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Abstract
We present model development and numerical solution approaches to the problem 
of packing a general set of ellipses without overlaps into an optimized polygon. Spe-
cifically, for a given set of ellipses, and a chosen integer m ≥ 3, we minimize the 
apothem of the regular m-polygon container. Our modeling and solution strategy is 
based on the concept of embedded Lagrange multipliers. To solve models with up to 
n ≤ 10 ellipses, we use the LGO solver suite for global–local nonlinear optimization. 
In order to reduce increasing runtimes, for model instances with 10 ≤ n ≤ 20 ellip-
ses, we apply local search launching the Ipopt solver from selected random start-
ing points. The numerical results demonstrate the applicability of our modeling and 
optimization approach to a broad class of highly non-convex ellipse packing prob-
lems, by consistently returning good quality feasible solutions in all (231) illustra-
tive model instances considered here.

Keywords General ellipse packings in regular polygons · Model development using 
embedded Lagrange multipliers · Global and local nonlinear optimization · LGO 
solver suite · Random starting points and local search by Ipopt · Numerical results

1  Introduction and motivation

Object packing problems (OPPs) arise in relation to a broad range of engineering 
and scientific applications. First, we present a concise review of some well-fre-
quented as well as several less known OPPs, comment on solution approaches, and 
highlight various applications.

A finite circle packing is an optimized non-overlapping arrangement of n cir-
cles inside a container set such as a circle, square or a general rectangle. This 
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problem—in particular, the case of packing identical circles—has received con-
siderable attention in the literature. The object-symmetric structure of identical 
circle packings (ICPs) makes these problems easier, but finding optimal configu-
rations for arbitrary values of n is still a difficult challenge. Studies of packing 
identical circles frequently aim at proving the optimality of the configurations 
found, either theoretically or with the help of rigorous computational approaches. 
As of today, provably optimal configurations are known only for tens of circles, 
with the exception of certain special cases; best known numerical results are 
available for packing up to 2600 circles in a circle, and 10,000 circles in a square. 
For further details and references, consult e.g., Szabó et al. [51] or Specht [47].

The general circle packing (GCP) problem defined for collections of n (in 
principle) arbitrary sized circles is a substantial generalization of the ICP case. 
Provably optimal GCP configurations can be found only to models with n ≤ 4. 
Therefore GCP studies frequently utilize generic or tailored global scope numeri-
cal solution strategies. Without going into further details related to circle pack-
ings, we refer to Castillo et al. [7] and to Hifi and M’Hallah [16] for reviews of 
both ICPs and GCPs and their applications, noting that Pintér et al. [41] present 
numerical results for generalized d-sphere packings in d = 2, 3, 4, 5 dimensions 
with up to 50 spheres.

Compared to ICPs and GCPs, ellipse packing problems (EPPs) have received rel-
atively little attention in the literature so far. Finding globally optimized packings of 
ellipses with arbitrary size and orientation is a hard computational problem. The key 
challenge is the modeling and enforcement of the constraints to avoid ellipse over-
laps, as a function of ellipse center locations and orientations.

To illustrate the difficulty of this class of problem, first we mention an exact result 
that deals with the densest packing of just two non-overlapping congruent ellipses in 
a square. For this very special case, Gensane and Honvault [14] analytically define 
the densest packing of two identical ellipses with aspect ratio r, for all real numbers 
r in [0, 1] . Honvault [18] analytically describes the densest packing of three non-
overlapping congruent ellipses in a square.

Galiev and Lisafina [13] study the problem of packing identically sized and 
orthogonally oriented ellipses inside a rectangular container. Binary linear optimi-
zation models are proposed using a grid that approximates the container region, and 
then considering the nodes of the grid as potential positions for the ellipse centers. 
Two special cases regarding the orientation of the ellipses are considered: (i) the 
major axes of all ellipses are parallel to the x or y axis, and (ii) the major axes of 
some of the ellipses are parallel to the x axis, and for all others they are parallel to 
the y axis. A heuristic algorithm based on binary linear model formulations is pro-
posed, with numerical results.

Litvinchev et  al. [26] investigate optimized packings of so-called circular-like 
objects—including circles, ellipses, rhombuses, and octagons—in a rectangular con-
tainer. Similarly to Galiev and Lisafina [13], they propose a binary linear optimiza-
tion model formulation based on a grid that approximates the container. The result-
ing problem is then solved using the software package CPLEX. Numerical results 
related to packing identically sized and oriented circles, ellipses, rhombuses, and 
octagons are presented.
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Uhler and Wright [54] study the problem of packing arbitrary size ellipsoids into 
an ellipsoidal container so as to minimize a measure of overlap between ellipsoids. 
A model formulation and two local scope solution approaches are discussed: one 
approach for the general case, and a simpler approach for the special case in which 
all ellipsoids are, in fact, spheres. The authors illustrate their approach applied to 
modeling chromosome organization in the human cell nucleus.

Kallrath and Rebennack [22] address the problem of packing ellipses of arbitrary 
size and orientation into an optimized rectangle. The packing model formulation is 
introduced as a cutting problem. Their key idea is to use separating lines to ensure 
that the ellipses do not overlap with each other, using hyperplanes and coordinate 
transformations. For problem instances with n ≤ 14 ellipses, the authors find glob-
ally optimal numerical solutions (considering the finite arithmetic precision of the 
global solvers used). At the same time, for their n > 14 ellipse-based model instances 
none of the (local or global) nonlinear optimization solvers tried by them in the 
GAMS modeling environment could compute even a feasible solution. Therefore, 
they propose heuristic approaches in which ellipses are added sequentially to find an 
approximately optimized rectangular container: this strategy allows the computation 
of high quality solutions for up to 100 ellipses. Kallrath [21] extends the work pre-
sented in Kallrath and Rebennack [22], to pack ellipsoids into optimized rectangular 
boxes.

Birgin et al. [3, 4] propose several model formulations for packing ellipsoids in 
a container. Specifically, they address various two- and three-dimensional EPPs 
with rectangular containers (for both identical and arbitrary sized ellipses), ellipti-
cal containers (for identical ellipses), spherical containers (for identical ellipsoids), 
and cuboid containers (for identical ellipsoids). The authors propose multi-start 
global scope optimization procedures that use starting guesses, followed by using 
local optimization solvers, in order to find good quality solutions with up to 1000 
ellipsoids.

Stoyan et al. [49] further develop their phi-function technique (cf. Stoyan et al. 
[50]) to pack ellipses into rectangular containers of minimal area. These functions—
referred to as quasi-phi-functions—support the packing of non-overlapping ellipses 
with arbitrary size and orientation. The authors develop an efficient solution algo-
rithm based on local optimization combined with a feasible region transformation 
procedure. This procedure reduces the dimension of the problem instance, which 
allows the authors to use a local solver (Ipopt in their case) to find a high qual-
ity solution. Stoyan et al. [49] present computational results that compare favorably 
with those presented by Kallrath and Rebennack [22].

In addition to being an interesting model development and optimization challenge 
per se, ellipse and ellipsoid packings have important scientific and industrial appli-
cations. To illustrate this aspect, we mention studies related to the structure of liq-
uids, crystals, and glasses (Bernal [2]); the flow and compression of granular mate-
rials (Edwards [12], Jaeger and Nagel [19], Jaeger et  al. [20]); the design of high 
density ceramic materials, and the formation and growth of crystals (Cheng et al., 
[10], Rintoul and Torquato [44]); the thermodynamics of liquid to crystal transition 
(Alder and Wainwright [1], Chaikin [9], Pusey [43]); and chromosome organization 
in human cell nuclei (Uhler and Wright [54]).
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In this article, we study the packing of ellipses with arbitrary size and orienta-
tion in regular m-polygons: our objective is to minimize the area of the container 
polygon. Packing ellipses into a regular polygon requires i) the determination of 
the maximal distance from the center of all polygon faces to each ellipse bound-
ary, and ii) the finding of the minimal distance between all pairs of the ellip-
ses. The first requirement is necessary to determine the length of the polygon’s 
apothem (the line segment from the center of the polygon to the midpoint of 
one of its sides, see Fig. 1), which is then to be minimized. The second require-
ment serves to prevent the ellipses from overlapping. Explicit analytical formulas 
for the first requirement can be directly derived, and used in our optimization 
strategy. However, for the second requirement explicit analytical formulas—
even if they exist—would be complicated. Therefore, our modeling and solution 
approach is based on embedding optimization calculations, using Lagrange multi-
pliers, into the overall optimization strategy. In this Lagrangian framework, opti-
mization proceeds simultaneously considering both requirements.

To summarize, we propose a modeling and optimization framework that uses 
embedded Lagrange multipliers to prevent the ellipses from overlapping. This 
allows us to solve the container minimization problem numerically with a sin-
gle call to a suitable optimization procedure. Our model formulation for regular 
polygons allows the high quality approximations of a range of container shapes. 
This is particularly important in so called “open-field” or “green-field” situations 
where a set of regular polygonal containers can adequately approximate the field 
under consideration. Our model can also be extended to consider general (not 
necessarily regular) convex polygons: see Giachetti and Sanchez [15] for an inter-
esting design application.

Our modeling and optimization strategy consistently provides high quality fea-
sible solutions to non-trivial model instances. We are able to reproduce all previ-
ous related results considered here, improving some of the previously reported 
best numerical results. We also solve new problem instances for a range of model 
parameter choices.

Fig. 1  Apothem of a regular 
polygon (m = 8)
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2  Optimization model development

Our objective is to minimize the area of the regular m-polygon that contains, without 
overlaps, a given collection of n ellipses with arbitrary size and shape characteristics. 
The input data to these optimization problem instances are m, n, and the (semi-major 
and semi-minor) axes (ai, bi) of the ellipses to be packed for i = 1,… , n . The primary 
decision variables are the polygon’s apothem d , and the centre position 

(

xc
i
, yc

i

)

 and ori-
entation θi of the packed ellipses, i = 1, …, n. Secondary (induced) variables are the 
positions of the distance maximizing lines pointing from each ellipse boundary to 
the center of each of the polygon faces, and the positions of the points on one of each 
pair of ellipses which minimizes the value of the equation describing the other ellipse. 
Other secondary variables are the embedded Lagrange multipliers used to determine 
those points. All listed secondary variables are implicitly determined by the primary 
variables, as discussed below.

The model constraints belong to two groups. The first constraint group uses the sec-
ondary variables to keep the ellipses inside the container, and to prevent them from 
overlapping. The second constraint group represents the equations generated by the 
embedded Lagrange multiplier conditions. The calculations for optimizing the polygon 
and for preventing ellipse overlaps proceed simultaneously, rather than being performed 
to completion at each optimization step. Observe that since the area of the polygon 
equals m ⋅ d2 ⋅ tan (�∕m), m being an input parameter, finding the minimal apothem d 
is equivalent to minimizing the area of the regular polygon.

Omitting first the index i(for a simpler notation) equation e(a, b, xc, yc, �;x, y) = 0 
introduced by (1) defines the boundary of an ellipse with semi-major and semi-minor 
axes a and b , centered at {xc, yc} , and rotated counterclockwise by angle θ. The formula 
for e(a, b, xc, yc, �;x, y) is obtained by transforming the equation of a circle with radius 
1, centered at (0, 0), as shown below.

In (1) the coordinate system is rotated clockwise by an angle of −θ, which is 
equivalent to rotating the ellipse counterclockwise by � around its centre. The value 
of e(a, b, xc, yc, �;x, y) is negative for all points (x, y) located inside the ellipse, zero for 
all points on the ellipse boundary, and positive for all points outside the ellipse. Let us 
recall here that (xc, yc) and θ are primary decision variables for each ellipse i: in gen-
eral, these variables will be denoted by 

(

xc
i
, yc

i

)

 and θi for i = 1, …, n.
In order to standardize our model formulation, we assume that the optimized regular 

polygon container is centered at the origin. Consider now the line �xx + �yy = � that 
embeds one of the polygon sides. The slope of this line is −�x∕�y , and the distance from 
the origin to the line equals

(1)
e(a, b, xc, yc, �;x, y) =

(

cos �(x − xc)

a
+

sin �(y − yc)

a

)2

+

(

cos �(y − yc)

b
−

sin �(x − xc)

b

)2

− 1 = 0.
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If 
(

�x, �y
)

 is a unit vector so that �2
x
+ �2

y
= 1 , then the point on the line closest to the 

origin is �
(

�x, �y
)

 , located at a distance � from the origin. The slope of the line to that 
point is �y∕�x : hence, the line from the origin to the closest point on �xx + �yy = � is 
perpendicular to it. This fact will be used to determine the apothem d of the polygon.

Proceeding now towards the requirement to contain all ellipses inside the regular 
polygon, we find the maximum value of ℓ for which the side of the polygon intersects 
the ellipse. Our derivation for a polygon follows the first order Karush–Kuhn–Tucker 
conditions described by Kallrath and Rebennack [22] for a rectangular container.

For an ellipse to be contained inside the polygon, all sides �xx + �yy must be less 
than or equal to this maximum value. Therefore we consider the following equation 
using � as the maximizing embedded Lagrange multiplier.

Differentiating both sides of Eq. (3) with respect to x, y, and λ, we obtain

where

Notice that the Lagrange multiplier λ does not appear in (4). More importantly, the 
maximum value in the direction 

(

�x, �y
)

 is the result in (4) with the positive sign in front 
of 

√

� . This explicit analytical result will be used in our optimization strategy for all 
sides of the regular polygon, which, of course, share the same apothem d.

Based on the above discussion, the condition of containing a given ellipse inside the 
polygon can be described by the relation

In order to complete our analysis related to the sides of the container polygon, note 
that for a regular polygon with m sides, the points 

(

�xk , �yk

)

 that define the unit vectors 
for each apothem (i.e., for each side k of the polygon) are given by

Proceeding next towards preventing ellipse overlaps, it is useful to determine equa-
tions for the derivatives of the ellipse Eq. (1) with respect to x and y. For a given set of 

(2)

√

�2

�2
x
+ �2

y

.

(3)�xx + �yy = � ⋅ e(a, b, xc, yc, �;x, y).

(4)
�xx

c + �yy
c −

√

�,

�xx
c + �yy

c +
√

�,

(5)
� =

(

a2�2
x
+ b2�2

y

)

cos2� +
(

b2�2
x
+ a2�2

y

)

sin2�

+ (a − b)(a + b)�x�ysin(2�).

(6)d ≥ p(a, b, xc, yc, �;x, y) ∶= �xx
c + �yy

c +
√

�.

(7)
(

�xk , �yk

)

=
(

cos
(

2 ⋅ k ⋅ �

m
−

�

2

)

, sin
(

2 ⋅ k ⋅ �

m
−

�

2

))

, k = 1,… ,m.
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values (a, b, xc, yc, �) we will denote e(a, b, xc, yc, �;x, y) simply as e(x, y) : then these 
derivatives are determined as

All pairs of packed ellipses are prevented from overlapping by requiring that the 
minimum value of the ellipse equation for the first ellipse (ellipse i) for any point 
on the second ellipse (ellipse j) has to be greater than a judiciously set, sufficiently 
small parameter ɛ ≥ 0. This requirement will be met using the embedded Lagrange 
multiplier method.

The next set of equations serves to determine the point on ellipse j that maximizes 
or minimizes the value of the function describing ellipse i. In the case considered 
here, λ must be negative to obtain the minimum. During optimization, this require-
ment with respect to the sign of λ will be enforced by setting its search bounds.

The last equation type introduced is the requirement that the minimizing point 
lies on ellipse j. Eliminating λ from the first two equations, we obtain

Note that at the point on ellipse j that minimizes or maximizes the value of the 
function describing ellipse i, the slope of ellipse i equals the slope of ellipse j.

To illustrate the approach, consider the ellipses ei(1.25, 0.75, 1, 2, �∕3;x, y) and 
ej(1.5, 0.83,− 0.5, 1,�∕4;x, y) . The overlapping value of Eq. (1) for ellipse i between 
the ellipses is − 0.886 with (x, y) = (0.701, 1.777): this value can be found by solving 
the set of Eq. (10). Figure 2 shows the ellipse configuration.

To give another example, consider two ellipses defined by 
ei(1.25, 0.75,− 1,− 2,�∕3;x, y) and ej(1.5, 0.83,− 0.5, 1, �∕4;x, y) . The non-overlap-
ping value between the ellipses is 1.84 with (x, y) = (− 0.758, − 0.141): again, this 
value can be found by solving the set of Eqs. (10) for x and y. Figure 3 shows the 
resulting non-overlapping ellipse configuration.

(8)

de(x, y)

dx
=

2

a2b2

(

b2(x − xc)cos2� −
(

a2 − b2
)

(y − yc) cos � sin � + a2(x − xc)sin2�
)

,

(9)

de(x, y)

dy
=

2

a2b2

(

a2(y − yc)cos2� −
(

a2 − b2
)

(x − xc) cos � sin � + b2(y − yc)sin2�
)

.

(10)

de(x, y)

dx

(

ai, bi, x
c
i
, yc

i
, �i;x, y

)

= � ⋅
de(x, y)

dx

(

aj, bj, x
c
j
, yc

j
, �j;x, y

)

,

de(x, y)

dy

(

ai, bi, x
c
i
, yc

i
, �i;x, y

)

= � ⋅
de(x, y)

dy

(

aj, bj, x
c
j
, yc

j
, �j;x, y

)

,

e
(

aj, bj, x
c
j
, yc

j
, �j

)

(x, y) = 0.

(11)

de(x, y)

dy

(

ai, bi, x
c
i
, yc

i
, �i;x, y

)

⋅
de(x, y)

dx

(

aj, bj, x
c
j
, yc

j
, �j;x, y

)

=
de(x, y)

dy

(

aj, bj, x
c
j
, yc

j
, �j;x, y

)

⋅
de(x, y)

dx

(

ai, bi, x
c
i
, yc

i
, �i;x, y

)

.
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Constructing Lagrange multiplier Eqs.  (10) for ei(x, y) and ej(x, y) , as shown 
above, and requiring that the Lagrange multiplier be negative and the value of ei(x, y) 
be positive, guarantees that these two ellipses do not overlap. Note that requiring 
ei(x, y)0 allows the ellipses to touch. Consequently, the requirement that two ellipses 
do not overlap can be implemented by creating constraints from the Lagrange multi-
plier Eqs. (10). That is, we require five constraints for each pair of ellipses: �i,j ≤ 0 (a 
bound constraint), ei(x, y) ≥ 0 , ej(x, y) = 0 , and the two Lagrange multiplier equa-
tions generated by differentiating the equation ei(x, y) = �i,j ⋅ ej(x, y) with respect to 
x and y. In the optimization framework, �i,j ≤ 0 are the Lagrange multipliers appear-
ing in the equations to find the point 

(

xj,i, yj,i
)

 on ellipse j that minimizes the value of 
the equation that describes ellipse i. Finally, we state constraints to prevent ellipse 
i from overlapping with ellipse j, by requiring that the minimal value of the equa-
tion describing ellipse i at the minimizing point on ellipse j has to be at least ɛ. We 
remark that the optimization solvers used in our study are not too sensitive to the 
choice of this parameter: for instance, values of ɛ = 0,  10−6, and  10−2 have been all 
tested without leading to numerical issues.

Summarizing the model development steps, we obtain the following model-class 
for packing n general ellipses into an optimized regular m-polygon container.

Fig. 2  Two overlapping ellipses

Fig. 3  Two non-overlapping 
ellipses
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In the model (12) l and u denote lower and upper bounds for the ellipse center 
positions: these bounds can be defined appropriately for each ellipse packing 
instance studied, in order to facilitate the finding of feasible solutions.

The optimization model (12) has 1 + 3n + 3(n − 1)2 decision variables. In addi-
tion to the bound constraints imposed on all decision variables, the model has 
m ⋅ n + 4(n − 1)2 non-convex constraints. Considering also the formulas introduced 
earlier for the ellipses, model (12) represents a hard global optimization challenge: 
both the number of decision variables and the number of nonconvex constraints 
increase as a quadratic function of n, observing also the term m  · n. For example, 
a problem instance with n = 10 ellipses inside a regular polygon with m = 8 sides 
leads to a model with 274 decision variables, corresponding bound constraints, 
and 404 non-convex constraints. Arguably, this rather small model instance can be 
already perceived as a computational global optimization challenge. Based on the 
above observations, we can expect that the computational difficulty of the model-
class (12) rapidly increases as a function of n and m.

3  Numerical global optimization applied to ellipse packing problems

Considering even far less complicated object packing models than the model-class 
introduced here, one cannot expect to find general analytical solutions. Therefore 
we have been applying numerical global optimization to find high quality feasible 

(12)

minimize d

subject to d ≥ p
(

ai, bi, x
c
i
, yc

i
, �i;�xk , �yk

)

for i = 1,… , n

k = 1,… ,m
de(x,y)

dx

(

ai, bi, x
c
i
, yc

i
, �i;xj,i, yj,i

)

= �j,i ⋅
de(x,y)

dx

(

aj, bj, x
c
j
, yc

j
, �j;xj,i, yj,i

)

for i = 1,… , n − 1

j = i + 1,… , n
de(x,y)

dy

(

ai, bi, x
c
i
, yc

i
, �i;xj,i, yj,i

)

= �j,i ⋅
de(x,y)

dy

(

aj, bj, x
c
j
, yc

j
, �j;xj,i, yj,i

)

for i = 1,… , n − 1

j = i + 1,… , n

e
(

aj, bj, x
c
j
, yc

j
, �j;xj,i, yj,i

)

= 0 for i = 1,… , n − 1

j = i + 1,… , n

e
(

ai, bi, x
c
i
, yc

i
, �i

)

≥ � for i = 1,… , n − 1

j = i + 1,… , n

l ≤ xc
i
≤ u for i = 1,… , n

l ≤ yc
i
≤ u for i = 1,… , n

−� ≤ �i ≤ � for i = 1,… , n

l ≤ xj,i ≤ u for i = 1,… , n − 1

j = i + 1,… , n

l ≤ yj,i ≤ u for i = 1,… , n − 1

j = i + 1,… , n

2 ⋅ l ≤ �j,i ≤ 0 for i = 1,… , n − 1

j = i + 1,… , n
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numerical solutions to a range of challenging OPPs. Without going into details, 
we only refer here to some of our own related studies: consult e.g. Pintér [29], 
Stortelder et  al. [48], Riskin et  al. [46], Castillo and Sim [8], Pintér and Kampas 
[37, 38], Kampas and Pintér [23], Castillo et al. [7], Pintér and Kampas [39], Kam-
pas et al. [24, 25], Pintér et al. [41]. Similarly to most of the works listed here, in 
the present study we utilize the Lipschitz Global Optimizer (LGO) solver system 
for global–local nonlinear optimization: here specifically, using its implementation 
linked to the computing system Mathematica [55], by Wolfram Research.

LGO (Pintér [34]) is aimed at finding the numerical global optimum of model 
instances from a very general class of global optimization problems. In order to use 
LGO within a theoretically rigorous framework, the key model assumptions are: 
bounded, non-empty feasible region; continuous or Lipschitz-continuous objec-
tive and constraint functions. These analytical conditions can be simply verified 
by inspection for model (12). LGO has been in use since the early 1990s, and it 
has been documented in detail elsewhere. In particular, Pintér [27] presents adap-
tive deterministic partition strategies and stochastic search methods, to solve global 
optimization problems under Lipschitz-continuity or mere continuity assumptions. 
The exhaustive search capability of these general algorithmic procedures guaran-
tees their theoretical global convergence (correspondingly, in a deterministic sense 
or with probability 1).

The core solver system in LGO with implementations linked to various mod-
eling platforms has been discussed e.g., by Pintér [27, 28, 30–33], and by Pintér 
et al. [42]. For more recent development work, benchmarking studies and real-world 
applications, consult e.g. Çaĝlayan and Pintér [6], Deschaine et al. [11], Pintér and 
Horváth [36], Pintér and Kampas [39], Pintér [35]. Current implementation details 
are described in the LGO manual [34], with reference to a broad range of further 
LGO applications. LGO integrates several derivative-free global and local optimi-
zation strategies, without requiring higher-order model function information. These 
strategies include a sampling procedure as a global pre-solver, a branch-and-bound 
global search method (BB), global adaptive random search (RS), multi-start based 
global random search (MS), and local search (LS). According to extensive numeri-
cal experience, in difficult GO models, MS with subsequent LS solver phases often 
finds the best numerical solution. For this reason, the recommended default LGO 
solver option is MS + LS: this has been utilized also in our present numerical study.

The implementation of LGO with a link to Mathematica—with the software prod-
uct name MathOptimizer Professional (Pintér and Kampas [40])—has been exten-
sively used in our benchmarking studies, and it has been used also here. MathOp-
timizer Professional users formulate their optimization model in Mathematica; this 
model is automatically translated into C or Fortran code; the converted model is 
solved by LGO; finally, the results are seamlessly returned to the calling Mathe-
matica work document. The outlined structure supports the combination of Math-
ematica’s model development, visualization, and other capabilities with the robust 
performance and speed of the external LGO solver engine. LGO solver performance 
compares favorably not only to the related numerical optimization capabilities of 
Mathematica, but also to a broad range of other derivative-free nonlinear solvers. In 
support of the latter remark, consult e.g. the substantial benchmarking study of Rios 
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and Sahinidis [45] in which, at the time of their study, a several years old LGO ver-
sion has been one of the most efficient solvers. The current LGO release—as well as 
its MathOptimizer Professional implementation—supports the numerical solution of 
nonlinear optimization models with thousands of variables and general constraints. 
To illustrate this aspect, we present a substantial set of ellipse packing test results in 
the next section.

4  Illustrative results

Our numerical experiments were mostly performed on a PC running under Windows 
7, with an Intel Core i5 processor running at 2.6 GHz, with 16 GBytes of RAM, 
using MathOptimizer Professional running in Mathematica (versions 10 and 11), 
and using the gcc compiler [53] to automatically generate the necessary model input 
files for LGO. While we cannot guarantee the theoretical optimality of the ellipse 
configurations found, our computational results lead to visibly high quality pack-
ings. Let us also point out that MathOptimizer Professional is used here with its 
default parameter settings, without any “tweaking.”

To our best knowledge, there are no previously studied model instances availa-
ble for the ellipse packing problem-class considered in our present work. Thus we 
first proceed to dealing with the basic setting presented in Honvault [18] of pack-
ing three congruent ellipses in a square: n = 3, all ellipses sharing the same eccen-
tricity, and m = 4. In order to reproduce the results presented in Honvault [18], 
we use the following input structure: ai = 1, bi = c for i = 1, …, 3, c = 0.01, 0.02, 
…, 1.00 is the eccentricity parameter of the ellipses. We note that Honvault [18] 
used a stochastic algorithm based on the so-called inflation formula presented in 
Honvault [17]. Figure  4 numerically captures the function between the packing 
fraction and the eccentricity input parameter c. In this set of examples, solving 
each problem took less than 2 s of CPU time. Honvault [18] has shown analyti-
cally that for congruent ellipses placed inside a square the function between the 
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packing fraction and the eccentricity is continuous, reaching the maximal packing 
fraction at an eccentricity of 1/3, with optimum value of �∕4 ∼ 0.7853981634 : 
this is comparable to the fraction 0.78089 obtained in our numerical results at 
c = 0.33, given our discretized eccentricity parameter structure. (We did not spend 
further effort on this rather simple illustrative example.)

Evidently, a regular polygonal container approaches a circular container as the 
number of sides m increases. Following the same input structure, Fig. 4 captures 
the function between the packing fraction and the eccentricity for m = 40. In this 
case, the packing fraction reaches its approximate maximum of 0.86482 at eccen-
tricity c = 0.58. For m = 40 solving each problem took less than 40 s.

Next, we consider packing ellipses into containers with a priori bounded size. 
The problem instances summarized in Table 1 are cited from Kallrath and Reben-
nack [22]. Table  2 includes computational results using the solver NMinimize, 
available in Mathematica and the solver BARON (Tawarmalani and Sahinidis 
[52]), available via the NEOS Server (https ://neos-serve r.org/neos/). Specifi-
cally, for NMinimize we tested its Automatic, SimulatedAnnealing, and Random-
Search option settings. Among these, RandomSearch provided the most consist-
ent results: hence, these results are reported in the table. Let us also note that 
BARON does not support trigonometric functions. In order to handle our model 
using BARON, we replaced function cosθ with the decision variable � , function 
sinθ with the decision variable �  , and added the constraint �2 + � 2 = 1 with the 
bounds −1 ≤ �,� ≤ 1 . All model instances were solved for a square container 
(m = 4) with the same overall lower and upper bound values. Our optimization 
strategy consistently provided superior results, both in terms of higher quality 
packings found and (typically) much lower CPU times.

Table 3 summarizes additional computational results, including those from Kall-
rath and Rebennack [22] and Stoyan et  al. [49]: these works were aimed at pack-
ing ellipses in optimized rectangles. Since our model can be extended to consider 

Table 1  Ellipse packing instances from Kallrath and Rebennack [22]

Test case (ai, bi) Total area to 
be packed

TC2a (2.0,1.5), (1.5,1.0) 14.13717
TC2b (2.0,1.5), (1.8,1.4) 17.34159
TC3a TC2a + (1.0,0.8) 16.65044
TC3b TC2b + (0.8,0.7) 19.10088
TC4a TC3a + (0.9,0.75) 18.77102
TC4b TC3b + (1.1,1.0) 22.55664
TC5a TC4a + (0.8,0.6) 20.27898
TC5b TC4b + (0.9,0.8) 24.81858
TC6 TC5a + (0.7,0.3) 20.93872
TC11 (2.0,1.5), (1.8,1.5), (1.6,1.5), (1.5,1.2), (1.3,1.0), (1.2,0.9), 

(1.1,0.8), (1.0,0.75), (0.9,0.6), (0.8,0.5), (0.7,0.3)
47.31239

TC14 7·(1.0,0.75) + 7·(0.5,0.375) 20.6167

https://neos-server.org/neos/


1595

1 3

Optimized ellipse packings in regular polygons  

Ta
bl

e 
2 

 C
om

pa
ris

on
 o

f e
lli

ps
e 

pa
ck

in
g 

in
st

an
ce

s f
ro

m
 K

al
lra

th
 a

nd
 R

eb
en

na
ck

 [2
2]

 w
ith

 m
 =

 4

a  In
fe

as
ib

le
 re

su
lt 

re
tu

rn
ed

b  N
o 

re
su

lt 
re

tu
rn

ed
 w

ith
in

 8
 h

c  B
es

t s
ol

ut
io

n 
re

tu
rn

ed
 w

ith
in

 8
 h

Te
st 

ca
se

N
M

in
im

iz
e

BA
RO

N
 (v

ia
 th

e 
N

EO
S 

Se
rv

er
)

O
ur

 re
su

lt

A
re

a 
of

 o
pt

i-
m

iz
ed

 c
on

ta
in

er
Pa

ck
in

g 
fr

ac
tio

n
Ti

m
e 

(s
)

A
re

a 
of

 o
pt

i-
m

iz
ed

 c
on

ta
in

er
Pa

ck
in

g 
fr

ac
tio

n
Ti

m
e 

(s
)

A
re

a 
of

 o
pt

i-
m

iz
ed

 c
on

ta
in

er
Pa

ck
in

g 
fr

ac
tio

n
Ti

m
e 

(s
)

TC
2a

22
.6

65
82

0.
62

37
2

4.
09

22
.6

65
60

0.
62

37
3

11
69

.2
1

22
.6

65
80

0.
62

37
2

1.
09

TC
2b

29
.3

32
27

0.
59

12
1

2.
80

29
.3

31
99

0.
59

12
2

15
12

.5
9

29
.3

32
30

0.
59

12
1

1.
08

TC
3a

a
23

.8
16

05
0.

69
91

3
c

22
.6

65
80

0.
73

46
1

1.
53

TC
3b

a
29

.4
58

07
0.

64
84

1
c

29
.3

32
30

0.
65

11
9

1.
56

TC
4a

a
30

.1
11

92
0.

62
33

8
c

25
.5

16
90

0.
73

56
3

3.
32

TC
4b

32
.9

79
42

0.
68

39
6

61
.2

8
37

.2
54

37
0.

60
54

8
c

29
.3

74
90

0.
76

78
9

3.
17

TC
5a

a
33

.1
58

18
0.

61
15

8
c

27
.4

74
30

0.
73

81
1

6.
29

TC
5b

34
.3

75
38

0.
72

19
9

15
30

.4
1

41
.0

36
20

0.
60

48
0

c
32

.8
72

50
0.

75
50

0
8.

16
TC

6
27

.9
70

28
0.

74
86

1
27

47
.8

9
34

.1
61

82
0.

61
29

3
c

26
.2

89
60

0.
79

64
6

22
.0

1
TC

11
b

b
60

.8
59

30
0.

77
74

1
76

2.
84

TC
14

b
59

.6
90

47
0.

34
53

9
c

28
.9

18
80

0.
71

29
2

25
55

.8
9



1596 F. J. Kampas et al.

1 3

Ta
bl

e 
3 

 A
dd

iti
on

al
 c

om
pu

ta
tio

na
l r

es
ul

ts
 fo

r d
iff

er
en

t c
on

fig
ur

at
io

n 
ge

om
et

rie
s

a  N
ot

 re
po

rte
d

b  M
at

ch
es

 b
es

t r
es

ul
t w

ith
in

 0
.1

%
 a

cc
ur

ac
y

c  Im
pr

ov
es

 b
es

t r
es

ul
t p

re
vi

ou
sly

 re
po

rte
d

d  O
bt

ai
ne

d 
us

in
g 

ou
r “

na
ïv

e”
 h

eu
ris

tic
 a

pp
ro

ac
h

Te
st 

ca
se

Re
ct

an
gu

la
r c

on
ta

in
er

K
al

lra
th

 a
nd

 R
eb

en
na

ck
 [2

2]
Re

ct
an

gu
la

r c
on

ta
in

er
St

oy
an

 e
t a

l. 
[4

9]
G

en
er

al
 p

ol
yg

on
 w

ith
 m

 =
 4 

(r
ec

ta
ng

le
)

O
ur

 re
su

lt

Re
gu

la
r p

ol
yg

on
 w

ith
 m

 =
 4 

(s
qu

ar
e)

O
ur

 re
su

lt

Re
gu

la
r p

ol
yg

on
 w

ith
 m

 =
 8

O
ur

 re
su

lt

A
re

a 
of

 
op

tim
iz

ed
 

co
nt

ai
ne

r

Pa
ck

in
g 

fr
ac

-
tio

n
A

re
a 

of
 

op
tim

iz
ed

 
co

nt
ai

ne
r

Pa
ck

in
g 

fr
ac

-
tio

n
A

re
a 

of
 

op
tim

iz
ed

 
co

nt
ai

ne
r

Pa
ck

in
g 

fr
ac

-
tio

n
A

re
a 

of
 

op
tim

iz
ed

 
co

nt
ai

ne
r

Pa
ck

in
g 

fr
ac

-
tio

n
A

re
a 

of
 

op
tim

iz
ed

 
co

nt
ai

ne
r

Pa
ck

in
g 

fr
ac

-
tio

n

TC
2a

18
.0

00
00

0.
78

54
0

a
18

.0
00

00
0.

78
54

0
b

22
.6

65
80

0.
62

37
2

20
.5

29
70

0.
68

86
2

TC
2b

22
.2

31
52

0.
78

00
5

a
22

.2
31

60
0.

78
00

4
b

29
.3

32
30

0.
59

12
1

27
.1

78
70

0.
63

80
6

TC
3a

21
.3

85
77

0.
77

85
8

a
21

.3
85

80
0.

77
85

8
b

22
.6

65
80

0.
73

46
1

21
.1

85
40

0.
78

59
4

TC
3b

25
.2

24
67

0.
75

72
3

a
25

.2
24

70
0.

75
72

3
b

29
.3

32
30

0.
65

11
9

27
.1

78
70

0.
70

27
9

TC
4a

23
.1

87
08

0.
80

95
5

a
23

.1
87

10
0.

80
95

5
b

25
.5

16
90

0.
73

56
3

23
.8

04
30

0.
78

85
5

TC
4b

28
.5

41
59

0.
79

03
1

a
28

.5
40

90
0.

79
03

3
b

29
.3

74
90

0.
76

78
9

28
.1

12
20

0.
80

23
8

TC
5a

25
.2

95
57

0.
80

16
8

24
.5

53
68

0.
82

59
0

24
.5

68
00

0.
82

54
2

b
27

.4
74

30
0.

73
81

1
25

.1
99

00
0.

80
47

5
TC

5b
31

.2
88

73
0.

79
32

1
30

.8
48

70
0.

80
45

3
30

.6
49

20
0.

80
97

6
c

32
.8

72
50

0.
75

50
0

30
.9

42
90

0.
80

20
8

TC
6

25
.5

10
43

0.
82

07
9

25
.4

71
73

0.
82

20
4

25
.0

83
30

0.
83

47
7

c
26

.2
89

60
0.

79
64

6
25

.5
70

10
0.

81
88

7
TC

11
64

.5
91

77
0.

73
24

8
57

.1
78

30
0.

82
74

5
56

.7
66

90
0.

83
34

5
c,

d
60

.8
59

30
0.

77
74

1
59

.6
36

10
0.

79
33

5
TC

14
29

.6
58

86
0.

69
51

3
24

.2
50

99
0.

85
01

4
24

.4
64

50
0.

84
27

2
d

28
.9

18
80

0.
71

29
2

25
.5

43
60

0.
80

71
2



1597

1 3

Optimized ellipse packings in regular polygons  

Table 4  Ellipse packing 
instances

Number of ellipses Eccentricity Total area to 
be packed

3 1.00 5.75959
4 6.54498
5 7.17330
6 7.69690
8 8.53840
10 9.20163
3 1.05 5.48532
4 6.23332
5 6.83172
6 7.33038
8 8.13181
10 8.76345
3 1.15 5.00834
4 5.69129
5 6.23765
6 6.69296
8 7.42470
10 8.00141
3 1.25 4.60767
4 5.23599
5 5.73864
6 6.15752
8 6.83072
10 7.36130
3 1.50 3.83972
4 4.36332
5 4.78220
6 5.13127
8 5.69227
10 6.13442
3 1.75 3.29119
4 3.73999
5 4.09903
6 4.39823
8 4.87909
10 5.25807
3 2.00 2.87979
4 3.27249
5 3.58665
6 3.84845
8 4.26920
10 4.60081
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general convex polygons, our results include optimized regular polygonal containers 
with m = 4 (square), general polygonal containers with m = 4 (rectangle), and regular 
polygonal containers with m = 8 (octagon). The configuration geometries, as men-
tioned, are rather different given the different optimized containers: however, we 
gain an overall impression regarding the packing densities that can be achieved for 
a range of model instances. In terms of the quality of the packings for a rectangular 
container, our modeling and optimization strategy often matches (within 0.1% accu-
racy) or improves the best results previously reported. It is interesting to note that for 

Table 5  Ellipse packing results for eccentricity c = 1.00

Problem 
number

Number of 
ellipses

Number of 
container sides

Area of opti-
mized container

Packing fraction Time (s) Max 
constraint 
violation

1 3 3 9.31692 0.61819 2.92 4.59E−13
2 4 9.11142 0.63213 1.44 2.98E−10
3 5 9.04654 0.63666 1.59 1.12E−09
4 6 9.12255 0.63136 1.70 5.18E−10
5 8 9.28338 0.62042 2.09 9.89E−09
6 4 3 9.31692 0.70248 2.82 2.97E−09
7 4 9.31373 0.70272 3.06 5.86E−09
8 5 9.26474 0.70644 3.46 1.27E−13
9 6 9.56947 0.68394 3.76 1.30E−11
10 8 9.32100 0.70218 4.68 1.03E−12
11 5 3 11.10010 0.64624 6.83 2.35E−10
12 4 9.56677 0.74981 7.64 5.72E−12
13 5 10.12490 0.70848 8.50 3.12E−09
14 6 9.39010 0.76392 9.52 1.64E−14
15 8 9.93319 0.72216 12.01 5.39E−09
16 6 3 11.38690 0.67595 17.28 8.23E−09
17 4 10.64650 0.72295 19.19 4.05E−09
18 5 10.81850 0.71146 22.46 1.20E−09
19 6 10.82760 0.71086 24.71 1.39E−09
20 8 10.46650 0.73538 28.78 2.40E−12
21 8 3 12.74630 0.66987 87.67 8.70E−09
22 4 11.40820 0.74845 92.46 1.49E−12
23 5 11.72700 0.72810 109.47 3.55E−14
24 6 11.62580 0.73444 116.02 5.50E−09
25 8 11.87280 0.71916 130.20 9.43E−09
26 10 3 13.13800 0.70038 418.02 6.18E−09
27 4 12.47130 0.73782 334.19 8.33E−10
28 5 12.42860 0.74036 379.95 2.18E−13
29 6 12.65350 0.72720 386.65 5.17E−09
30 8 12.92340 0.71201 433.04 6.93E−10
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test cases TC5b and TC6, the packing fractions with a regular octagonal container 
(our results) approach the packing fractions obtained using a rectangular container.

Next, we proceed to packing ellipses of (in principle) arbitrary size and orienta-
tion. The ellipse packing problem instances summarized in Table 4 have been gener-
ated with the following input structure: ai = 1∕

√

i , bi = ai∕c for i = 1,… , n , where 
c again denotes the eccentricity of the ellipses. Note that with c = 1 this problem 
becomes a general circle packing problem for circles with radii ai = 1∕

√

i . This 
choice guarantees that for the total area A(n) of the packed ellipses we have the 
relation A(n) → ∞ as n → ∞ . In our opinion, this general property can make the 

Table 6  Ellipse packing results for eccentricity c = 1.05

Problem 
number

Number of 
ellipses

Number of 
container sides

Area of opti-
mized container

Packing fraction Time (s) Max 
constraint 
violation

31 3 3 8.65035 0.63412 1.58 9.32E−09
32 4 8.40929 0.65229 1.47 4.39E−09
33 5 8.31090 0.66002 1.73 5.89E−09
34 6 8.40941 0.65228 1.86 9.97E−09
35 8 8.49902 0.64541 2.20 8.21E−09
36 4 3 8.65610 0.72011 2.96 9.95E−09
37 4 8.97455 0.69456 3.15 9.05E−09
38 5 8.48676 0.73448 3.96 9.77E−09
39 6 8.49949 0.73338 4.32 9.78E−09
40 8 8.59010 0.72564 5.41 8.84E−09
41 5 3 9.43556 0.72404 7.39 9.90E−09
42 4 8.94959 0.76336 8.03 8.98E−09
43 5 9.17626 0.74450 10.26 9.29E−09
44 6 9.51812 0.71776 11.08 5.46E−09
45 8 8.87133 0.77009 14.06 4.06E−09
46 6 3 10.62880 0.68967 18.80 8.53E−09
47 4 9.69256 0.75629 19.87 8.01E−09
48 5 9.76039 0.75103 24.57 6.40E−09
49 6 9.89178 0.74106 27.13 1.07E−11
50 8 9.76099 0.75099 33.87 9.97E−09
51 8 3 10.98320 0.74039 118.64 8.57E−09
52 4 10.61570 0.76602 96.45 5.06E−12
53 5 10.49460 0.77486 125.14 9.99E−09
54 6 11.36000 0.71583 125.25 9.56E−09
55 8 11.11580 0.73155 148.81 1.71E−09
56 10 3 12.36120 0.70895 302.30 1.46E−13
57 4 11.51620 0.76097 346.60 5.58E−10
58 5 11.28720 0.77641 441.08 7.87E−09
59 6 11.70320 0.74881 465.58 6.22E−09
60 8 11.30160 0.77542 302.47 6.45E−09
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corresponding packing model instances more difficult to handle, as opposed to pack-
ing objects into containers with a priori bounded size.

Tables 5, 6, 7, 8, 9, 10 and 11 summarize the computational results, for a total of 
210 ellipse packing problems solved. In these model instances, the number of ellip-
ses n is chosen as 3, 4, 5, 6, 8, or 10; for each given n, the eccentricity parameter c is 
chosen as one of the values 1.00, 1.05, 1.15, 1.35, 1.50, 1.75, or 2.00; and for each 
fixed pair (n, c) the number of regular polygon container sides m is chosen as one of 
3, 4, 5, 6, or 8.

Table 7  Ellipse packing results for eccentricity c = 1.15

Problem 
number

Number of 
ellipses

Number of 
container sides

Area of opti-
mized container

Packing fraction Time (s) Max 
constraint 
violation

61 3 3 7.55743 0.66270 1.64 8.97E−09
62 4 7.21585 0.69407 1.47 9.91E−09
63 5 7.10838 0.70457 1.75 9.66E−09
64 6 7.24809 0.69099 1.84 8.03E−09
65 8 7.19926 0.69567 2.25 7.99E−09
66 4 3 7.76378 0.73306 2.96 2.92E−10
67 4 7.43031 0.76596 3.15 6.68E−09
68 5 7.25170 0.78482 3.93 9.99E−09
69 6 7.43696 0.76527 4.32 9.17E−09
70 8 7.68404 0.74066 5.34 7.35E−09
71 5 3 8.24399 0.75663 7.47 4.02E−09
72 4 7.84139 0.79548 7.89 4.74E−09
73 5 8.00134 0.77958 10.05 3.99E−09
74 6 7.87724 0.79186 11.29 9.40E−09
75 8 8.01929 0.77783 13.93 9.77E−09
76 6 3 9.43381 0.70947 19.16 1.01E−10
77 4 8.64159 0.77451 20.20 5.36E−09
78 5 8.95285 0.74758 24.68 9.39E−09
79 6 8.50110 0.78731 28.53 6.63E−09
80 8 8.80568 0.76007 35.61 8.21E−09
81 8 3 10.06300 0.73782 98.19 4.94E−13
82 4 9.35476 0.79368 102.40 8.02E−09
83 5 9.63619 0.77050 120.98 9.91E−09
84 6 9.22623 0.80474 144.94 5.14E−09
85 8 9.61189 0.77245 158.59 8.94E−09
86 10 3 11.87970 0.67353 462.85 8.71E−09
87 4 10.17910 0.78607 384.85 9.97E−09
88 5 10.43410 0.76686 452.49 7.94E−10
89 6 10.28200 0.77820 494.91 1.52E−09
90 8 10.19040 0.78519 507.67 6.59E−09
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The CPU times are reasonable for the entire range of parameter choices, ranging 
from seconds to a few minutes. Note that these tables also include the packing frac-
tion and the maximum constraint violation.

Two illustrative packing configurations are displayed by Figs. 5 and 6. The points 
shown on the ellipses (in light green color in the online version of this article) are 
the auxiliary points used for preventing ellipse overlap: note that for preventing the 
overlap of a pair of ellipses, there is a point on one of the two ellipses, not on both.

Table 8  Ellipse packing results for eccentricity c = 1.25

Problem number Number 
of ellip-
ses

Number of 
container 
sides

Area of 
optimized 
container

Packing fraction Time (s) Max 
constraint 
violation

91 3 3 6.70414 0.68729 1.64 8.63E−09
92 4 6.34011 0.72675 1.48 9.78E−09
93 5 6.26118 0.73591 1.79 8.98E−09
94 6 6.35281 0.72530 1.86 6.64E−09
95 8 6.18144 0.74540 1.95 7.53E−09
96 4 3 7.03236 0.74456 3.00 8.43E−09
97 4 6.87038 0.76211 3.09 9.56E−09
98 5 6.57290 0.79660 3.96 8.90E−09
99 6 6.81065 0.76879 4.43 9.11E−09
100 8 6.84450 0.76499 5.46 9.33E−09
101 5 3 8.18732 0.70092 7.89 2.03E−09
102 4 7.42038 0.77336 8.52 4.68E−09
103 5 7.36284 0.77941 10.70 4.03E−09
104 6 7.59517 0.75557 11.22 6.71E−09
105 8 7.29897 0.78623 14.65 9.98E−09
106 6 3 8.17067 0.75361 19.59 9.91E−09
107 4 7.94288 0.77523 13.12 4.09E−14
108 5 7.77698 0.79176 28.30 8.35E−09
109 6 7.78206 0.79125 28.13 8.91E−09
110 8 7.70841 0.79881 36.44 1.98E−09
111 8 3 9.25429 0.73811 103.12 5.09E−09
112 4 8.95055 0.76316 112.29 8.54E−13
113 5 8.63591 0.79097 121.77 2.73E−09
114 6 8.45914 0.80750 153.32 8.00E−09
115 8 8.76421 0.77939 148.17 8.22E−10
116 10 3 9.60122 0.76670 406.82 1.08E−08
117 4 9.10444 0.80854 419.67 9.46E−09
118 5 8.95573 0.82197 505.96 5.22E−10
119 6 9.05680 0.81279 562.12 6.48E−09
120 8 9.11205 0.80787 550.35 6.28E−09
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Figures  7, 8 and 9 capture the positive correlation between the pack-
ing fraction and the different input parameters: number of ellipses, eccentric-
ity, and number of container sides. Multiple linear regression analysis indi-
cates that the regression function for the packing fraction can be estimated as 
0.5443 + 0.0068 ⋅ n + 0.0893 ⋅ c + 0.0104 ⋅ m , with p-values (i.e., observed signifi-
cance levels, cf. Black et al. [5]) below 0.0001 for all input parameters. This finding 
indicates that we have very strong statistical evidence suggesting that the regression 

Table 9  Ellipse packing results for eccentricity c = 1.50

Problem number Number 
of ellip-
ses

Number of 
container 
sides

Area of 
optimized 
container

Packing fraction Time (s) Max 
constraint 
violation

121 3 3 5.46859 0.70214 1.64 6.52E−09
122 4 5.01028 0.76637 1.50 7.94E−09
123 5 4.92577 0.77952 1.78 8.29E−09
124 6 4.85285 0.79123 1.87 8.87E−09
125 8 4.70864 0.81546 2.20 5.66E−12
126 4 3 6.33790 0.68845 2.98 9.50E−09
127 4 5.69416 0.76628 3.24 1.65E−12
128 5 5.44826 0.80087 3.99 8.47E−09
129 6 5.46264 0.79876 4.63 8.69E−09
130 8 5.33806 0.81740 5.40 8.97E−09
131 5 3 6.73451 0.71010 4.95 9.96E−09
132 4 6.02743 0.79341 8.38 9.94E−09
133 5 5.87734 0.81367 8.61 9.90E−09
134 6 5.83059 0.82019 11.75 1.17E−10
135 8 5.96083 0.80227 14.02 8.97E−09
136 6 3 6.92542 0.74093 19.98 9.77E−09
137 4 6.27300 0.81799 21.29 2.91E−09
138 5 6.32142 0.81173 25.33 9.72E−09
139 6 6.14752 0.83469 28.88 6.43E−09
140 8 6.12832 0.83730 34.38 6.06E−11
141 8 3 7.35670 0.77375 118.69 6.95E−09
142 4 7.08329 0.80362 107.62 2.70E−11
143 5 7.04832 0.80761 130.10 8.17E−09
144 6 6.84629 0.83144 134.46 8.88E−09
145 8 6.89610 0.82543 183.64 9.36E−09
146 10 3 7.92676 0.77389 342.53 7.27E−10
147 4 7.64207 0.80272 495.94 7.85E−07
148 5 7.43587 0.82498 480.50 1.98E−09
149 6 7.42440 0.82625 579.58 1.33E−12
150 8 7.29268 0.84118 532.63 1.28E−09
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coefficients are different from zero. Figure 10 illustrates the quality of the regression 
equation by depicting actual versus predicted packing fractions.

To conclude the discussion of numerical results, let us point out that—based 
on our current model formulation and the experiments conducted—it is apparent 
that our default global optimization strategy could become prohibitively expen-
sive for arbitrarily increasing m and n. Therefore, also based on related earlier 
research experience, we believe that large-scale problem instances will benefit 
from exploiting suitable, problem-dependent heuristic approaches. As a proof-
of-concept, in Table 12 we present illustrative results using the input structure 

Table 10  Ellipse packing results for eccentricity c = 1.75

Problem number Number 
of ellip-
ses

Number of 
container 
sides

Area of 
optimized 
container

Packing fraction Time (s) Max 
constraint 
violation

151 3 3 4.76150 0.69121 1.65 9.34E−09
152 4 4.16883 0.78948 1.50 9.16E−09
153 5 4.14857 0.79333 1.79 1.49E−12
154 6 4.01966 0.81877 1.93 3.79E−12
155 8 4.01870 0.81897 2.26 3.22E−12
156 4 3 4.96923 0.75263 2.81 2.52E−13
157 4 4.79465 0.78004 3.23 8.52E−09
158 5 4.49722 0.83162 3.90 9.08E−09
159 6 4.53262 0.82513 4.51 1.31E−10
160 8 4.47796 0.83520 5.44 9.85E−09
161 5 3 5.38494 0.76120 7.89 5.60E−11
162 4 5.21973 0.78530 8.27 9.97E−09
163 5 4.85210 0.84480 10.47 1.08E−12
164 6 4.92073 0.83301 12.17 9.83E−12
165 8 4.80767 0.85260 14.13 3.44E−09
166 6 3 5.68482 0.77368 20.28 7.24E−09
167 4 5.52502 0.79606 23.03 4.62E−09
168 5 5.30727 0.82872 26.36 7.65E−09
169 6 5.17500 0.84990 28.55 6.95E−09
170 8 5.15659 0.85293 34.80 6.11E−11
171 8 3 6.95629 0.70139 93.07 8.28E−09
172 4 5.91042 0.82551 99.22 8.56E−11
173 5 6.01020 0.81180 146.64 9.70E−10
174 6 5.88691 0.82880 142.68 8.88E−10
175 8 5.86351 0.83211 148.20 7.63E−09
176 10 3 6.62406 0.79378 371.81 5.45E−10
177 4 6.72522 0.78184 360.31 4.30E−10
178 5 6.45369 0.81474 476.52 2.60E−09
179 6 6.37592 0.82468 451.54 4.08E−10
180 8 6.24001 0.84264 532.80 4.29E−09
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ai = 1∕
√

i , bi = ai∕c , based on a random starting solution used by a single call 
to the local nonlinear optimization solver Ipopt. Ipopt is developed and main-
tained as part of the COIN-OR Initiative; consult http://www.coin-or.org. Our 
admittedly very simple heuristic strategy already gives promising results which 
certainly could be improved by using more sophisticated solution strategies. 
Figure 11 shows some of the packing configurations found for n = 20 and m = 40, 
using various eccentricity parameters.

Table 11  Ellipse packing results for eccentricity c = 2.00

Problem number Number 
of ellip-
ses

Number of 
container 
sides

Area of 
optimized 
container

Packing fraction Time (s) Max 
constraint 
violation

181 3 3 4.26838 0.67468 1.64 7.46E−09
182 4 3.72254 0.77361 1.48 9.57E−11
183 5 3.72500 0.77310 1.76 2.02E−13
184 6 3.63638 0.79194 1.70 3.36E−09
185 8 3.56619 0.80753 2.18 1.84E−11
186 4 3 4.51450 0.72488 3.04 9.93E−09
187 4 4.13910 0.79063 3.28 5.66E−09
188 5 4.17102 0.78458 4.24 8.65E−09
189 6 4.10698 0.79681 4.32 1.37E−11
190 8 4.01400 0.81527 5.49 9.10E−12
191 5 3 4.70587 0.76217 7.22 3.37E−13
192 4 4.51516 0.79436 8.44 7.36E−09
193 5 4.35598 0.82339 10.51 1.35E−09
194 6 4.30684 0.83278 11.76 7.18E−13
195 8 4.24230 0.84545 14.48 7.93E−10
196 6 3 4.88883 0.78719 21.86 1.26E−12
197 4 4.86759 0.79063 21.95 3.72E−09
198 5 4.66241 0.82542 27.20 1.31E−09
199 6 4.61147 0.83454 28.83 6.25E−13
200 8 4.57293 0.84157 35.96 8.82E−09
201 8 3 6.03076 0.70790 96.61 7.12E−10
202 4 5.48223 0.77874 115.36 6.31E−09
203 5 5.14148 0.83035 106.28 1.98E−12
204 6 5.16038 0.82730 162.65 7.86E−09
205 8 5.12505 0.83301 163.99 8.93E−09
206 10 3 6.28063 0.73254 393.10 3.04E−09
207 4 5.77645 0.79648 338.82 1.08E−09
208 5 5.77305 0.79695 424.71 3.77E−09
209 6 5.60578 0.82073 449.17 1.13E−09
210 8 5.56694 0.82645 645.70 5.24E−10

http://www.coin-or.org
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5  Summary and conclusions

In this work, we introduce the problem-class of packing, without overlap, n gen-
eral ellipses into an optimized regular m-polygon. The packed ellipses can have 
arbitrary size, shape, and orientation. These packing problems lead to hard global 
optimization challenges: the number of model variables and general constraints 
are both rapidly increasing functions of m and n. The model formulation based on 
regular polygons also supports the approximation of different container shapes. 
Our model development approach can be directly extended to consider also gen-
eral convex, but not necessarily regular, polygons.

The optimization strategy presented requires the determination of the maximal 
distance from the center of the polygon faces to each ellipse, in order to deter-
mine the size of the polygon’s apothem, which is then minimized. To meet this 
requirement, we present explicit analytical formulas. Our strategy also requires 
the finding of the minimal distance between all pairs of the ellipses, in order 

Fig. 5  Packing configurations found for n = 8, c = 1.25, and m = 3, 4, 5, 6
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to prevent the ellipses from overlapping. To satisfy the latter requirement, we 
develop embedded optimization calculations using Lagrange multipliers. In this 
framework, the optimization strategy proceeds simultaneously to find the opti-
mized area of the regular polygon and to prevent ellipse overlaps. The use of 
embedded Lagrange multipliers allows us to determine quantities that cannot 

Fig. 6  Packing configurations found for n = 8, m = 8, for all c > 1.00
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be found by explicitly formulated relations. To illustrate this point, see Figs. 12 
and 13 below with further object packing examples that are part of our closely 
related studies. These examples demonstrate the packing of circles, ellipses, and 

0.50

0.60

0.70

0.80

0.90

1.00

0.50000 0.60000 0.70000 0.80000 0.90000 1.00000

Ac
tu

al
 p

ac
ki

ng
 fr

ac
tio

n

Predicted packing fraction

Fig. 10  Actual (computed) versus predicted packing fractions

Table 12  Ellipse packing results obtained using a heuristic approach for m = 40

Problem number Eccentricity Number 
of ellipses

Total 
area to be 
packed

Area of 
optimized 
container

Packing fraction Time (s)

211 1.00 10 9.20163 12.7618 0.72103 22.75
212 15 10.42452 13.9156 0.74913 162.81
213 20 11.30263 14.8480 0.76122 708.19
214 1.05 10 8.76345 11.5416 0.75929 24.25
215 15 9.92812 12.9380 0.76736 160.64
216 20 10.76441 13.5649 0.79355 744.36
217 1.15 10 8.00141 10.1715 0.78665 23.41
218 15 9.06480 11.4132 0.79424 157.95
219 20 9.82838 12.2667 0.80122 730.81
220 1.25 10 7.36130 9.2555 0.79534 23.34
221 15 8.33962 10.1671 0.82026 157.14
222 20 9.04211 11.2711 0.80224 726.80
223 1.50 10 6.13442 7.2432 0.84692 22.97
224 15 6.94968 8.3826 0.82906 158.47
225 20 7.53509 9.1134 0.82682 732.96
226 1.75 10 5.25807 6.3626 0.82641 23.50
227 15 5.95687 6.9961 0.85145 156.49
228 20 6.45865 7.7164 0.83700 722.20
229 2.00 10 4.60081 5.5010 0.83500 22.72
230 15 5.21226 6.4678 0.80588 158.05
231 20 5.65132 6.5778 0.85915 736.06
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hyper-ellipses simultaneously into a regular polygon (Fig. 12), and packing ellip-
ses into a non-regular, elongated container polygon (Fig. 13).

To solve the resulting highly non-convex optimization problems, we use the 
LGO solver system in its implementation linked to Mathematica. Our numeri-
cal results—including both global optimization and a simple random start + local 

Fig. 11  Packing configurations for n = 20 and m = 40, for all c > 1.00
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search based “naïve” approach—successfully reproduce or surpass all previously 
published analytical results, in all examples considered here. Compared to several 
other optimization approaches, our optimization strategy consistently provides 
high quality packings, typically at a fraction of the computational time required 
by all other software used in our tests. These facts demonstrate the viability and 
efficiency of our modeling and optimization approach, for a wide range of param-
eter choices.

As a closing remark, we conjecture that regression analysis based on the 
results obtained supports the determination of statistically established estimates 
of the packing fraction in new model-instances from given model-classes. This 
observation is also consistently supported by our results across all model-classes 
considered here.

Fig. 12  Packing example with 
circles, ellipses, and hyper-
ellipses

Fig. 13  Packing example with 
ellipses in a non-regular con-
tainer polygon
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