Auto-Enhanced Population Diversity (aepd), the diversity
is explicitly measured and it triggers a mechanism to diversify the population when a
too low diversity is detected [34]. Strategies with similar principles but with different
disturbance schemes have also been devised [37].
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Note that de variants with best performance in competitions do not apply these
modifications and that most of these extensions have not been implemented in the
most widely used optimization frameworks. As a result, these extensions are not so
widely used in the community in spite of their important benefits for some cases.

3 Performance in IEEE CEC contests

In recent years, several contests have been organized at the ieee cec to facilitate
comparisons among optimizers. Such contests usually define a set of optimization
functions with different features and complexities, so analyzing the results through
the years offers insights about which are the principles and algorithms that provide
more advantages. This section is devoted to summarize the methods and ideas with
more contributions, focusing the efforts onde variants with the aim of detecting design
tendencies on the de field.

In cec 2005 competition on real parameter optimization [29], classical de attained
the second rank and the self-adaptive de variant called SaDE obtained the third rank
in 10 dimensions. However, they performed poorly with more than 30 dimensions.
Subsequently, in the 2008 competition on large scale global optimization [31], a self-
adaptive de (jDEdynNP-F) reached the third place, confirming the importance of
parameter adaptation. In fact, in other kinds of competitions such as in the 2006
constrained optimization one, the benefits of adaptation was also shown, where SaDE
obtained the third place. In a subsequent competition in large-scale optimization (cec
2010), de variants did not reach top ranks. This, together with the fact that several
de variants performed properly only in low-dimensionality, is an indicator of the
weaknesses of de in large scale problems. In fact, some of the reasons of the curse
of dimensionality were analyzed in [26]. Thus, it is known that there is room for
improvement in terms of scalability, although dealing with large-scale optimization
is out of the scope of this paper. Finally, in cec 2011 competition with real world
optimization problems [7], hybrid algorithms including de have performed properly.
For instance, the second place was obtained by the hybrid de called DE-ΛCR . Again
a Self-adaptive Multi-Operator de (SAMODE) performed properly and obtained the
third place.

In recent years, adaptive variants have also stood out. However, the complexity of
the best schemes has increased considerably. In the 2014 competition on real parameter
optimization [15], the first place was reached by the Linear Population Size Reduc-
tion Success-History Based Adaptive de (L-SHADE). Similarly to other adaptive
variants, this proposal adapts the internal parameters of de and the success-history
based variants are currently very well-known strategies. Additionally, in order to get
a better degree between exploration and exploitation it dynamically reduces the pop-
ulation size. In the 2015 competition based on learning [16], a variant of the previous
approach obtained the first place. Additionally, two de variants with parameter adap-
tation attained the second and third place.

In this paper, experimental validation is focused on the cec 2016 and cec 2017
competitions in real parameter optimization. In the case of 2016 [16], the first place
was reached with the United Multi-Operator Evolutionary Algorithm (UMOEAs-II).

123



Differential evolution with enhanced diversity maintenance 1477

This approach is not a de scheme but some of the de operators are taken into account.
The second placewas reached by Ensemble Sinusoidal Differential CovarianceMatrix
Adaptation with Euclidean Neighborhood (L-SHADE-EpSin) and the third place was
attained by the Improved L-SHADE (iL-SHADE). Note that these two approaches
were again variants of SHADE. In fact, variants of SHADE have also excelled in the
learning-based competitions [17].

In the cec 2017 case [33], the first place was obtained by the Effective Butterfly
Optimizer with Covariance Matrix Adapted Retreat Phase (EBOwithCMAR), which
is not a de variant. EBOwithCMAR is an extension of UMOEAs-II. The second place
was reached by jSO, which is an improvement of iL-SHADE. Finally, the L-SHADE-
EpSin, again a variant of SHADE, attained the third place.

Attending to the features of the different approaches, the following trend is detected:

– Typically, the parameters are altered during the run with the aim of adapting the
optimizer to the requirements of the different optimization stages.

– In some of the last algorithms, the adaptation considers the stopping criterion and
elapsed generations to bias the decisions taken by the optimizer. For instance, some
proposals decrease the population size and in other cases de is modified to further
intensify in last stages.

– The overall complexity of the winners has increased significantly. Particularly,
several variants include modifications to perform promising movements with a
higher probability, for instanceby including theprinciples of theCovarianceMatrix
Adaptation scheme.

Our proposal takes the previous conclusions into consideration. However, our
hypothesis is that for long-term executions simpler variants with explicit control of
diversity are enough to excel and that some of the proposed modifications might be
counter-productive. For instance, it is known that the parameter adaptation might pro-
voke some improper movements that might affect performance in the long term [21].
Note that by controlling the diversity, the degree between exploration and exploitation
can be properly altered automatically. As a result, parameter adaptation is not included
in our proposal. Instead, taking into account the performance of some SHADE vari-
ants, a dynamic parameterization that relates the parameter values with the elapsed
function evaluations is taken into account. We consider that incorporating an adaptive
parameterization might be beneficial but it should be included carefully.

4 Proposal

Our proposal is motivated by two main works in the area of control of diversity in
EAs. The first one is the empirical study developed by Montgomery et al [22], which
presents several empirical analyses that confirm issues related to premature conver-
gence inde. The secondwork, by Segura et al. [27], provides significant improvements
in the combinatorial optimization field by developing a novel replacement strategy
called Replacement with Multi-objective based Dynamic Diversity Control (rmddc)
that relates the control of diversity with the stopping criterion and elapsed generations.
Important benefits were attained by methods including rmddc, so given the conclu-
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Algorithm 1 General scheme of DE-EDM
1: Randomly initialize the N target vectors, where each one is uniformly distributed.
2: G = 0
3: while stopping criterion is not satisfied do
4: for i = 1 to N do
5: Mutation: Generate the mutant vector (Vi,G ) according to Eq. (1).
6: Crossover: Use recombination to generate the trial vector (Ui,G ) according to Eq. (2).
7: Selection: Update the elite vector (Ei,G instead of Xi,G ) according to Eq. (3).
8: Replacement: Select the target vectors (XG+1) according to Algorithm 2.
9: G = G + 1

sions of these previous works, the proposal of this paper is a novel de variant that
includes an explicit mechanism that follows some of the principles of rmddc. Since
this is applied in the context of de, the parent population and offspring population are
referred to as target vectors and trial vectors respectively, and the term vector is used
with the same meaning as individual. This novel optimizer is called Differential Evo-
lution with Enhanced Diversity Maintenance (de- edm) and its source code is freely
available.1

The core of de- edm (see Algorithm 1) is quite similar to the standard de. In fact,
the way of creating new trial vectors is not modified at all (lines 5 and 6). The novelty is
the incorporation of elite vectors (E) and a novel diversity-based replacement strategy.
The former, records the vectors that have the best objective function value in relation
with each target vector, therefore there are N elite vectors, which must be considered
as a multi-set since repeated individuals might appear. In order to select the members
of the elite vectors, the original greedy replacement of de is used (line 7). In the case
of the replacement strategy (line 8), which is in charge of selecting the next target
vectors, it follows the same principle that guided the design of rmddc, i.e. vectors
that contribute too little to diversity should not be accepted as members of the next
generation. In this way, the greedy selection strategy of de is not used to maintain the
target vectors (X ). In order to establish the minimum acceptable diversity contribution
to be selected, the stopping criterion and elapsed generations are taken into account.
One of the main weaknesses of rmddc is that its convergence is highly delayed.
Thus, in order to promote a faster convergence than in rmddc two modifications are
performed. First, no concepts of the multi-objective field are applied, instead a more
greedy selection is taken into account. Second, the elite vectors are also considered as
an input of the replacement strategy.

Our replacement strategy (see Algorithm 2) operates as follows. It receives as input
the target vectors, the trial vectors, and the elite vectors. In each generation it must
select the N trial vectors of the next generation. First, it calculates a desired minimum
distance between selected vectors (Dt ) given the current number of elapsed function
evaluations (line 2). Then, it joins the three multi-set of vectors in amulti-set of current
vectors (line 3). Then, the multi-set of survivors and penalized vectors are initialized
to the empty set (line 4). In order to select the N survivors (next target vectors) an
iterative process is repeated (lines 5–13). In each step the best vector in Current, i.e.
the one with best objective function is selected to survive, i.e. it is moved to Survivors

1 The code in C++ can be downloaded in the next link https://github.com/joelchaconcastillo/Diversity_
DE_Research.git/.
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Algorithm 2 Replacement Phase
1: Input: Target vectors, Trial vectors, and Eli te
2: Update Dt = DI − DI ∗ (n f es/(0.90 ∗ max_n f es))
3: Current = Target ∪ Trial ∪ Eli te.
4: Survivors = Penali zed = ∅.
5: while |Survivors| < N And |Current | > 0 do
6: Selected = Select the best vector of Current .
7: Remove Selected from Current .
8: Copy Selected to Survivors.
9: Find the vectors fromCurrent with a distance to Selected lower than Dt and move them to Penali zed. Normalized

distance is considered (Eq. 5).
10: while |Survivors| < N do
11: Selected = Select the vector from Penali zed with the largest distance to the closest vector in Survivors.
12: Remove Selected from Penali zed.
13: Copy Selected to Survivors.
14: return Survivors

(line 6–8). Then, the vectors in Current with a distance lower than Dt to the selected
vector are transferred to Penalized (line 9). The way to calculate the distance between
two vectors is by using the normalized Euclidean distance described in Eq. 5, where D
is the dimension of the problem, and ad , bd are the minimum andmaximum bounds of
dimension d. In cases where Current is empty previous to the selection of N vectors,
Survivor is filled by selecting in each step the vector in Penali zed with the largest
distance to the closest vector in Survivor (lines 10–13).

distance(X ,Y ) =

√
∑D

d=1

(
Xd−Yd
bd−ad

)2

√
D

(5)

In order to complete the description it is important to specify the logic behind the
way of calculating Dt . The value of Dt is used to alter the degree between exploration
and exploitation so it should depend on the optimization stage. Specifically, this value
should be reduced as the stopping criterion is reached with the aim of promoting
exploitation. In our scheme, an initial value for Dt (DI ) must be set. Then, similarly
than in [27], a linear reduction of Dt is performed by taking into account the elapsed
function evaluations and stopping criterion. Particularly, in this work, the stopping
criterion is set by function evaluations. The reduction is calculated in such a way that
by the 90% of maximum number of evaluations the resulting Dt value is 0. Therefore,
in the remaining 10% diversity is not considered at all, meaning that intensification is
promoted. Thus, ifmax_n f es is the maximum number of evaluations and n f es is the
elapsed number of evaluations, Dt is calculated as Dt = DI − DI ∗ (n f es/(0.90 ∗
max_n f es)).

The initial distance (DI ) affects the performance of de- edm. If this parameter is
fixed large enough, then at the first optimization stages the algorithm aims tomaximize
the diversity of the target vectors, so a proper exploration is performed which is very
important in some kinds of problems such as highly multi-modal and deceptive ones.
Thus, the effect of premature convergence might be alleviated. However, a too large
DI might induce too much exploration resulting in an improper exploitation phase. In
the opposite case, a too low DI might result in an improper exploration phase, thus
hindering the avoidanceof local optima.Dependingon thekindoffitness landscape and
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stopping criterion, the optimal DI might vary. For instance, deceptive and highlymulti-
modal problems usually require larger values than uni-modal problems. However, in
our proposal, DI is not adapted to each problem, instead an experimental study to
check the robustness of different DI value is attached in the experimental validation
section.

In the same way that in the standard de, in de- edm the crossover probability (CR)
and the mutation factor (F) must be set. The first one is perhaps the most important for
the performance according to several studies developed by Montgomery et al. [21].
These authors empirically proved that extremeCR values lead to vastly different search
behaviors. They explained that low CR values result in a search that is aligned with a
small number of search space axes and induce small displacements. This provokes a
gradual and slow convergence that in some scenarios might result in a robust behavior.
Additionally, high CR values might generate higher quality solutions with a lower
probability. However, these transformations provoke large displacements that could
improve significantly the solutions when they are successful. According to this, we
employ both high and low CR values as is indicated in Eq. 6.

CR =
{
Normal(0.2, 0.1), if rand[0, 1] ≤ 0.5

Normal(0.9, 0.1), otherwise
(6)

Following the principles of several SHADEvariants [1,3], the elapsed function eval-
uations are considered in the random generation of the mutation factor F . Particularly,
each F is sampled from a Cauchy distribution (Eq. 7).

Cauchy(0.5, 0.5 ∗ n f es/max_n f es) (7)

Therefore, at the initial optimization stages, F values near to 0.5 are generated with
a high probability. Then, as the execution advances, the density function suffers a
gradual transformation and the variance is increased, meaning that values outside the
interval [0.0, 1.0] are generated with a higher probability. In the cases when values
larger than 1.0 are generated, the value 1.0 is used. In the case of generating a neg-
ative value, the F is re-sampled. This means that the probability of generating large
F-values increases as the execution progresses. The principle behind this decision is
to help in the avoidance of fast convergence.

5 Experimental validation

This section presents the experimental study carried out to validate the performance
of de- edm. Specifically, we show that by explicitly controlling the diversity in de,
results of state-of-the-art algorithms are improved further. Particularly, the benchmarks
of cec 2016 and cec 2017 are considered. Each one of them is composed of thirty
different problems, meaning that the validation is performed with a set of large and
diverse functions. The kind of problems of each benchmark is divided in uni-modal,
simple multi-modal, hybrid and composition functions. Table 1 shows the problems
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Table 1 Problems grouped by
properties for the cec 2016 and
cec 2017 benchmarks

Type function CEC 2016 CEC 2017

Uni-modal f1– f3 f1– f3
Simple multi-modal f4– f16 f4– f10
Hybrid (multi-modal) f17– f22 f11– f20
Composition (multi-modal) f23– f30 f21– f30

belonging to each category for the cec 2016 and cec 2017 benchmarks. In the hybrid
functions, the variables are randomly divided into some sub-components and each one
is related to basic functions. In the same line, the composition functions merge the
properties of several sub-functions andmaintains continuity around each local optima.
Also the local optima which has the smallest bias value is the global optimum. The
search space is bounded by the range Ω = ∏D

j=1[−100, 100]D .
The experimental validation takes into account the algorithms that attained the first

places of each year competition, as well as the standard de. Additionally, comparisons
against other diversity-based schemes are included. The algorithms considered from
the cec 2016 are UMOEAs-II [10] and L-SHADE-EpSin [1], which achieved the first
and second places respectively. Similarly, the top algorithms from cec 2017 are taken
into account, i.e. EBOwithCMAR [13] and jSO [4]. Following the recommendations
given in [19], all these algorithms are tested with both benchmarks.

Given that the optimizers taken into account are stochastic algorithms, each execu-
tion was repeated 51 times with different seeds. In every case, the stopping criterion
was set to 25 × 106 functions evaluations. In addition, problems were configured by
setting D = 10. The validation follows the guidelines of cec benchmark competitions
and the statistical tests proposed in [9] are also included. Note that, as it is usual in
these competitions, when the gap between the values of the best solution found and
the optimal solution is 10−8 or smaller, the error is treated as 0. The parameterization
indicated by the authors was used in every algorithm and it is as follows:

– EBOwithCMAR: For EBO, the maximum population size of S1 = 18D, min-
imum population size of S1 = 4, maximum population size of S2 = 146.8D,
minimum population size of S2 = 10, historical memory size H = 6. For CMAR
Population size S3 = 4+ 3log(D), σ = 0.3, CS = 50, probability of local search
pl = 0.1 and c f els = 0.4 ∗ FEmax .

– UMOEAs-II: For MODE, maximum population size of S1 = 18D, minimum
population size of S1 = 4, size memory H = 6. For CMA-ES Population size
S2 = 4 + �3log(D), μ = N

2 , σ = 0.3, CS = 50. For local search, c f els =
0.2 ∗ FEmax .

– jSO: Maximum population size = 25log(D)
√
D, historical memory size H = 5,

initial mutation memory MF = 0.5, initial probability memory MCR = 0.8,
minimum population size = 4, initial p-best = 0.25 ∗ N , final p-best = 2.

– L-SHADE-EpSin: Maximum population size = 25log(D)
√
D, historical mem-

ory size H = 5, initial mutation memory MF = 0.5, initial probability memory
MCR = 0.5, initial memory frequency μF = 0.5, minimum population size = 4,
initial p-best = 0.25∗N , final p-best = 2, generations of local searchGLS = 250.

123



1482 J. C. Castillo, C. Segura

– DE-EDM: DI = 0.3, population size = 250, CR ∼ Normal({0.2, 0.9}, 0.1),
F ∼ Cauchy(0.5, 0.5 ∗ n f es/maxn f es).

– Standard-DE: population size = 250 (operators as de- edm), CR ∼ Normal
({0.2, 0.9}, 0.1), F ∼ Cauchy(0.5, 0.5 ∗ n f es/maxn f es).

Our experimental analyses is based on the error, i.e. the difference between the opti-
mal solution and the best obtained solution. In order to statistically compare the results,
a similar guideline than the one proposed in [9] was used. First a Shapiro-Wilk test
was performed to check whatever or not the values of the results followed a Gaussian
distribution. If, so, the Levene test was used to check for the homogeneity of the vari-
ances. If samples had equal variance, an ANOVA test was done; if not, a Welch test
was performed. For non-Gaussian distributions, the non parametric Kruskal-Wallis
test was used to test whether samples are drawn from the same distribution. An algo-
rithm X is said to win algorithm Y when the differences between them are statistically
significant, and the mean and median error obtained by X are lower than the mean
and median achieved by Y .

Score1 =
(

1 − SE − SEmin

SE

)

× 50,

Score2 =
(

1 − SR − SRmin

SR

)

× 50,

(8)

Tables 2 and 3 offer a summary of the results obtained for cec 2016 and cec 2017,
respectively. The column taggedwith “Always Solved” shows the number of functions
where a zero error was obtained in the 51 runs. Additionally, column tagged with “At
least one time solved” shows the number of functions that were solved at least in one
run. Practically all functions (28 of them) of the cec 2017 benchmark were solved
with de- edm at least one time. Additionally, 21 functions of the cec 2016 were
also solved. This contrasts with the results obtained by state-of-the-art algorithms.
They were able to reach optimal values in significantly less functions. In order to
confirm the superiority of de- edm, the pair-wise statistical tests already described
were used. The column tagged with the symbol ↑ shows the number of cases where
the superiority of each method could be confirmed, whereas the column tagged with

Table 2 Summary of the results obtained by de- edm and state-of-the-art algorithms—cec 2016

Algorithm Always solved At least one time solved Statistical tests Score

↑ ↓ ←→
DE-EDM 13 21 77 25 48 100.00

UMOEAs-II 9 14 51 31 68 62.45

Standard-DE 11 19 50 46 54 56.29

jSO 9 17 47 51 52 55.43

EBOwithCMAR 8 14 35 56 59 50.28

L-SHADE-Epsilon 7 13 20 71 59 50.12
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Table 3 Summary of the results obtained by de- edm and state-of-the-art algorithms—cec 2017

Algorithm Always solved At least one time solved Statistical tests Score

↑ ↓ ←→
DE-EDM 21 28 88 6 56 100.00

Standard-DE 12 21 56 29 65 42.91

EBOwithCMAR 9 18 34 46 70 37.14

L-SHADE-Epsilon 8 19 7 81 62 32.78

jSO 8 15 29 55 66 29.30

UMOEAs-II 11 15 43 40 67 26.89

the symbol ↓ counts the number of cases where the method was inferior. Finally, the
number comparisons with not significant differences are shown in the column tagged
with the symbol ←→. The results of the statistical tests show that de- edm attained
the best results in both years. The number of victories in cec 2016 and cec 2017
were 77 and 88, whereas the number of losses were 25 and 6, respectively. de- edm is
the approach with the largest number of victories and lowest number of losses in both
benchmarks, confirming the superiority of the proposal. The last column—taggedwith
“Score”—considers the official score of cec’s competitions. Particularly, the raking
of the algorithms is attained by taking into account the two scores defined in Eq. (8).
Then, the final score is calculated as the sum Score = Score1+Score2. In Eq. (8), the
SE of an algorithm is the sum of the mean error values obtained in the 30 benchmark
functions, i.e. SE = ∑30

i=1 error_ fi . Then, SEmin is the minimal SE from all the
algorithms. In order to calculate SR and SRmin , algorithms are sorted in each function
in base of the attained mean error. Then, a rank is assigned to each algorithm in base
of such an ordering. Finally, the SR of a method is the sum of the ranks obtained for
each function and SRmin is the minimal SR from all the algorithms.

Note that in base of this definition, the best attainable score is 100. This happens
when a given approach obtains both SRmin and SEmin . de- edm attained the best
attainable score in both years, which confirms its clear superiority when compared
both with state-of-the-art and standard de. In these long-term executions, standard de
attained the third and second places in the problems of the cec 2016 and cec 2017,
respectively. This means that the performance of the state-of-the-art algorithms is not
so impressive in long-term executions.

Since our proposal is based on the explicit control of diversity, Fig. 1 shows the
evolution of the mean of the diversity calculated as the mean distance to the closest
vector with the aim of better understanding its behavior. Particularly, functions f1
and f30 were selected for this analysis because they have quite different features
(easy uni-modal vs. complex multi-modal). The left side shows the diversity of the
Elite population. It is remarkable that, while there are no direct constraints in the
Elite population related to diversity, the diversity is implicitly maintained. The right
side shows the diversity of the target vectors. As expected, diversity decreases in a
gradual way and a degree of diversity is maintained until the 90% of the total function
evaluations is reached.
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Fig. 1 Mean distance to the closest vector of the 51 executions with the problems f1 and f30 (cec 2016
and cec 2017). The initial distance factor considered corresponds to DI = 0.3

Finally, in order to provide comparable results of our proposal, Tables 4 and 5
report the best, worst, median, mean, standard deviation and success rate for both
benchmarks. These tables show that all the uni-modal problems were solved by our
proposal. Additionally, several simple and even some of the most complex multi-
modal functions were optimally solved. In fact, several complex functions that had
never been solved by state-of-the-art could be solved by de- edm.

5.1 Comparison of diversity replacement-based schemes

In order to better validate the advantages provided by the replacement phase pro-
posed in this paper, comparisons against two additional diversity replacement-based
strategies were developed. Particularly, the replacement-based methods taken into
consideration are the Restricted Tournament Selection (rts) and the Hybrid Genetic
Search with Adaptive Diversity Control (hgsadc). These replacement-based strate-
gies were incorporated to the standardde framework. The three variants were executed
with the same parameterization. Note that both rts and hgsadc require additional
parameters. Based on preliminary analyses, the rts was executed with a sample size
CF = 25, andhgsadcwas executedwith NClose = 1, and NElite = 8. The remaining
configuration follows the same parameterization previously defined. Tables 6 and 7
summarize the results attained for both benchmarks with the same meaning that in the
previous experiment. Again, de- edm attained the best results in both years. It is clear
that de- edm attained a significantly higher Score than the remaining diversity-based
methods. Note that the main difference of our proposal in constrast to the schemes
rts and hgsadc lies in the fact that they provide modifications with the aim of delay-
ing convergence but in an indirect way, meaning that premature convergence might
not always be avoided. Second, while these methods have been quite successful in
comparison to Evolutionary Algorithms with a high selection pressure, de already
incorporates a replacement strategy that follows some of the principles of crowding.
Thus, advantages of incorporating rts and hgsadc in de are diminished. Therefore,
making decisions by taking into account the stopping criterion and elapsed generations
seems to be the key to properly avoid premature convergence in long-term executions.
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Table 4 Results for de- edm in the cec 2016 problems

Best Worst Median Mean Std. Succ. rate

f1 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 1.00E+00

f2 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 1.00E+00

f3 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 1.00E+00

f4 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 1.00E+00

f5 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 1.00E+00

f6 0.00E+00 3.60E−02 4.00E−03 7.39E−03 1.15E−02 3.92E−01

f7 2.00E−02 1.02E−01 5.90E−02 5.77E−02 4.93E−02 0.00E+00

f8 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 1.00E+00

f9 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 1.00E+00

f10 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 1.00E+00

f11 0.00E+00 6.00E−02 0.00E+00 5.88E−03 1.90E−02 9.02E−01

f12 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 1.00E+00

f13 1.00E−02 8.00E−02 5.00E−02 4.67E−02 2.60E−02 0.00E+00

f14 1.00E−02 5.00E−02 3.00E−02 2.82E−02 2.13E−02 0.00E+00

f15 0.00E+00 4.70E−01 2.20E−01 1.99E−01 1.55E−01 1.96E−02

f16 4.00E−02 1.50E−01 8.00E−02 8.47E−02 4.96E−02 0.00E+00

f17 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 1.00E+00

f18 0.00E+00 2.00E−02 1.00E−02 7.65E−03 6.32E−03 3.14E−01

f19 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 1.00E+00

f20 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 1.00E+00

f21 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 1.00E+00

f22 0.00E+00 3.00E−02 0.00E+00 3.73E−03 2.76E−02 7.65E−01

f23 0.00E+00 1.00E+02 0.00E+00 2.55E+01 5.10E+01 7.45E−01

f24 0.00E+00 6.90E−01 0.00E+00 2.61E−02 1.33E−01 9.61E−01

f25 1.00E+02 1.00E+02 1.00E+02 1.00E+02 0.00E+00 0.00E+00

f26 8.00E−02 1.00E+02 5.29E+01 5.20E+01 3.19E+01 0.00E+00

f27 2.50E−01 9.10E−01 5.40E−01 5.60E−01 2.92E−01 0.00E+00

f28 0.00E+00 3.57E+02 3.43E+02 2.76E+02 1.60E+02 1.96E−01

f29 1.00E+02 1.00E+02 1.00E+02 1.00E+02 0.00E+00 0.00E+00

f30 1.84E+02 1.84E+02 1.84E+02 1.84E+02 3.25E−02 0.00E+00

5.2 Empirical analyses of the initial distance factor

In our proposal the diversity is explicitly promoted and the total amount of diversity
maintained in the population depends on the initial distance factor DI . Therefore, the
effect of this parameter on the quality is analyzed in this section. Particularly, the same
scheme previouslymentionedwas taken into account. However, several initial distance
factorswere considered (DI = {0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0, 1.1}).

Figure 2 shows the mean success rate attained for both benchmarks when consid-
ering different DI values. The most relevant conclusions are:
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Table 5 Results for de- edm in the cec 2017 problems

Best Worst Median Mean Std. Succ. ratio

f1 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 1.00E+00

f2 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 1.00E+00

f3 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 1.00E+00

f4 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 1.00E+00

f5 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 1.00E+00

f6 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 1.00E+00

f7 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 1.00E+00

f8 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 1.00E+00

f9 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 1.00E+00

f10 0.00E+00 1.20E−01 0.00E+00 1.65E−02 3.39E−02 7.45E−01

f11 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 1.00E+00

f12 0.00E+00 2.20E−01 0.00E+00 6.37E−02 1.76E−01 6.67E−01

f13 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 1.00E+00

f14 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 1.00E+00

f15 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 1.00E+00

f16 0.00E+00 2.10E−01 0.00E+00 2.47E−02 7.27E−02 8.82E−01

f17 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 1.00E+00

f18 0.00E+00 1.00E−02 0.00E+00 1.96E−03 4.47E−03 8.04E−01

f19 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 1.00E+00

f20 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 1.00E+00

f21 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 1.00E+00

f22 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 1.00E+00

f23 0.00E+00 3.00E+02 0.00E+00 3.49E+01 1.03E+02 8.82E−01

f24 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 1.00E+00

f25 0.00E+00 1.00E+02 0.00E+00 3.92E+00 2.00E+01 9.61E−01

f26 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 1.00E+00

f27 0.00E+00 3.87E+02 3.87E+02 2.05E+02 2.68E+02 1.96E−02

f28 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 1.00E+00

f29 1.45E+02 2.26E+02 2.18E+02 1.99E+02 4.21E+01 0.00E+00

f30 3.95E+02 3.95E+02 3.95E+02 3.95E+02 2.10E−01 0.00E+00

Table 6 Summary of the results obtained with different replacement strategies—cec 2016

Algorithm Always solved At least one time solved Statistical tests Score

↑ ↓ ←→
DE-EDM 13 21 51 1 8 100.00

RTS 2 7 3 47 10 19.74

HGSADC 3 15 21 27 12 44.12
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Table 7 Summary of the results obtained with different replacement strategies—cec 2017

Algorithm Always solved At least one time solved Statistical tests Score

↑ ↓ ←→
DE-EDM 21 28 49 0 11 100.00

RTS 4 12 2 49 9 30.91

HGSADC 6 18 23 25 12 40.86
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Fig. 2 Mean success rate for different DI in the cec 2016 and cec 2017 benchmarks with a population
size equal to 250 and 25 × 106 function evaluations

– If diversity is not promoted (DI = 0.0) there is an important degradation in the
performance.

– The performance is quite robust in the sense that a large range of DI values
provide good enough results. For instance, values in the range [0.2, 0.6] provide
high-quality solutions.

– To a certain extent, if the initial distance factor (DI ) is very large (values larger
than 0.6), the quality of solutions is affected.

To summarize, de- edm incorporates a novel parameter which is important in its
performance. However, results are quite robust in the sense that even if it is not tuned
for each problem, high-quality results can be obtained and that a large range of values
provide competitive results.

6 Conclusions and future work

Premature convergence is one of the most important drawbacks of de. This paper
proposes a novel variant of de, the Differential Evolution with Enhanced Diversity
Maintenance (de- edm), which incorporates a novel replacement phase that is based
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on a recently proposed strategy (rmddc) that was successfully used with memetic
algorithms in the combinatorial optimization field. In order to attain a faster conver-
gence than in rmddc two modifications are proposed for the integration with de.
First, no concepts of the multi-objective field are applied, meaning that a more greedy
strategy is devised. Second, an elite population is incorporated. Experimental val-
idation shows the important benefits obtained by de- edm in long-term executions
both when compared with a classic de variant and with state-of-the-art proposals.
de- edm requires setting a new parameter, which is called the initial distance factor.
The obtained quality depends on the proper specification of this parameter. However,
fixed values in a large range could be used for properly dealing with benchmarks of
the CEC 2016 and CEC 2017 competitions, meaning that a quite robust proposal is
obtained.

Several extensionsmight be explored to further improve our proposal. First, with the
aim of facilitating the application of de- edm, adaptive and/or self-adaptive schemes
might be applied for setting the initial distance factor, aswell as for otherdeparameters.
Second, with the aim of reducing the number of evaluations required to attain high-
quality solutions, some of the strategies that are used in the field of optimization with
expensive functions might be integrated into our proposal. Finally, the incorporation
of a local search engine mainly in the last stages of the optimization might bring
additional benefits.

Acknowledgements Authors acknowledge the financial support from CONACyT through the “Ciencia
Básica” Project No. 285599.
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