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Abstract
This paper generalizes inverse optimization for multi-objective linear programming
where we are looking for the least problem modifications to make a given feasible
solution a weak efficient solution. This is a natural extension of inverse optimization
for single-objective linear programming with regular “optimality” replaced by the
“Pareto optimality”. This extension, however, leads to a non-convex optimization
problem. We prove some special characteristics of the problem, allowing us to solve
the non-convex problem by solving a series of convex problems.

Keywords Multi-objective linear programming · Linear programming · Inverse
optimization · Efficiency

1 Introduction

Multi-objective linear programming (MOLP) deals with multi-objective optimization
problems where all the objectives and constraints are linear. These problems arise in
many fields, including engineering, finance, and medicine [3,12,21]. When it comes
to multi-objective optimization, a typical optimality concept used in single-objective
optimization is replaced with the Pareto optimality. A feasible solution is Pareto opti-
mal if it is impossible to improve some objective functions without compromising
others.
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Inverse optimization (IO), studied by Burton and Toint [6] in 1992, is a new field
of optimization dealing with problems in which some of the parameters may not be
precisely known, only estimates of these parameters may be known. Instead, it is
possible that some information about the problem, such as some solutions or some
values for objective function, are given from experience or from some experiments.
Thus, the aim is to determine values of the parameters by using this information. In
the past years, several types of IOs have been studied by the researchers [7,13,16,23].

This paper deals with an important type of IO in which we are looking for the
least problem modifications in order to make a given feasible solution of the prob-
lem an optimal solution. In another words, if x̂ is a feasible solution of the problem,
how can we modify the problem, for example by changing the cost function, as least
as possible according to some metrics so that x̂ becomes an optimal solution. This
problem has been well studied for different types of single-objective optimization
problems including linear programming [1,2,22,23], combinatorial optimization [13],
conic programming [14], integer programming [19], and countably infinite linear pro-
gramming [11]. Roland et al. [18] studied inverse optimization for a special class of
multi-objective combinatorial optimization problems where the least modification of
the criteria matrix is sought to turn a set of feasible points to a set of Pareto optimal
points. They demonstrated that the inverse multi-objective combinatorial optimization
under some norms can be solved by algorithms based on mixed integer programming.
This paper deals with inverse multi-objective linear programming (IMOLP) where
the least criteria matrix modification is sought to turn a given feasible solution into a
Pareto optimal solution.

For IO problems studied in this paper, and all the aforementioned papers, while a
feasible point x̂ could be in principle an interior point of feasible region, thiswould turn
the IO problem into an evident problem where the cost function is modified to zero so
that all feasible solutions, including x̂ , would become weakly efficient. There is a new
type of IO, inspired by noisy data appear in some applications, that has been recently
studied by Chan et al. [9] where x̂ could be an interior point of the feasible region.
For this type of IO, both cost vector and x̂ are modified to achieve the optimality.
Chan et al. [7,8] have also studied a very special multi-objective version of their IO,
inspired by application in radiotherapy cancer treatment, where the criteria matrix is
remained unchanged and the objective weights are sought to turn a given point x̂ , that
could be an interior point or even infeasible point, into a near-optimal solution. This
paper deals with the natural extension of a classical IO problem, introduced earlier,
for multi-objective programs where the least perturbations in criteria matrix is sought
to turn a feasible solution into a Pareto optimal solution.

The paper is organized as follows. Section 2 includes some preliminaries. Section 3
reviews inverse linear programming (ILP), and Sect. 4 generalizes ILP to inverse
multi-objective linear programming (IMOLP) and discusses the non-convexity of the
problem. Afterwards, some special characteristics of IMOLP are proved, providing
necessary tools to develop an efficient convex-optimization-based algorithm. A simple
numerical example and a geometrical interpretation are also provided in Sect. 4. And
finally, Sect. 5 concludes the paper.
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2 Preliminaries

In this paper, the row and column vectors are distinguishable from each other by text.
Let Rn and Rm×n denote the set of all real n-vectors and m × n matrices respectively,
and ai denotes the i-th row of the matrix A. For x ∈ R

n , ‖x‖p denotes the �p-norm
of the vector x . Consider the following two problems:

min {cx | x ∈ S} , (LP(c))

min
{
Cx = (c1x, . . . , ckx) | x ∈ S

}
, (MOLP(C))

where A ∈ R
m×n , C ∈ R

k×n , c ∈ R
n , b ∈ R

m , and S = {x ∈ R
n | Ax ≥ b} is the

feasible region. A feasible point x̂ ∈ S is called weak efficient or weak Pareto optimal
ofMOLP(C) if there exists no x ∈ S such thatCx < Cx̂ . All the ordering in this paper
are component-wise. The set of all weak efficient points of MOLP(C) is denoted by
Swe(C). The set of all optimal solutions of LP(c) is denoted by So(c).

For a set y = {
y1, . . . , yl

} ⊆ R
n , cone (y) and conv (y) denote the conic and

convex hull of y defined as:

cone (y) =
{

x ∈ R
n | x =

l∑

i=1

βi yi , βi ≥ 0

}

,

conv (y) =
{

x ∈ R
n | x =

l∑

i=1

βi yi ,
l∑

i=1

βi = 1, βi ≥ 0

}

.

For a feasible point x̂ ∈ S, let I (x̂) = {
i | ai x̂ = bi

}
be the set of all active

constraints indices at x̂ . The conic hull of the set
{
ai | i ∈ I (x̂)

}
is:

K̂ = cone
({
ai | i ∈ I (x̂)

}) =
⎧
⎨

⎩
x ∈ R

n | x =
∑

i∈I (x̂)
βi ai , βi ≥ 0

⎫
⎬

⎭
.

As we would see in the next sections, K̂ plays an important role in the optimality
of x̂ for LP(c) and MOLP(C).

Definition 1 The distance between two non-empty sets A, B ⊆ R
n is defined as:

d(A, B) = in f
{
‖x − y‖p | x ∈ A, y ∈ B

}
.

It is well-known that for a compact set A and a closed set B, we have [5]:

i) d(A, B) = min
{
‖x − y‖p | x ∈ A, y ∈ B

}
.

ii) A ∩ B = ∅ if and only if d(A, B) > 0.
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3 Inverse single-objective linear programming

This section reviews an inverse single-objective linear programming (ILP) problem
under �p-norm with the cost vector modification. This problem has been initially
studied byZhang andLiu [22,23] under �1-normand �∞-norm, and later been extended
to the weighted norms by Ahuja and Orlin [1].

An ILP problem under �p-norm for LP(c) looks for the minimal modification in
the cost vector in order to make a given feasible point x̂ an optimal solution. This can
be formulated as follows:

min ‖c − ĉ‖p

s.t . x̂ ∈ So(ĉ),

ĉ ∈ R
n .

(ILP(c, x̂))

Using the Karush-Kuhn-Tucker (KKT) optimality conditions of LP [4], ILP(c, x̂)
can be re-written as:

min ‖c − ĉ‖p

s.t . y(Ax̂ − b) = 0, (complementary slackness),

yA = ĉ, (dual feasibility),

y ≥ 0, (dual feasibility),

ĉ ∈ R
n .

(1)

Problem (1) is a convex non-linear optimization problemwhich could be transferred
into LP for p = 1, and ∞ [1,22,23]. The problem is always feasible with an optimal
solution, and (y∗, c) is an optimal solution if and only if x̂ ∈ So(c).

Yet another equivalent formulation of ILP(c, x̂) can be obtained, based on the conic
hull concept introduced in the last section, by employing the following Lemma.

Lemma 1 [4,17] Let x̂ ∈ S be a feasible point of LP(ĉ). Then, x̂ ∈ So(ĉ) if and only
if ĉ ∈ K̂ .

Using Lemma 1, we can replace the constraint x̂ ∈ So(ĉ) in ILP(c, x̂) with ĉ ∈ K̂ ,
which would result into the following equivalent problem:

min ‖c − ĉ‖p

s.t . ĉ ∈ K̂ ,

ĉ ∈ R
n .

(2)

4 Inverse multi-objective linear programming

This section provides a natural extension of inverse single-objective linear program-
ming provided in the previous section for multi-objective programs. In the following
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subsections, we first introduce the inverseMOLP (IMOLP) and then prove two special
characteristics of IMOLPs. Afterwards, we introduce the new algorithm followed by
a numerical example and a geometric interpretation.

4.1 Problem formulation and characteristics

Given that optimality for LP is replaced by Pareto optimality in MOLP and the cost
vector is replaced by the criteria matrix, it then makes sense to define the inverse
MOLP as a minimal modifications in the criteria matrix in order to make a given
feasible solution x̂ a weak efficient solution. This leads to the following problem:

min ‖C − Ĉ‖
s.t . x̂ ∈ Swe(Ĉ),

Ĉ ∈ R
k×n,

(IMOLP(C, x̂))

where Swe(Ĉ) is a set of all weak efficient points of MOLP(Ĉ), and ‖.‖ denotes a
matrix norm on R

k×n , gauging the modifications between two matrices C and Ĉ . It
is worth mentioning that IMOLP(C, x̂) is simply reduced to ILP(c, x̂) if there is only
one objective function.

Nowwe take advantage of the followingweighted-sum theorem tomake connection
between ILPs and IMOLPs.

Theorem 1 [10,15,20] x̂ ∈ S is a weak efficient solution of MOLP(Ĉ) if and only if
there exists a vector w ∈ W = {w ∈ R

k | ∑k
i=1 wi = 1, wi ≥ 0} such that x̂ is an

optimal solution of the weighted-sum LP min{wĈx | x ∈ S}.
Let conv(C) denotes the convex hull of the rows of thematrixC . The following lemma
can be immediately obtained from Lemma 1 and Theorem 1.

Lemma 2 The following statements are equivalent.

(i) x̂ ∈ Swe(Ĉ).
(ii) There exists w ∈ W such that wĈ ∈ K̂ .
(iii) d(conv(Ĉ), K̂ ) = 0.

By the second part of Lemma 2, IMOLP(C, x̂) is equivalent to:

min ‖C − Ĉ‖
s.t . wĈ ∈ K̂ ,

w ∈ W ,

Ĉ ∈ R
k×n .

(3)

Problem (3) provides an interpretation for IMOLPs. If x̂ is not aweak efficient solution,
then IMOLP looks for the least modification of the criteria matrix C such that a
convex combination of its rows belongs to K̂ which is the convex cone created by
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the active constraints at x̂ . We study Problem (3) under the matrix norm ‖C − Ĉ‖ =∑k
i=1‖ci − ĉi‖p 1 ≤ p ≤ ∞, although one may study other norms (e.g., Forbenius,

maximum absolute row sum,...).
Now, by simply injecting the definition of the conic hull K̂ into (3), we obtain:

min ρ =
k∑

i=1

‖ci − ĉi‖p

s.t .
k∑

i=1

wi ĉi −
∑

r∈I (x̂)
βr ar = 0,

k∑

i=1

wi = 1,

wi ≥ 0, i = 1, . . . , k,

βr ≥ 0, r ∈ I (x̂),

ĉi ∈ R
n, i = 1, . . . , k.

(4)

In analogy to ILP(c, x̂) (1), IMOLP(C, x̂) (4) is always feasible with an optimal
solution. For instance, an obvious feasible point is (Ĉ = 0, wi = 1

k , for i = 1, . . . , k,
β = 0). Furthermore, by employing Lemma 2, the objective value of IMOLP(C, x̂) (4)
is zero if and only if x̂ ∈ Swe(C). However, as opposed to ILP(c, x̂) (1), IMOLP(C, x̂)
(4) is not convex due to the presence of the variable multiplication wi ĉi .

The following two theorems show that even though IMOLP(C, x̂) (4) is a non-
convex optimization problem, it can be solved using a series of convex optimization
problems. The first part of Theorem 2 reveals that there always exists an optimal
solution for which only one objective function has been modified, and the second part
provides a lower bound for the optimal objective value of IMOLP(C, x̂) (4) that can
be later on employed in the algorithm design as a termination criterion.

Theorem 2 For IMOLP(C, x̂) (4) if d(conv(C), K̂ ) > 0, then

(i) IMOLP(C, x̂) (4) has an optimal solution Ĉ∗ for which ĉ∗
i = ci for i ∈

{1, . . . , k}, and i �= j .
(ii) d(conv(C), K̂ ) provides a lower bound for the optimal value of IMOLP(C, x̂)

(4), i.e., ρ∗ ≥ d(conv(C), K̂ ).

Proof Let ξ
′ = (Ĉ

′
, w

′
, β

′
) be an optimal solution of IMOLP(C, x̂) (4) with the

optimal objective value ρ
′
. We prove part (i) by constructing a new optimal solution

ξ∗ = (Ĉ∗, w′
, β

′
) for which Ĉ∗ only differs C in one row. And we prove part (ii), by

showing ρ
′ ≥ d(conv(C), K̂ ).

(i)⇒ Since ξ
′
is a feasible solution of IMOLP(C, x̂) (4), we have:

k∑

i=1

w
′
i ĉ

′
i −

∑

r∈I (x̂)
β

′
r ar = 0. (5)
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Now we define Ĉ∗ as follows:

ĉ∗
i =

⎧
⎪⎨

⎪⎩

ci i �= s

cs +
k∑

i=1

w
′
i

w
′
s
vi i = s

(6)

where vi = ĉ
′
i − ci and w

′
s = max

{
w

′
i | i = 1, . . . , k

}
> 0. Now we have:

k∑

i=1

w
′
i ĉ

∗
i = w

′
s ĉ

∗
s +

k∑

i=1
i �=s

w
′
i ĉ

∗
i

= w
′
s

(

cs +
k∑

i=1

w
′
i

w
′
s

(
ĉ

′
i − ci

))

+
k∑

i=1
i �=s

w
′
i ci

= w
′
scs +

k∑

i=1

w
′
i

(
ĉ

′
i − ci

)
+

k∑

i=1
i �=s

w
′
i ci

=
k∑

i=1

w
′
i ĉ

′
i =

∑

r∈I (x̂)
β

′
r ar . (according to (5))

So, ξ∗ is a feasible solution of IMOLP(C, x̂) (4). Now we just need to show that
ξ∗ is at least as good as ξ

′
in terms of objective function:

‖C − Ĉ∗‖ =
k∑

i=1

‖ci − ĉ∗
i ‖p

=
∥∥∥∥∥

k∑

i=1

w
′
i

w
′
s
vi

∥∥∥∥∥
p

(according to (6))

≤
k∑

i=1

∥∥∥∥∥
w

′
i

w
′
s
vi

∥∥∥∥∥
p

(according to triangle inequality in norms)

=
k∑

i=1

(
w

′
i

w
′
s

)

‖vi‖p

≤
k∑

i=1

‖vi‖p = ‖C − Ĉ
′ ‖. (since w

′
s ≥ w

′
i )
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(ii)⇒ Let us define h and k̂ as follows:

h =
k∑

i=1

w
′
i ĉ

∗
i − w

′
s(ĉ

∗
s − cs),

k̂ =
∑

r∈I (x̂)
β

′
r ar .

Given the definition of Ĉ∗ in (6), we have

h =
k∑

i=1

w
′
i ĉ

∗
i − w

′
s(ĉ

∗
s − cs) =

k∑

i=1
i �=s

w
′
i ĉ

∗
i +

(
w

′
s ĉ

∗
s − w

′
s ĉ

∗
s

)
+ w

′
scs

=
k∑

i=1
i �=s

w
′
i ci + w

′
scs =

k∑

i=1

w
′
i ci

So, h ∈ conv (C). On the other hand, since ξ∗ is a feasible solution of IMOLP(C, x̂)
(4),

∑k
i=1 w

′
i ĉ

∗
i = ∑

r∈I (x̂) β
′
r ar and so:

d(conv(C), K̂ ) ≤ ‖h − k̂‖p (according to Definition 1 in Sect. 2)

= w
′
s‖cs − ĉ∗

s ‖p

≤ ‖cs − ĉ∗
s ‖p = ‖C − Ĉ∗‖ (since w

′
s ≤ 1)

which completes the proof. ��
If we assume that only the j-th objective function in IMOLP(C, x̂) (4) is modified

and the rest are the same, then we reach the following optimization problem:

min ‖c j − ĉ j‖p

s.t . w j ĉ j +
k∑

i=1
i �= j

wi ci −
∑

r∈I (x̂)
βr ar = 0,

k∑

i=1

wi = 1,

wi ≥ 0, i = 1, . . . , k,

βr ≥ 0, r ∈ I (x̂),

ĉ j ∈ R
n .

(P j )

According to the first part of Theorem 2, we just need to solve P j for all j and then the
problem with the smallest optimal objective value will provide the optimal solution of
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the IMOLP(C, x̂). There is only one problem. P j is still a non-convex problem due to
the presence of w j ĉ j , although P j is already much easier than Problem (4) which has
wi ĉi for all i ∈ {1, . . . , k}. The following theorem reveals that P j can be transferred
to the equivalent convex optimization problem. It is worth mentioning that w j > 0
in P j , otherwise the optimal objective value of P j is zero meaning x̂ is already a weak
efficient solution.

Theorem 3 If d(conv(C), K̂ ) > 0, then P j is equivalent to the following convex
optimization problem, Q j :

ρ∗
j =min ‖c j − ĉ j‖p

s.t . ĉ j +
k∑

i=1
i �= j

λi ci −
∑

r∈I (x̂)
αr ar = 0,

λi ≥ 0, i = 1, . . . , k, i �= j,

αr ≥ 0, r ∈ I (x̂),

ĉ j ∈ R
n .

(Q j )

Proof We prove by showing that there is a one-to-one correspondence between the
points in the feasible region of the problemP j andQ j . Let ξ j = (ĉ j , w, β) be a feasible

point of P j . By defining λi = wi
w j

(i = 1, . . . , k, i �= j), and αr = βr
w j

(r ∈ I (x̂)),

ζ j = (ĉ j , λ, α) is a feasible point of Q j with the same objective function.

Now let ζ j = (ĉ j , λ, α) be a feasible point of Q j . By defining w j = 1
τ
, wi = λi

τ

(i = 1, . . . , k, i �= j), and βr = αr
τ

(r ∈ I (x̂)) where τ = 1 + ∑k
i=1
i �= j

λi , we obtain

ξ j = (ĉ j , w, β) as a feasible point of P j with the same objective function. ��
Now we provide a geometric interpretation of Q j . Let K j be the conic hull of

{{ar }r∈I (x̂), {−ci }ki=1,�= j }. Then, Q j can be equivalently re-written as

d(c j , K j ) = min ‖c j − ĉ j‖p

s.t . ĉ j ∈ K j ,

ĉ j ∈ R
n .

So, the optimal solution of Q j is the �p-projection of c j onto K j . This will be demon-
strated in the numerical example in the next section.

4.2 Algorithm and a numerical example

The algorithm consists of two phases. The first phase calculates d(conv(C), K̂ )which
could be used to determine whether or not x̂ is already a weak efficient solution. It can
also be served as a termination criterion by employing the second part of Theorem 2.
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However, Phase I could be eliminated if one already knows that x̂ is not weak efficient
and looking for the exact optimal solution.

Phase I: Solve the following convex optimization problem

d(conv(C), K̂ ) = min
{
‖x − y‖p | x ∈ conv (C) , y ∈ K̂

}
. (7)

Let d∗ := d(conv(C), K̂ ) be the optimal objective value of Problem (7). If d∗ = 0, it
means x̂ ∈ Swe(C) and go to Step 4, otherwise let j = 1 and go to Step 1.

Phase II:
Step 1: Solve Problem (Q j ). If |ρ∗

j − d∗| ≤ ε, then let j∗ = j and go to Step 3,
otherwise go to Step 2.

Step 2: If j = k, let j∗ = argmin j=1,...,k ρ∗
j , and go to Step 3, otherwise let

j = j + 1 and go to Step 1.
Step 3: Let ζ j∗ = (ĉ∗

j∗ , λ
∗, α∗) be an optimal solution of Q j∗ . Then, ξ∗ =

(Ĉ∗, w∗, β∗) is an optimal solution of IMOLP(C, x̂) (4) where w∗ and β∗ defined
as follow, and Ĉ∗ and C agree in all rows except the j∗-th one.

w∗
i = λ∗

i

1 + ∑k
i=1
i �= j∗

λ∗
i

, i = 1, . . . , k, i �= j∗,

w∗
j∗ = 1

1 + ∑k
i=1
i �= j∗

λ∗
i

,

β∗
r = α∗

r

1 + ∑k
i=1
i �= j∗

λ∗
i

, r ∈ I (x̂).

Step 4: End.

Example 1 Consider the MOLP problem min {Cx | Ax ≥ b} and its IMOLP(C, x̂)
counterpart with x̂ = (8, 7) and the following data:

C =
(−6 −1.5

−3 0.5
2 1.5

)

, A =

⎛

⎜⎜⎜
⎝

−2 −1
−3 −4
−1 0
0 −1
1 0
0 1

⎞

⎟⎟⎟
⎠

, and b =

⎛

⎜⎜⎜
⎝

−23
−52
−10
−10
0
0

⎞

⎟⎟⎟
⎠

.

We have I (x̂) = {1, 2} and K̂ = {
x ∈ R

2 | x = β1a1 + β2a2, β1, β2 ≥ 0
}
, where

a1 = (−2,−1) and a2 = (−3,−4).
It is obvious from Fig. 1a that the distance between K̂—the hatched area—and

conv(C)—the triangle area—is positive and so x̂ is not weak efficient. The distance
is depicted as d∗ = ‖h − k̂‖p.
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IMOLP(C, x̂) is:

min ρ = ‖c1 − ĉ1‖p + ‖c2 − ĉ2‖p + ‖c3 − ĉ3‖p

s.t . w1ĉ1 + w2ĉ2 + w3ĉ3 − β1a1 − β2a2 = 0,

w1 + w2 + w3 = 1,

w1, w2, w3, β1, β2 ≥ 0,

ĉ1, ĉ2, ĉ3 ∈ R
2.

We apply the proposed algorithm for p = 2. We assume that we are looking for the
exact solution with the threshold ε = 0.

Phase I: Solving the convex problem (7) yields d∗ = ‖h − k̂‖2 = 6√
73
, where

h = (− 18
73
, 48
73

)
and k̂ = (0, 0) (see Fig. 1a). Since d∗ > 0, let j = 1 and go to Step 1.

Phase II:
Step 1: We solve Q1 as follows:

min ρ1 = ‖c1 − ĉ1‖2
s.t . ĉ1 + λ2c2 + λ3c3 − α1a1 − α2a2 = 0,

λ2, λ3, α1, α2 ≥ 0,

ĉ1 ∈ R
2.

Figure 1b illustrates the geometric interpretation of Q1. This problem finds the min-
imum distance between c1 and K1 = cone

({
a1, a2,−c2,−c3

}) = cone
({
a1,−c2

})
.

The optimal objective value is ρ∗
1 = 3√

5
and since ρ∗

1 − d∗ > 0, we solve Q2:

min ρ2 = ‖c2 − ĉ2‖2
s.t . ĉ2 + λ1c1 + λ3c3 − α1a1 − α2a2 = 0,

λ1, λ3, α1, α2 ≥ 0,

ĉ2 ∈ R
2.

Figure 1c corresponds to Q2 and the optimal solution here is the minimum distance
between c2 and K2 = cone

({
a1, a2,−c1,−c3

}) = cone
({
a1,−c1

})
.The optimal

objective value is ρ∗
2 = 4√

5
> d∗, so we need to solve Q3.

min ρ3 = ‖c3 − ĉ3‖2
s.t . ĉ3 + λ1c1 + λ2c2 − α1a1 − α2a2 = 0,

λ1, λ2, α1, α2 ≥ 0,

ĉ3 ∈ R
2.

Figure 1d corresponds to Q3, and the optimal objective value is ρ∗
3 = 4√

17
. Since

Q3 has the smallest objective value among all the problems, j∗ = 3. The opti-
mal solution of Q3 is ζ ∗

3 = (
ĉ∗
3
, λ∗

1
, λ∗

2
,α∗

1
,α∗

2

) = (
( 3817

, 19
34 )

, 19
51
, 0, 0, 0

)
. Therefore,
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(a) (b)

(c) (d)

(e) (f)

Fig. 1 a–d Different steps of the algorithm for Example 1. e The final result of the algorithm. f Changing
multiple objective functions could result in less modification if there are restrictions on the criteria matrix
modifications

the optimal solution of IMOLP(C, x̂) is ξ∗ = (
ĉ∗
1
, ĉ∗

2
, ĉ∗

3
,w∗

1
,w∗

2
,w∗

3
,β∗

1
,β∗

2

) =
(c1, c2, ĉ

∗
3
, 19
70
, 0, 5170

, 0, 0).

Figure 1e illustrates the new criteria matrix Ĉ∗, obtained by moving c3 to ĉ∗
3. It is

seen that conv(Ĉ∗) intersects K̂ , which according to Lemma 2 means that x̂ is weakly
efficient for the new criteria matrix. ��
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Before we close this session, we would like to show that, through a simple example,
that the results presented in this paper do not necessarily hold true if there are some
constraints on how much the criteria matrix can be changed. In the above example, let
us assume that c3 cannot be modified more than 0.95, according to the �2-norm (i.e.,
‖c3 − ĉ3‖2 ≤ 0.95). This is less than what c3 needs to move ( 4√

17
≈ 0.97) in order

for conv(Ĉ) to intersect K̂ . Now, we show that moving c1 and c3 simultaneously
leads to less modification than moving c1 or c2 individually. If c1 moves to ĉ1 =(− 2610

449
,− 1827

898

)
and c3 moves to ĉ3 = ( 1010

449
, 707
898

)
, then as it can be seen in Fig. 1f,

conv(Ĉ) intersects K̂ , meaning x̂ is a weakly efficient point. Therefore, moving c1
and c3 at the same time, results in ‖c1 − ĉ1‖2 + ‖c3 − ĉ3‖2 ≈ 1.32 modification
in the criteria matrix which is less than the modification required by moving only c1
(ρ∗

1 = 3√
5

≈ 1.34) or only c2 (ρ∗
2 = 4√

5
≈ 1.78). Since moving c3 alone is not an

option due to the imposed restriction on the criteria matrix, individual modification
of neither of the objective functions results in the least required modification in the
criteria matrix to turn x̂ into a weakly efficient point.

5 Conclusion

We generalized the existing inverse linear programming to inverse multi-objective
linear programming. The generalized version specializes to the existing one if there is
only one objective function.We discussed the non-convexity challenge of the resulting
problem, and explained how it could be circumvented by exploiting some very special
characteristics of the problem and taking advantage of the fact that there is always an
optimal solution for which only one objective function is modified. The results only
hold true if there is no constraints on how much the criteria matrix could be modified.
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