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Abstract
We propose a flexible approach for computing the resolvent of the sum of weakly
monotone operators in real Hilbert spaces. This relies on splitting methods where
strong convergence is guaranteed. We also prove linear convergence under Lips-
chitz continuity assumption. The approach is then applied to computing the proximity
operator of the sum of weakly convex functions, and particularly to finding the best
approximation to the intersection of convex sets.

Keywords Best approximation · Douglas–Rachford algorithm · Linear convergence ·
Operator splitting · Peaceman–Rachford algorithm · Projector · Proximity operator ·
Resolvent · Strong convergence

1 Introduction

In this paper, we explore a straightforward path to the problem of computing the
resolvent of the sum of two (not necessarily monotone) operators using resolvents of
individual operators. When applied to normal cones of convex sets, this computation
solves the best approximation problem of finding the projection onto the intersection
of these sets.

In general, computations involving simultaneously two or more operators are usu-
ally difficult. One popular approach is to treat each operator individually, then use these
calculations to construct the desired answer. Prominent examples of such splitting
strategy include the Douglas–Rachford algorithm [9,11] and the Peaceman–Rachford
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algorithm [12] that apply to the problem of finding a zero of the sum of maximally
monotone operators. In [3], the authors proposed an extension of Dykstra’s algorithm
[10] for constructing the resolvent of the sum of two maximally monotone operators.
By product space reformulation, this problemwas then handled in [5] for finitelymany
operators. Recently, the so-called averaged alternating modified reflections algorithm
was used in [2] to study this problem, and was soon after re-derived in [1] from the
view point of the proximal and resolvent average. Because computing the resolvent
of a finite sum of operators can be transformed into that of the sum of two operators
by a standard product space setting, as done in [2,5], we will focus on the case of two
operators for simplicity.

The goal of this paper is to provide a flexible approach for computing the resolvent
of the sum of two weakly monotone operators from individual resolvents. Our work
extends and complements recent results in this direction. We also present applications
to computing the proximity operator of the sum of two weakly convex functions and
to finding the best approximation to the intersection of two convex sets.

The paper is organized as follows. In Sect. 2, we provide necessarymaterials. Sect. 3
contains our main results. Finally, applications are presented in Sect. 4.

2 Preparation

We assume throughout that X is a real Hilbert space with inner product 〈·, ·〉 and
induced norm ‖ · ‖. The set of nonnegative integers is denoted by N, the set of real
numbers byR, the set of nonnegative real numbers byR+ := {x ∈ R

∣
∣ x ≥ 0}, and the

set of the positive real numbers by R++ := {x ∈ R
∣
∣ x > 0}. The notation A : X ⇒ X

indicates that A is a set-valued operator on X .
Given an operator A on X , its domain is denoted by dom A := {x ∈ X

∣
∣ Ax �= ∅},

its range by ran A := A(X), its graph by gra A := {(x, u) ∈ X × X
∣
∣ u ∈ Ax},

its set of zeros by zer A := {x ∈ X
∣
∣ 0 ∈ Ax}, and its fixed point set by Fix A :=

{x ∈ X
∣
∣ x ∈ Ax}. The inverse of A, denoted by A−1, is the operator with graph

gra A−1 := {(u, x) ∈ X × X
∣
∣ u ∈ Ax}. Recall from [8, Definition 3.1] that an oper-

ator A : X ⇒ X is said to be α-monotone if α ∈ R and

∀(x, u), (y, v) ∈ gra A, 〈x − y, u − v〉 ≥ α‖x − y‖2. (1)

In this case, we say that A is monotone if α = 0, strongly monotone if α > 0, and
weakly monotone if α < 0. The operator A is said to be maximally α-monotone if
it is α-monotone and there is no α-monotone operator B : X ⇒ X such that gra B
properly contains gra A. It is worth mentioning that if A is maximally α-monotone
with α ∈ R+, then it is maximally monotone (see [8, Section 3]. Furthermore, it is
also clear that A is (resp. maximally) α-monotone if and only if A − α Id is (resp.
maximally) monotone, where Id is the identity operator.

The resolvent of A : X ⇒ X is defined by JA := (Id+A)−1. We conclude this
section by an elementary formula for computing the resolvent of special composition
via resolvents of its components.
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Proposition 2.1 (Resolvent of composition) Let A : X ⇒ X, q, r ∈ X, θ ∈ R++, and
σ ∈ R. Define Ā := A ◦ (θ Id−q) + σ Id−r and let γ ∈ R++. Then the following
hold:

(i) A is (resp. maximally) α-monotone if and only if Ā is (resp. maximally) (θα+σ)-
monotone.

(ii) If 1 + γ σ �= 0, then

Jγ Ā = 1

θ

(

J γ θ
1+γ σ

A ◦
(

θ

1 + γ σ
Id+ γ θ

1 + γ σ
r − q

)

+ q

)

; (2)

and if, in addition, A is maximally α-monotone and 1 + γ (θα + σ) > 0, then
Jγ Ā and J γ θ

1+γ σ
A are single-valued and have full domain.

Proof (i): This is straightforward from the definition.
(ii): We note that (θ Id−q)−1 = 1

θ
(Id+q), that (T − z)−1 = T −1 ◦ (Id+z), and

that (αT )−1 = T −1 ◦ ( 1
α
Id) for any operator T , any z ∈ X , and any α ∈ R � {0}.

Using these facts yields

Jγ Ā =
(

(1 + γ σ) Id+γ A ◦ (θ Id−q) − γ r
)−1

(3a)

=
((1 + γ σ

θ
(Id+q) + γ A

)

◦ (θ Id−q)

)−1

◦ (Id+γ r) (3b)

=(θ Id−q)−1 ◦
(
1 + γ σ

θ
Id+γ A + 1 + γ σ

θ
q

)−1

◦ (Id+γ r) (3c)

=(θ Id−q)−1 ◦
(
1 + γ σ

θ

(

Id+ γ θ

1 + γ σ
A
))−1

◦
(

Id−1 + γ σ

θ
q

)

◦ (Id+γ r) (3d)

=1

θ
(Id+q) ◦

(

Id+ γ θ

1 + γ σ
A

)−1

◦
(

θ

1 + γ σ
Id

)

◦
(

Id+γ r − 1 + γ σ

θ
q

)

(3e)

=1

θ
(Id+q) ◦ J γ θ

1+γ σ
A ◦

(
θ

1 + γ σ
Id+ γ θ

1 + γ σ
r − q

)

(3f)

=1

θ

(

J γ θ
1+γ σ

A ◦
(

θ

1 + γ σ
Id+ γ θ

1 + γ σ
r − q

)

+ q

)

. (3g)

Since A is maximally α-monotone, Ā is maximally (θα + σ)-monotone. Now, since
1 + γ (θα + σ) > 0, [8, Proposition 3.4] implies the conclusion. 
�
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3 Main results

In this section, let A, B : X ⇒ X , ω ∈ R++, and r ∈ X . We present a flexible
approach to the computation of the resolvent at r of the scaled sum ω(A + B), that is
to

compute Jω(A+B)(r). (4)

Our analysis relies on the observation that this problem can be reformulated into
the problem of finding a zero of the sum of two suitable operators. Indeed, when
r ∈ dom Jω(A+B) = ran (Id+ω(A + B)), we have by definition that

x ∈ Jω(A+B)(r) ⇐⇒ r ∈ x+ω(A+B)x ⇐⇒ 0 ∈ (A+B)x+ 1

ω
x− 1

ω
r . (5)

By writing 1
ω

= σ + τ and 1
ω

r = rA + rB , the last inclusion is equivalent to

0 ∈ (A + σ Id−rA)x + (B + τ Id−rB)x, (6)

which leads to finding a zero of the sum of two new operators A + σ Id−rA and
B + τ Id−rB .

Based on the above observation, we proceed with a more general formulation.
Assume throughout that

θ ∈ R++ and q ∈ X , (7)

that (σ, τ ) ∈ R
2 and (rA, rB) ∈ X2 satisfy

σ + τ = θ

ω
and rA + rB = 1

ω
(q + r), (8)

and that

Aσ := A ◦ (θ Id−q) + σ Id−rA and Bτ := B ◦ (θ Id−q) + τ Id−rB . (9)

Now, we will derive the formula for the resolvent of the scaled sum via zeros of the
sum of these newly defined operators.

Proposition 3.1 (Resolvent via zeros of sum of operators) Suppose
that r ∈ ran (Id+ω(A + B)). Then

Jω(A+B)(r) = θ zer(Aσ + Bτ ) − q �= ∅. (10)

Consequently, if Aσ + Bτ is strongly monotone, then Jω(A+B)(r) and zer(Aσ + Bτ )

are singletons.

Proof By assumption, Jω(A+B)(r) �= ∅. For every z ∈ X , we derive from (8) and (9)
that
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θ z − q ∈ Jω(A+B)(r) ⇐⇒ r ∈ (θ z − q) + ω(A + B)(θ z − q) (11a)

⇐⇒ 0 ∈ (A + B)(θ z − q) + θ

ω
z − 1

ω
(q + r) (11b)

⇐⇒ 0 ∈ (A + B)(θ z − q) + (σ + τ)z − (rA + rB) (11c)

⇐⇒ 0 ∈ (

A(θ z − q) + σ z − rA
)

+ (

B(θ z − q) + τ z − rB
)

(11d)

⇐⇒ z ∈ zer(Aσ + Bτ ). (11e)

The remaining conclusion follows from [4, Proposition 23.35]. 
�
The new operators Aσ and Bτ along with Proposition 3.1 allow for the flexibility in

chosing (σ, τ ) and (rA, rB) as one can decide the values of these parameters as long
as (8) is satisfied. We are now ready for our main result.

Theorem 3.2 (Resolvent of sum of α- and β-monotone operators) Suppose that A
and B are respectively maximally α- and β-monotone with α + β > −1/ω, that
r ∈ ran (Id+ω(A + B)), and that (σ, τ ) satisfies

θα + σ > 0 and θβ + τ ≥ 0. (12)

Let γ ∈ R++ be such that 1 + γ σ �= 0 and 1 + γ τ �= 0. Given any κ ∈ ] 0, 1] and
x0 ∈ X, define the sequence (xn)n∈N by

∀n ∈ N, xn+1 := (1 − κ)xn + κ(2Jγ Bτ − Id) ◦ (2Jγ Aσ − Id)xn, (13)

with explicit formulas

Jγ Aσ = 1

θ

(

J γ θ
1+γ σ

A ◦
(

θ

1 + γ σ
Id+ γ θ

1 + γ σ
rA − q

)

+ q

)

(14a)

and Jγ Bτ = 1

θ

(

J γ θ
1+γ τ

B ◦
(

θ

1 + γ τ
Id+ γ θ

1 + γ τ
rB − q

)

+ q

)

. (14b)

Then Jω(A+B)(r) = J γ θ
1+γ σ

A

(
θ

1+γ σ
x + γ θ

1+γ σ
rA − q

)

with x ∈ Fix(2Jγ Bτ − Id) ◦
(2Jγ Aσ − Id) and the following hold:

(i)

(

J γ θ
1+γ σ

A

(
θ

1+γ σ
xn + γ θ

1+γ σ
rA − q

))

n∈N
converges strongly to Jω(A+B)(r).

(ii) If κ < 1, then (xn)n∈N converges weakly to x.
(iii) If A is Lipschitz continuous, then the convergences in (i) and (ii) are linear.

Proof We first note that the existence of (σ, τ ) ∈ R
2 satisfying (8) and (12) is ensured

since α + β > −1/ω. By Proposition 2.1(i) and (12), Aσ and Bτ are respectively
maximally (θα + σ)- and (θβ + τ)-monotone with θα + σ > 0 and θβ + τ ≥ 0,
hence, by Proposition 2.1(ii), Jγ Aσ and Jγ Bτ are single-valued and have full domain.
We also see that Aσ and Bτ are maximally monotone and that Aσ and Aσ + Bτ
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are strongly monotone. Using Proposition 3.1 and [4, Proposition 26.1(iii)(b)], we
have zer(Aσ + Bτ ) = {Jγ Aσ (x)} with x ∈ Fix(2Jγ Bτ − Id) ◦ (2Jγ Aσ − Id) and
Jω(A+B)(r) = θ Jγ Aσ (x) − q.

Now, Proposition 2.1(ii) implies (14), which yields

θ Jγ Aσ − q = J γ θ
1+γ σ

A ◦
(

θ

1 + γ σ
Id+ γ θ

1 + γ σ
rA − q

)

. (15)

Therefore,

Jω(A+B)(r) = θ Jγ Aσ (x) − q = J γ θ
1+γ σ

A

(
θ

1 + γ σ
x + γ θ

1 + γ σ
rA − q

)

. (16)

(i): By applying [4, Theorem 26.11(vi)(b)] with all λn = κ if κ < 1 and applying
[4, Proposition 26.13] if κ = 1, we obtain that Jγ Aσ (xn) → Jγ Aσ (x). Now combine
with (15) and (16).

(ii): Again apply [4, Theorem 26.11] with all λn = κ .
(iii): Assume that A is Lipschitz continuous with constant �. It is straightforward to

see that Aσ is Lipschitz continuous with constant (θ� + |σ |). The conclusion follows
from [8, Theorem 4.8] with λ = μ = 2 and δ = γ . 
�
Remark 3.3 Some remarks regarding Theorem 3.2 are in order.

(i) Under the assumptions made, A + B is (α + β)-monotone but not necessarily
maximal. If, in addition, A + B is indeed maximally (α + β)-monotone, then
Jω(A+B) has full domain by [8, Proposition 3.4(ii)]; thus, the condition r ∈
ran (Id+ω(A + B)) can be removed.

(ii) The iterative scheme (13) is the Douglas–Rachford algorithm if κ = 1/2 and
the Peaceman–Rachford algorithm if κ = 1. For a more general version of (13),
we refer the readers to [8]; see also [6,7].

(iii) If the condition (12) is replaced by

θα + σ ≥ 0 and θβ + τ > 0, (17)

then the conclusions in Theorem 3.2(ii)–(iii) still hold, while Theorem 3.2(i)
only holds for κ < 1; see also [5, Theorem 2.1(ii) and Remark 2.2(iv)].

(iv) One can simply choose θ = 1 and q = 0, in which case, (14) reduces to

Jγ Aσ = J γ
1+γ σ

A ◦ 1

1 + γ σ
(Id+γ rA) and Jγ Bτ = J γ

1+γ τ
B ◦ 1

1 + γ τ
(Id+γ rB).

(18)
(v) When A and B are maximally monotone, i.e., α = β = 0, (12) is satisfied

whenever σ > 0 and τ ≥ 0. One thus can choose for instance σ = τ = θ
2ω .

(vi) It is always possible to find γ ∈ R++ satisfying even 1+γ σ > 0 and 1+γ τ > 0.
In fact, these inequalities are automatic regardless of γ ∈ R++ as long as σ and
τ are both nonnegative.
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Computing the resolvent of the sum of operators… 1199

When A and B are maximally monotone, the following result gives an iterative
method for computing the resolvent of A + B where each iteration relies only on the
computations of JA and JB .

Theorem 3.4 (Resolvent of sum of two maximally monotone operators) Suppose that
A and B are maximally monotone, that ω > 1/2, and that r ∈ ran (Id+ω(A + B)).
Define

Ā := 2ω

θ(2ω − 1)
A ◦ (θ Id−q) + 1

θ(2ω − 1)
(θ Id−q − r) (19a)

and B̄ := 2ω

θ(2ω − 1)
B ◦ (θ Id−q) + 1

θ(2ω − 1)
(θ Id−q − r). (19b)

Let κ ∈ ] 0, 1], let x0 ∈ X, and define the sequence (xn)n∈N by

∀n ∈ N, xn+1 := (1 − κ)xn + κ(2JB̄ − Id) ◦ (2JĀ − Id)xn, (20)

with explicit formulas

JĀ = 1

θ

(

JA ◦
((

1 − 1

2ω

)

(θ Id−q) + 1

2ω
r

)

+ q

)

(21a)

and JB̄ = 1

θ

(

JB ◦
((

1 − 1

2ω

)

(θ Id−q) + 1

2ω
r

)

+ q

)

. (21b)

Then Jω(A+B)(r) = JA
(

(1 − 1
2ω )(θx − q) + 1

2ωr
)

with x ∈ Fix(2JB̄ − Id) ◦ (2JĀ −
Id) and the following hold:

(i)
(

JA
(

(1 − 1
2ω )(θxn − q) + 1

2ωr
))

n∈N converges strongly to Jω(A+B)(r).
(ii) If κ < 1, then (xn)n∈N converges weakly to x.
(iii) If A is Lipschitz continuous, then the convergences in (i) and (ii) are linear.

Proof Choosing

σ = τ = θ

2ω
> 0, rA = rB = 1

2ω
(q + r), and γ = 2ω

θ(2ω − 1)
> 0, (22)

we have that (8) is satisfied and that

Aσ = A ◦ (θ Id−q) + 1

2ω
(θ Id−q − r) (23a)

and Bτ = B ◦ (θ Id−q) + 1

2ω
(θ Id−q − r), (23b)

which yields γ Aσ = Ā and γ Bτ = B̄. Since 1+γ σ = 1+γ θ/(2ω) = 2ω/(2ω−1) =
γ θ , we get (21) from (14). Now apply Theorem 3.2 with α = β = 0. 
�

Having the freedom of choice, one can certainly use appropriate parameters to
obtain simpler formulations. The following corollary illustrates one of such instances.
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Corollary 3.5 Suppose that A is maximally α-monotone with α > −1/(2ω), that B
is maximally β-monotone with β ≥ −1/(2ω), and that r ∈ ran (Id+ω(A + B)). Let
η ∈ R++, κ ∈ ] 0, 1], x0 ∈ X, and define the sequence (xn)n∈N by

∀n ∈ N, xn+1 := (1 − κ)xn + κ

(

2ηJωB ◦ 1

2η
Id+2ηr − Id

)

◦
(

2ηJωA ◦ 1

2η
Id+2ηr − Id

)

xn . (24)

Then Jω(A+B)(r) = JωA( 1
2η x) with x ∈ Fix

(

2ηJωB ◦ 1
2η Id+2ηr − Id

)

◦
(

2ηJωA ◦ 1
2η Id+2ηr − Id

)

and the following hold:

(i)
(

JωA( 1
2η xn)

)

n∈N converges strongly to Jω(A+B)(r).

(ii) If κ < 1, then (xn)n∈N converges weakly to x.
(iii) If A is Lipschitz continuous, then the above convergences are linear.

Proof We first see that α + β > −1/ω. Now choose

θ = 1

η
> 0, q = r , σ = τ = θ

2ω
, rA = rB = 1

2ω
(q + r) = 1

ω
r ,

and γ = 2ω

θ
> 0. (25)

Then (8) and (12) are satisfied, while γ θ = 2ω and 1 + γ σ = 1 + γ τ = 2. We have
that

Aσ = A ◦
(
1

η
Id−r

)

+ 1

2ηω
Id− 1

ω
r (26a)

and Bτ = B ◦
(
1

η
Id−r

)

+ 1

2ηω
Id− 1

ω
r . (26b)

Noting from (14) that

Jγ Aσ = η

(

JωA ◦ 1

2η
Id+r

)

and Jγ Bτ = η

(

JωB ◦ 1

2η
Id+r

)

, (27)

we get the conclusion due to Theorem 3.2. 
�
Again thanks to the flexibility of the parameters, our results recapture the formu-

lation and convergence analysis of recent methods. In particular, Corollaries 3.6 and
3.7 are in the spirit of [2, Theorem 3.1] and [1, Theorem 3.2], respectively.

Corollary 3.6 Let η ∈ ] 0, 1 [ and γ ∈ R++. Suppose that A and B are maximally

monotone and that r ∈ ran
(

Id+ γ
2(1−η)

(A + B)
)

. Let κ ∈ ] 0, 1], let x0 ∈ X, and

define the sequence (xn)n∈N by
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∀n ∈ N, xn+1 := (1 − κ)xn + κ
(

2ηJγ B ◦ (Id+r) − 2ηr − Id
)

◦
(

2ηJγ A ◦ (Id+r) − 2ηr − Id
)

xn . (28)

Then J γ
2(1−η)

(A+B)(r) = Jγ A(x + r) with x ∈ Fix(2ηJγ B(Id+r) − 2ηr − Id) ◦
(2ηJγ A(Id+r) − 2ηr − Id) and the following hold:

(i)
(

Jγ A(xn + r)
)

n∈N converges strongly to J γ
2(1−η)

(A+B)(r).

(ii) If κ < 1, then (xn)n∈N converges weakly to x.
(iii) If A is Lipschitz continuous, then the above convergences are linear.

Proof Let ω = γ
2(1−η)

, θ = 1
η
, q = −r , σ = τ = θ

2ω = 1−η
γ η

, and rA = rB = 0. Then
(8) is satisfied,

Aσ = A ◦
(
1

η
Id+r

)

+ 1 − η

γ η
Id and Bτ = B ◦

(
1

η
Id+r

)

+ 1 − η

γ η
Id . (29)

Noting that 1 + γ σ = 1 + γ τ = 1/η = θ , we have from (14) that

Jγ Aσ = η
(

Jγ A ◦ (Id+r) − r
)

and Jγ Bτ = η
(

Jγ B ◦ (Id+r) − r
)

. (30)

Applying Theorem 3.2 with α = β = 0 completes the proof. 
�
Corollary 3.7 Suppose that A and B are maximally monotone and that A + B is also
maximally monotone. Let η ∈ ] 0, 1 [ , κ ∈ ] 0, 1], x0 ∈ X, and define the sequence
(xn)n∈N by

∀n ∈ N, xn+1 := (1 − κ)xn + κ
(

2ηJB + 2(1 − η)r − Id
)

◦
(

2ηJA + 2(1 − η)r − Id
)

xn . (31)

Then J 1
2(1−η)

(A+B)(r) = JA(x) with x ∈ Fix(2ηJB +2(1−η)r − Id)◦ (2ηJA +2(1−
η)r − Id) and the following hold:

(i) (JA(xn))n∈N converges strongly to J 1
2(1−η)

(A+B)(r).

(ii) If κ < 1, then (xn)n∈N converges weakly to x.
(iii) If A is Lipschitz continuous, then the above convergences are linear.

Proof Apply Theorem 3.4 with ω = 1
2(1−η)

, θ = 1
η
, and q = 1−η

η
r = 1

2ω−1r and note
that J 1

2(1−η)
(A+B) has full domain due to Remark 3.3(i). 
�

4 Applications

In this section, we provide transparent applications of our result to computing the
proximity operator of the sum of two weakly convex functions and to finding the
closest point in the intersection of closed convex sets.
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We recall that a function f : X →] − ∞,+∞] is proper if dom f :=
{x ∈ X

∣
∣ f (x) < +∞} �= ∅ and lower semicontinuous if ∀x ∈ dom f , f (x) ≤

lim inf z→x f (z). The function f is said to be α-convex for some α ∈ R if ∀x, y ∈
dom f , ∀κ ∈ ] 0, 1 [ ,

f ((1 − κ)x + κ y) + α

2
κ(1 − κ)‖x − y‖2 ≤ (1 − κ) f (x) + κ f (y). (32)

We say that f is convex if α = 0, strongly convex if α > 0, and weakly convex if
α < 0.

Let f : X →] − ∞,+∞] be proper. The Fréchet subdifferential of f at x is given
by

∂̂ f (x) :=
{

u ∈ X
∣
∣
∣ lim inf

z→x

f (z) − f (x) − 〈u, z − x〉
‖z − x‖ ≥ 0

}

. (33)

It is known that if f is differentiable at x , then ∂̂ f (x) = {∇ f (x)}, and that if f is
convex, then the Fréchet subdifferential coincides with the convex subdifferential, i.e.,

∂̂ f (x) = ∂ f (x) := {u ∈ X
∣
∣ ∀z ∈ X , f (z) − f (x) ≥ 〈u, z − x〉}. (34)

Theproximity operator of f with parameterγ ∈ R++ is themappingProxγ f : X ⇒ X
defined by

∀x ∈ X , Proxγ f (x) := argmin
z∈X

(

f (z) + 1

2γ
‖z − x‖2

)

. (35)

Given a nonempty closed subset C of X , the indicator function ιC of C is defined by
ιC (x) = 0 if x ∈ C and ιC (x) = +∞ if x /∈ C . It is clear that Proxγ ιC = PC , where
PC : X ⇒ C is the projector onto C given by

∀x ∈ X , PC x := argmin
c∈C

‖x − c‖. (36)

If C is convex, then the normal cone to C is the operator NC : X ⇒ X defined by

∀x ∈ X , NC (x) :=
{

{u ∈ X
∣
∣ ∀c ∈ C, 〈u, c − x〉 ≤ 0} if x ∈ C,

∅ otherwise.
(37)

Lemma 4.1 Let f : X →] − ∞,+∞] and g : X →] − ∞,+∞] be proper, lower
semicontinuous, and respectively α- and β-convex, let ω ∈ R++, and let r ∈
ran(Id+ω(̂∂ f + ∂̂g)). Suppose that α + β > −1/ω. Then

Jω(̂∂ f +∂̂g)(r) = Jω∂̂( f +g)(r) = Proxω( f +g)(r). (38)

Consequently, if C and D are closed convex subsets of X with C ∩ D �= ∅ and
r ∈ ran(Id+NC + ND), then

JNC +ND (r) = PC∩D(r). (39)
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Proof On the one hand, noting that ran(Id+ω(̂∂ f + ∂̂g)) = dom Jω(̂∂ f +∂̂g) and that

∂̂ f + ∂̂g ⊆ ∂̂( f + g), we have for any p ∈ X that

p ∈ Jω(̂∂ f +∂̂g)(r) ⇐⇒ r ∈ p + ω(̂∂ f + ∂̂g)(p) (40a)

�⇒ r ∈ p + ω∂̂( f + g)(p) (40b)

⇐⇒ p ∈ Jω∂̂( f +g)(r). (40c)

On the other hand, it is straightforward from definition that f + g is (α + β)-convex.
Since 1+ ω(α + β) > 0, we learn from [8, Lemma 5.2] that Proxω( f +g) = Jω∂̂( f +g)

is single-valued and has full domain. Combining with (40) implies (38).
Now, since C and D are closed convex sets, ιC and ιD are convex functions, and

therefore, ∂̂ ιC = ∂ιC = NC and ∂̂ ιD = ∂ιD = ND (see, e.g., [4, Example 16.13]).
Applying (38) to ( f , g) = (ιC , ιD) and ω = 1 yields

JNC +ND (r) = ProxιC +ιD (r) = ProxιC∩D (r) = PC∩D(r), (41)

which completes the proof. 
�
We now derive some applications of Theorem 3.2. In what follows, θ ∈ R++ and

q ∈ X .

Corollary 4.2 (Proximity operator of sum of α- and β-convex functions) Let f : X →
] − ∞,+∞] and g : X →] − ∞,+∞] be proper, lower semicontinuous, and respec-
tively α- and β-convex, let ω ∈ R++, and let r ∈ ran(Id+ω(̂∂ f + ∂̂g)). Suppose that
α + β > −1/ω and let (σ, τ ) ∈ R

2 and (r f , rg) ∈ X2 be such that σ + τ = θ/ω,
r f + rg = (q + r)/ω,

θα + σ > 0 and θβ + τ ≥ 0. (42)

Let γ ∈ R++ be such that 1 + γ σ > 0 and 1 + γ τ > 0. Given any κ ∈ ] 0, 1] and
x0 ∈ X, define the sequence (xn)n∈N by

∀n ∈ N, xn+1 := (1 − κ)xn + κ Rg R f xn, (43)

where

R f := 2

θ

(

Prox γ θ
1+γ σ

f ◦
(

θ

1 + γ σ
Id+ γ θ

1 + γ σ
r f − q

)

+ q

)

− Id (44a)

and Rg := 2

θ

(

Prox γ θ
1+γ τ

g ◦
(

θ

1 + γ τ
Id+ γ θ

1 + γ τ
rg − q

)

+ q

)

− Id . (44b)

Then Proxω( f +g)(r) = Prox γ θ
1+γ σ

f

(
θ

1+γ σ
x + γ θ

1+γ σ
r f − q

)

with x ∈ Fix Rg R f and

the following hold:

(i)

(

Prox γ θ
1+γ σ

f

(
θ

1+γ σ
xn + γ θ

1+γ σ
r f − q

))

n∈N
converges strongly to

Proxω( f +g)(r).

123



1204 M. N. Dao, H. M. Phan

(ii) If κ < 1, then (xn)n∈N converges weakly to x.
(iii) If f is differentiable with Lipschitz continuous gradient, then the above conver-

gences are linear.

Proof By assumption, [8, Lemma 5.2] implies that ∂̂ f and ∂̂g are respectively maxi-
mally α- and β-monotone, and that

J γ
1+γ σ

∂̂ f = Prox γ
1+γ σ

f and J γ
1+γ τ

∂̂g = Prox γ
1+γ τ

g . (45)

Next, Lemma 4.1 implies that Jω(̂∂ f +∂̂g)(r) = Proxω( f +g)(r). The conclusion then

follows from Theorem 3.2 applied to (A, B) = (̂∂ f , ∂̂g). 
�

Corollary 4.3 (Projection onto intersection of two closed convex sets) Let C and D
be closed convex subsets of X with C ∩ D �= ∅ and let r ∈ ran(Id+NC + ND). Let
σ ∈ R++, τ ∈ R+, and (rC , rD) ∈ X2 with rC + rD = (σ + τ)(q + r)/θ . Let also
γ ∈ R++, κ ∈ ] 0, 1], x0 ∈ X, and define the sequence (xn)n∈N by

∀n ∈ N, xn+1 := (1 − κ)xn + κ R̄D R̄C xn, (46)

where

R̄C := 2

θ

(

PC ◦
(

θ

1 + γ σ
Id+ γ θ

1 + γ σ
rC − q

)

+ q

)

− Id (47a)

and R̄D := 2

θ

(

PD ◦
(

θ

1 + γ τ
Id+ γ θ

1 + γ τ
rD − q

)

+ q

)

− Id . (47b)

Then
(

PC

(
θ

1+γ σ
xn + γ θ

1+γ σ
rC − q

))

n∈N converges strongly to PC∩D(r) = PC
(

θ
1+γ σ

x + γ θ
1+γ σ

rC − q
)

with x ∈ Fix R̄D R̄C . Furthermore, if κ < 1, then (xn)n∈N
converges weakly to x.

Proof We first derive from [4, Example 20.26] that NC and ND are maximally mono-
tone and from [4, Example 23.4] that

J γ
1+γ σ

NC
= JNC = PC and J γ

1+γ τ
ND

= JND = PD . (48)

Settingω := θ/(σ +τ) > 0,we note that r ∈ ran(Id+NC +ND) = ran
(

Id+ω(NC +
ND)

)

and from Lemma 4.1 that Jω(NC +ND)(r) = JNC +ND (r) = PC∩D(r). Now apply
Theorem 3.2 to (A, B) = (NC , ND). 
�

As in the proof of Corollary 3.6, if we choose θ = 1
η
(with η ∈ ] 0, 1 [ ), q = −r ,

σ = τ = 1−η
γ η

, and rC = rD = 0, then Corollary 4.3 reduces to [2, Corollary 3.1]
where (46) reads as
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∀n ∈ N, xn+1 := (1 − κ)xn + κ
(

2ηPD ◦ (Id+r) − 2ηr − Id
)

◦
(

2ηPC ◦ (Id+r) − 2ηr − Id
)

xn . (49)

Similarly, if θ = 1
η
(with η ∈ R++), q = r , σ = τ = 1

γ
, and rC = rD = 2η

γ
r , then

(46) is simplified to

∀n ∈ N, xn+1 := (1 − κ)xn + κ

(

2ηPD ◦ 1

2η
Id+2ηr − Id

)

◦
(

2ηPC ◦ 1

2η
Id+2ηr − Id

)

xn . (50)
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