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Abstract
In this work we consider an extension of the projected gradient method (PGM) to con-
strained multiobjective problems. The projected gradient scheme for multiobjective
optimization proposed by Graña Drummond and Iusem and analyzed by Fukuda and
Graña Drummond is extended to include a nonmonotone line search based on the aver-
age of the successive previous functions values instead of the traditional Armijo-like
rules. Under standard assumptions, stationarity of the accumulation points is estab-
lished.Moreover, under standard convexity assumptions, we prove full convergence to
weakly Pareto optimal solutions of any sequence produced by the proposed algorithm.

Keywords Multiobjective optimization · Projected gradient methods · Nonmonotone
line search · Global convergence

1 Introduction

We will consider the constrained multiobjective optimization problem (MOP) of the
form:

Minimize F(x) subject to x ∈ C (1)

where F : R
n → R

r , F(x) = (F1(x), . . . , Fr (x)) is a continuously differentiable
vectorial function in R

n and C ⊆ R
n is a closed and convex set.

In a multicriteria setting there are many optimality definitions. Throughout this
paper, we are interested in the Pareto and weak Pareto optimality concepts. A feasible
point of problem (1) is called Pareto optimum or efficient solution [19] if there is
no x ∈ C such that F(x) ≤ F(x∗) and F(x) �= F(x∗). A point x∗ ∈ C is said to
be a weak Pareto optimum point or a weakly efficient solution if there is no x ∈ C
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such that F(x) < F(x∗), where the inequalities < and ≤ must be understood in the
component-wise sense.

The procedure we propose here is the projected gradient method (PGM) for vector
optimization defined by Graña Drummond and Iusem [10] and analyzed by Fukuda
and Graña Drummond in [7–9]. In those works, PGM share two essential features: (a)
they are all descent methods: the objective value of the vectorial function F decreases
at each iteration in the partial order induced by the underlying cones; and (b) full
convergence of the sequences generated by the proposed methods is established under
reasonable assumptions.

In the present work, we combine the classical PGM for vector optimization with
two ingredients from the scalar case: (1) instead of a fixed parameter we propose to
associate a variable steplength to compute the search direction; and (2) the classical
Armijo line search is replaced by a nonmonotone strategy developed by Zhang and
Hager [26].

Projected gradient method for different choices of the stepsize has been extensible
studied, in the scalar case, see for example [1,3,4,11,16,23] and references therein.
From the practical point of view, the spectral choice of the steplength, introduced by
Barzilai and Borwein [1], and later analyzed by Raydan [21] and used in [3], requires
little computational work that makes it especially for large-scale problems. From the
theoretical point of view, it has been proved that the scheme greatly speeds up the
convergence of methods based on gradient ideas. As it is mentioned in [4] it is natural
to combine the spectral gradient idea with nonmonotone line search.

Nonmonnotone line search techniques have been extensible studied in the scalar
case with great success, see for example [6,11–13,18,22,24–26]. In the present work,
we propose to use the nonmonotone technique defined in [26] based on the average
of successive functional values. We prove that, without convexity assumptions, accu-
mulation points of sequences generated by the proposed algorithm are stationary for
problem (1). A feasible point x̄ ∈ C is stationary for F if, and only if,

J F(x̄)(C − {x̄}) ∩ [−R
n++

] = ∅

where J F(x̄)(C − {x̄}) := {J F(x̄)(x − x̄) : x ∈ C}. This is a necessary condition
for Pareto optimality, [14]. Clearly, if x̄ ∈ C is stationary for F then for all v ∈
C − {x̄}, J F(x̄)v �< 0.

In [5] it is proved that the steepest descent method for smooth (scalar) convex mini-
mization, with stepsize obtained using the Armijo rule implemented by a backtracking
procedure, is globally convergent to a solution (essentially, under the sole assumption
of existence of optima). Using a similar technique, we extend this result to the multi-
objective setting, that is to say, we show that any sequence produced by the proposed
algorithm converges to a weakly Pareto optimal point of problem (1), no matter how
poor the initial guess might be. Full convergence of PGM for MOP was established
in [7–10] under the monotone Armijo line search.

Up to our knowledge, this is the first time that a nonmonotone line search based of
[26] is used to analyze the global convergence of a PGM for MOP. In [17] the authors
introduce nonmonotone line searches forMOP in the steepest descent methods. In [20]
the authors propose twononmonotone gradient algorithms for vector optimizationwith
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Convergence analysis of a nonmonotone projected gradient… 1367

a convex objective function based on the nonmonotone line search given by Grippo et
al. [11] in the scalar context.

This paper is organized as follows. In Sect. 2 we present the nonmonotone projected
gradient method forMOP. In Sect. 3 it is proved that accumulation points of sequences
generated by the proposed algorithm are stationary for (1). In Sect. 4 the convex case
is analyzed. Conclusions and lines for future research are given in Sect. 5.

Notation We denote: R+ = {t ∈ R | t ≥ 0}, R++ = {t ∈ R | t > 0}, N =
{0, 1, 2, . . .}, ‖ · ‖ an arbitrary vector norm. If x and y are two vectors in R

n , we write
x ≤ y if xi ≤ yi , i = 1, . . . , n, and x < y if xi < yi , i = 1, . . . , n where vi is the i−th
component of the vector v. If F : R

n → R
m , F = ( f1, . . . , fm), J F(x) stands for the

Jacobianmatrix of F at x : J F(x) ismatrix inR
m×n with entries (J F(x))i j = ∂ fi (x)

∂x j
. If

K = {k0, k1, k2, . . .} ⊂ N (k j+1 > k j ) for all j , we denote limk∈K xk = lim j→∞ xk j .
The canonical inner product is written as 〈·, ·〉, and the transpose sign is denoted by T .

2 The nonmonotone projected gradient method for MOP

The projected gradient method we consider in the present work uses the projected
gradient direction vβ(x), proposed in [10] and analyzed in [7], that is defined, for a
given point x ∈ C , by

vβ(x) = argmin
v∈C−{x}

βϕx (v) + ‖v‖2
2

(2)

where β > 0 is a parameter and

ϕx (v) = max
i=1,...,r

{∇Fi (x)
T v}. (3)

We also consider the optimal value function θβ : C → R given by

θβ(x) = βϕx (vβ(x)) + ‖vβ(x)‖2
2

. (4)

See for example [9,10]. It is well established that a point x ∈ C is stationary for F
if, and only if, θβ(x) = 0, [10].

2.1 The nonmonotone line search

It is well-known in the literature that nonmonotone schemes can improve the efficiency
of descent methods in the scalar case [4,6,15,18,22,24,26].

The nonmonotone line search framework developed by Grippo et al. [11] is based
on the maximum functional value on some previous iterates: given σ ∈ (0, 1), M ≥ 1
the step αk must satisfy

f (xk + αkd
k) ≤ Mk + σαk∇ f (xk)T dk (5)
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where Mk = max0≤ j≤m(k) f (xk− j ) where m(k) = min{m(k − 1) + 1, M}.
As we have already mentioned in the Introduction, in [20] the authors propose two

nonmonotone gradient algorithms based on the nonmonotone line search (5) but we
have chosen Zhang and Hager’s strategy as it is known to be more efficient, at least in
the scalar case. In [26] the authors propose the following scheme: given σ ∈ (0, 1),
C0 = f (x0), Q0 = 1, 0 ≤ ηmin ≤ ηmax ≤ 1, ηk ∈ [ηmin, ηmax] the step αk must
satisfy

f (xk + αkd
k) ≤ Ck + σαk∇ f (xk)T dk

where Ck+1 =
(
ηk QkCk+ f (xk+1)

)

Qk+1
and Qk+1 = ηk Qk + 1.

As it is mentioned in [26], if ηk = 0 for each k, then the line search is the usual
monotone Armijo line search. If ηk = 1 for each k, then Ck = Ak where Ak =
1

k+1

∑k
i=0 f (xi ) is the average of the successive functional values. Thus, Ck can be

seen as a combination of the functional values f (x0), . . . , f (xk) using a parameter
ηk that controls the degree of non-monotonicity.

In order to use a nonmonotone line search in the descent method for MOP we
propose the following scheme: given σ ∈ (0, 1), C0 = F(x0), Q0 = 1, 0 ≤ ηmin ≤
ηmax ≤ 1, ηk ∈ [ηmin, ηmax] and vk such that J F(xk)vk < 0 the step αk must satisfy

F(xk + αkv
k) ≤ Ck + σαk J F(xk)vk (6)

where

Ck+1 =
(
ηk QkCk + F(xk+1)

)

Qk+1
and Qk+1 = ηk Qk + 1. (7)

Observe that we can write

Ck+1 = (ηk Qk + 1)Ck + F(xk+1) − Ck

Qk+1
= Ck + F(xk+1) − Ck

Qk+1

and then

Ck − Ck+1 = Ck − F(xk+1)

Qk+1
. (8)

2.2 The nonmonotonemultiobjective projected gradient algorithm

We can now define an extension of the classical PGM using the nonmonotone line
search technique (6)–(7) for the constrained MOP (1).

Algorithm 2.1. Choose σ ∈ (0, 1), Q0 = 1, 0 ≤ ηmin ≤ ηmax ≤ 1, η0 ∈ [ηmin, ηmax],
0 < βmin < βmax < ∞ and β0 ∈ [βmin, βmax]. Let x0 ∈ C be an arbitrary initial
point. Set C0 = F(x0) and k = 0.
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1. Compute the search direction.

vβk (x
k) := argmin

v∈C−{xk }
βkϕxk (v) + ‖v‖2

2

where

ϕxk (v) = max
i=1,...,r

{∇Fi (x
k)T v}.

2. Stopping criterion. Compute θβk (x
k) = βkϕxk (vβk (x

k)) + 1
2‖vβk (x

k)‖2. If
θβk (x

k) = 0, then stop.

3. Compute the steplength. Choose αk as the largest α ∈
{

1
2 j : j = 0, 1, 2, ...

}
such

that
F(xk + αvβk (x

k)) ≤ Ck + σα J F(xk)vβk (x
k). (9)

4. Set xk+1 = xk + αkvβk (x
k). Define βk+1 such that βk+1 ∈ [βmin, βmax].

Choose ηk ∈ [ηmin, ηmax] and set Qk+1 and Ck+1 as in (7). Do k = k + 1, and go
to Step 1.

Observe that by (7) and (9)

Ck+1 = ηk QkCk + F(xk+1)

Qk+1
≤ Ck + σαk J F(xk)vβk (x

k)

Qk+1
≤ Ck

which implies that {Ck} is a nonincreasing sequence in R
r .

The differences between Algorithm 2.1 and a classical extension of PGM for the
constrained MOP (see for example Algorithm 4.2 in [9]) rely on: (a) the presence of
a variable steplength βk instead a fixed parameter to compute the search direction in
Step 1; and (b) the nonmonotone line search in Step 3.

From the classical characterization of stationarity in terms of vβ(·) and θβ(·) [10],
we have that xk is a stationary point for F if Algorithm 2.1 stops with the stopping
criterion in Step 2.

3 Convergence analysis

In this we suppose that Algorithm 2.1 does not have a finite termination and therefore
it generates infinite sequences {xk}, {vβk (x

k)} and {αk} .
The following Lemma follows from Lemma 1.1 in [26].

Lemma 1 If vβk (x
k) ∈ C − {xk} and J F(xk)vβk (x

k) < 0 for each k, then F(xk) ≤
Ck ≤ Ak for each k, where Ak = 1

k+1

∑k
i=0 F(xi ).

Lemma 2 Let {xk} ⊂ R
n be a sequence generated by Algorithm 2.1. Then:
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1370 N. S. Fazzio , M. L. Schuverdt

(a) {xk} ⊂ C.
(b) Algorithm 2.1 in well defined.

Proof (a) follows from Proposition 5 in [10].
(b) follows from Proposition 1 in [10] and the fact that F(xk) ≤ Ck for each k.

��
Lemma 3 The scalar sequence {‖vβk (x)‖} is bounded.
Proof By the definition of vβk (x), we have that

βkϕx (vβk (x)) + ‖vβk (x)‖2
2

= θβk (x) ≤ 0

where the last inequality holds since 0 ∈ C − {x}.
Then, by the Cauchy Schwartz inequality we have that, for each i = 1, . . . , r

−βk‖∇Fi (x)‖‖vβk (x)‖ + ‖vβk (x)‖2
2

≤ 0.

Therefore, by the continuous differentiability of F , Lemma 2(a) and the boundedness
of {βk} we obtain the desired result. ��
Proposition 1 Let {xk} ⊂ R

n be a sequence generated by Algorithm 2.1 and K ⊂ N,
β̄ > 0, x̄ ∈ C such that limk∈K xk = x̄, limk∈K βk = β̄. Then, there exists K̄ ⊂ K
such that

lim inf
k∈K̄

θβk (x
k) = θβ̄(x̄). (10)

Proof First, let us show that there exists K̄ ⊂ K such that

lim
k∈K̄

θβk (x̄) = θβ̄(x̄). (11)

Since vβk (x̄) ∈ C − {x̄}, from the definition of θβ̄(x̄) we have that

θβ̄(x̄) ≤ β̄ϕx̄ (vβk (x̄)) + 1

2
‖vβk (x̄)‖2 = (β̄ − βk)ϕx̄ (vβk (x̄)) + θβk (x̄).

Then, by using Lemma 3 (the sequence {‖vβk (x̄)‖} is bounded) and the continuity of
the maximum function u �→ max {u1, . . . , ur }, by taking lim inf in an appropriate
subsequence K̄ ⊂ K when k ∈ K̄ goes to infinity we obtain that

θβ̄(x̄) ≤ lim inf
k∈K̄

θβk (x̄). (12)

Now, from the definition of θβk (x̄), since vβ̄(x̄) ∈ C − {x̄} we have that θβk (x̄) ≤
βkϕx̄ (vβ̄(x̄)) + 1

2‖vβ̄(x̄)‖2. Then, by taking lim sup when k ∈ K̄ goes to infinity
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Convergence analysis of a nonmonotone projected gradient… 1371

we obtain that lim supk∈K̄ θβk (x̄) ≤ θβ̄(x̄) which, together with the inequality (12)
proves (11).

Secondly, since vβ̄(x̄) ∈ C − {x̄} we have that vβ̄(x̄) + x̄ − xk ∈ C − {xk} and
from the definition of θβk (x

k)

θβk (x
k) ≤ βkϕxk (vβ̄(x̄) + x̄ − xk) + 1

2
‖vβ̄(x̄) + x̄ − xk‖2.

Hence, since ϕx (u + v) ≤ ϕx (u) + ϕx (v) for all u, v ∈ R
n we obtain

θβk (x
k) ≤ βkϕxk (vβ̄(x̄)) + βkϕxk (x̄ − xk)

+1

2
‖vβ̄(x̄)‖2 + 1

2
‖x̄ − xk‖2 + 〈vβ̄(x̄), x̄ − xk〉.

By the continuity of the maximum function u �→ max {u1, . . . , ur } and the contin-
uously differentiability of F , taking lim sup for k ∈ K̄ on the above inequality we
have

lim sup
k∈K̄

θβk (x
k) ≤ β̄ϕx̄ (vβ̄(x̄)) + 1

2‖vβ̄(x̄)‖2 = θβ̄(x̄). (13)

Once again, since vβk (x
k) ∈ C − {xk} we have that vβk (x

k) + xk − x̄ ∈ C − {x̄} and

θβk (x̄) ≤ βkϕx̄ (vβk (x
k) + xk − x̄) + 1

2
‖vβk (x

k) + xk − x̄‖2

≤ βkϕx̄ (vβk (x
k)) + βkϕx̄ (x

k − x̄)

+1

2
‖vβk (x

k)‖2 + 1

2
‖xk − x̄‖2 + 〈vβk (x

k), xk − x̄〉.

So, by Lemma 3 and the continuity of the maximum function, taking lim inf for k ∈ K̄
on both sides of the above inequality, we get, from (11),

θβ̄ (x̄) ≤ lim inf
k∈K̄

[
βkϕx̄ (vβk (x

k)) + 1

2
‖vβk (x

k)‖2 + βkϕxk (vβk (x
k)) − βkϕxk (vβk (x

k))

]

= lim inf
k∈K̄

[
θβk (x

k) + βk

(
ϕx̄ (vβk (x

k)) − ϕxk (vβk (x
k))

)]
.

Now, using that themaximum function u �→ max {u1, . . . , ur } is Lipschitz continuous
with constant 1:

|ϕx (v) − ϕy(w)| ≤ ‖J F(x)v − J F(y)w‖

for all v,w ∈ R
n , we obtain that

θβ̄(x̄) ≤ lim inf
k∈K̄

[θβk (x
k) + βk‖J F(x̄) − J F(xk)‖‖vβk (x

k)‖]
≤ lim inf

k∈K̄
θβk (x

k) (14)

123



1372 N. S. Fazzio , M. L. Schuverdt

where we use Lemma 3 and the continuous differentiability of F in the last inequality.
Thus, by combining (13) with (14) we obtain that

lim sup
k∈K̄

θβk (x
k) ≤ θβ̄(x̄) ≤ lim inf

k∈K̄
θβk (x

k)

which implies (10). ��

The following theorem is the main result of this section: it establishes stationarity
of accumulation points of the sequences generated by Algorithm 2.1.

Theorem 1 Assume that F is bounded from below. Let {xk} ⊂ R
n be a sequence

generated by Algorithm 2.1. Then, every accumulation point of {xk} is a feasible
stationary point of (1).

Proof Let x̄ be an accumulation point of the sequence {xk}. Then, there exists K ⊂ N

such that limk∈K xk = x̄ . The feasibility of x̄ follows combining the fact that C is
closed with Lemma 2. The sequence {βk}k∈K is bounded, then there exists K0 ⊂ K
and β̄ > 0 such that lim supk∈K0

βk = β̄.

Considering that αk ∈ (0, 1] for all k ∈ K0,we have the following two possibilities:
(a) lim supk∈K0

αk > 0, or (b) lim supk∈K0
αk = 0.

First, assume that (a) holds. Then, there exist K1 ⊂ K0 and ᾱ > 0 such that
lim supk∈K1

αk = ᾱ. Since ᾱ > 0 there exists K2, K2 ⊂ K1 such that αk ≥ ε > 0 for
all k ∈ K2. Therefore, for all k ∈ K2, by (9) and the fact that J F(xk)vβk (x

k) < 0,
we have that

F(xk+1) ≤ Ck − σαk(−J F(xk)vβk (x
k)) ≤ Ck − σε(−J F(xk)vβk (x

k)).

Then
σε(−J F(xk)vβk (x

k)) ≤ Ck − F(xk+1). (15)

Now, using (8) and (15) we obtain

Ck − Ck+1 ≥ σε(−J F(xk)vβk (x
k))

Qk+1
. (16)

Then, since
∑m

k=0 C
k − Ck+1 = C0 − Cm+1 and F is bounded from below we

have, by Lemma 1, that R ≤ F(xk) ≤ Ck, for all k, and we can conclude that Ck is
bounded from below. It follows from (16) that

∞∑

k=0

σε(−J F(xk)vβk (x
k))

Qk+1
< ∞. (17)
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If we assume that lim infk∈K2(−J F(xk)vβk (x
k)) �= 0, then lim infk∈K2(−J F(xk)

vβk (x
k)) ≥ c > 0. Therefore, using the second equality in (7)

∞∑

k=0

(−J F(xk)vβk (x
k))

Qk+1
≥

∞∑

k=0

c

k + 2
,

in contradiction with (17).
Hence lim infk∈K2(−J F(xk)vβk (x

k)) = 0, which, component-wise, can be written
as

lim inf
k∈K2

(−∇Fi (x
k)T vβk (x

k)) = 0, for all i = 1, . . . , r . (18)

Therefore, using (18) and (10) there exists K̄ ⊂ K2 such that

0 = lim inf
k∈K̄

βk∇Fi (x
k)T vβk (x

k) ≤ lim inf
k∈K̄

βkϕxk (vβk (x
k)) + 1

2
‖vβk (x

k)‖2

= lim inf
k∈K̄

θβk (x
k) = θβ̄(x̄)

and θβ̄(x̄) = 0. Thus, since β̄ is fixed, in view of what was mentioned immediatly
after (4) we conclude that x̄ is a stationary point of (1).

Now assume that (b) holds. Due to Lemma 3, there exist K1 ⊂ K0 and
v̄ ∈ R

n such that limk∈K1 vβk (x
k) = v̄ and limk∈K1 αk = 0. Note that we have

maxi=1,...,r {βk∇Fi (xk)T vβk (x
k)} ≤ θβk (x

k) < 0 so, letting k ∈ K1 go to infinity we
get

max
i=1,...,r

{β̄∇Fi (x̄)
T v̄} ≤ θβ̄(x̄) ≤ 0. (19)

Take now a fixed but arbitrary positive integer q. Since αk → 0, for k ∈ K1 large
enough, we have αk < 1

2q , which means that the nonmonotone condition in Step 3 of
Algorithm 2.1 is not satisfied for α = 1

2q at xk :

F(xk +
(
1

2

)q

vβk (x
k)) � Ck + σ

(
1

2

)q

J F(xk)vβk (x
k).

So for each k ∈ K1 there exists i = i(k) ∈ {1, . . . , r} such that

Fi (x
k +

(
1

2

)q

vβk (x
k)) ≥ Ck

i + σ

(
1

2

)q

∇Fi (x
k)T vβk (x

k)

where Ck
i =

(
ηk−1Qk−1C

k−1
i +Fi (xk )

)

Qk
. Since {i(k)}k∈K1 ⊂ {1, . . . , r} , there exist K2 ⊂

K1 and an index i0 such that i0 = i(k) for all k ∈ K2,

Fi0(x
k +

(
1

2

)q

vβk (x
k)) ≥ Ck

i0 + σ

(
1

2

)q

∇Fi0(x
k)T vβk (x

k)
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1374 N. S. Fazzio , M. L. Schuverdt

and since, by Lemma 1, F(xk) ≤ Ck we have

Fi0(x
k +

(
1

2

)q

vβk (x
k)) ≥ Fi0(x

k) + σ

(
1

2

)q

∇Fi0(x
k)T vβk (x

k).

Taking the limit when k ∈ K2 goes to infinity in the above inequality, we obtain
Fi0(x̄ + (1/2)q v̄) ≥ Fi0(x̄) + σ(1/2)q∇Fi0(x̄)

T v̄. Since this inequality holds for any
positive integer q and for i0 (depending on q), by Proposition 1 in [10] it follows that
J F(x̄)v̄ �< 0, then maxi=1,...,r {∇Fi (x̄)T v̄} ≥ 0, which, together with (19) implies
θβ̄(x̄) = 0.
Therefore, we conclude that x̄ is a stationary point of (1). ��

4 The convex case

The objective of this section is to prove, under convexity assumptions, that in the case
in whichAlgorithm 2.1 does not have a finite termination, the sequence {xk} converges
to a weak Pareto optimum point.

We say that the mapping F : R
n → R

r is R
r+-convex if

F(λx + (1 − λ)z) ≤ λF(x) + (1 − λ)F(z)

for all x, z ∈ R
n and all λ ∈ [0, 1]. Clearly, F : R

n → R
r is R

r+-convex if and only
if its components Fi : R

n → R are all convex.
The proof of the full convergence to a weak Pareto optimum point follows from the

analysis made in [7]. From the theory of convex analysis and optimization we know
that, from (2), there exists w(x) ∈ R

r with

w(x) ≥ 0,
r∑

i=1

wi (x) = 1 (20)

such that vβ(x) = PC (x − β J F(x)Tw(x)) − x , where PC (z) is the orthogonal pro-
jection of z on C , satisfying

〈β J F(x)Tw(x) + vβ(x), v − vβ(x)〉 ≥ 0 (21)

for all v ∈ C − {x}. See [2,8,9].
We will use the following technical result in order to prove the full convergence of

the sequence {xk} generated by Algorithm 2.1.

Lemma 4 Suppose that F is R
r+-convex and let {xk} be an infinite sequence generated

by Algorithm 2.1. Let wk := w(xk) ∈ R
r such that (20) holds and vk := vβk (x

k) =
PC (xk − βk J F(xk)Twk) − xk . If for x∗ ∈ C and k ≥ 0, we have F(x∗) ≤ Ck, then

‖xk+1 − x∗‖2 ≤ ‖xk − x∗‖2 + 2βmaxαk |〈wk, J F(xk)vk〉|
+2βmaxαk〈wk,Ck − F(xk)〉. (22)
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Proof Since xk+1 = xk + αkv
k, we have

‖xk+1 − x∗‖2 = ‖xk − x∗ + αkv
k‖2

= ‖xk − x∗‖2 + α2
k‖vk‖2 − 2αk〈vk, x∗ − xk〉. (23)

By using (21) with x = xk and β = βk we get

〈βk J F(xk)Twk + vk, v − vk〉 ≥ 0 for all v ∈ C − {xk}.

Taking v = x∗ − xk ∈ C − {xk} on the above inequality, we obtain

−〈vk, x∗ − xk〉 ≤ βk〈wk, J F(xk)(x∗ − xk)〉 − βk〈wk, J F(xk)vk〉 − ‖vk‖2. (24)

By the convexity of F we know that J F(xk)(x∗ − xk) ≤ F(x∗) − F(xk). Then,
this fact, together with wk ≥ 0 and F(x∗) ≤ Ck , imply

〈wk, J F(xk)(x∗ − xk)〉 ≤ 〈wk, F(x∗) − F(xk)〉 ≤ 〈wk,Ck − F(xk)〉.

Now, since xk is a nonstationary point, we have that J F(xk)vk < 0. Then,
〈wk, J F(xk)vk〉 < 0 and from (24) it follows that

−〈vk, x∗ − xk〉 ≤ βk〈wk,Ck − F(xk)〉 + βk |〈wk, J F(xk)vk〉| − ‖vk‖2
≤ βmax〈wk,Ck − F(xk)〉 + βmax|〈wk, J F(xk)vk〉| − ‖vk‖2.

Thus, from (23)

‖xk+1 − x∗‖2 ≤ ‖xk − x∗‖2 + α2
k‖vk‖2 + 2αkβk〈wk, J F(xk)(x∗ − xk)〉

+2αkβk |〈wk, J F(xk)vk〉| − 2αk‖vk‖2 ≤ ‖xk − x∗‖2
+2αkβmax〈wk,Ck − F(xk)〉 + 2αkβmax|〈wk, J F(xk)vk〉|.

And the result is obtained because α2
k − 2αk ≤ 0 since 0 < αk ≤ 1. ��

The following theorem is established in order to prove the full convergence of the
sequence regardless of the initial feasible iterate.

Theorem 2 Assume that F : R
n → R

r is R
r+-convex. Let us suppose that {xk} is a

sequence generated by Algorithm 2.1 by considering ηmax < 1 and let us define

L := {x ∈ C : F(x) ≤ Ck for all k}. (25)

Assume that L �= ∅. Then, the sequence {xk} is quasi-Féjer convergent to L, which
means that, for every x∗ ∈ L there exists a sequence {εk} ⊂ R, εk ≥ 0 for all k such
that ‖xk+1 − x∗‖2 ≤ ‖xk − x∗‖2 + εk with

∑∞
k=0 εk < ∞.
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Proof By the hypothesis there is x∗ ∈ L . Since F is R
r+-convex it follows from

Lemma 4 that, for all k

‖xk+1 − x∗‖2 ≤ ‖xk − x∗‖2 + 2βmaxαk |〈wk, J F(xk)vk〉|
+2βmaxαk〈wk,Ck − F(xk)〉. (26)

By considering the canonical basis of R
r {e1, . . . , er }, we can write wk =∑r

i=1 wk
i ei for each k. Then, from (26) and the facts that 0 ≤ wk

i ≤ 1 for all i
and k and Ck ≥ F(xk) we have that, for all k,

‖xk+1 − x∗‖2 ≤ ‖xk − x∗‖2

+2βmaxαk

r∑

i=1

(
|〈ei , J F(xk)vk〉| + 〈ei ,Ck − F(xk)〉

)
.

Defining

εk := 2βmaxαk

r∑

i=1

(
|〈ei , J F(xk)vk〉| + 〈ei ,Ck − F(xk)〉

)

we have that εk ≥ 0 and ‖xk+1 − x∗‖2 ≤ ‖xk − x∗‖2 + εk . Thus, let us prove that∑∞
k=0 εk < ∞. To do that, let us define ε1k = 2βmaxαk

∑r
i=1 |〈ei , J F(xk)vk〉| and

ε2k = 2βmaxαk
∑r

i=1〈ei ,Ck − F(xk)〉. We are aware that ε1k depends on βk but our
intention is to demonstrate that ε1k can be independently bounded from the steplength
βk and that is the reason why we prefer to write it in that way.

From one side, from the line search condition in Step 3, we obtain
−αk〈ei , J F(xk)vk〉 ≤ 1

σ
(Ck

i − Fi (xk+1)). Since xk is nonstationary, we also have
for all i and k that 〈ei , J F(xk)vk〉 = ∇Fi (xk)T vk < 0, which means that
−αk〈ei , J F(xk)vk〉 = αk |〈ei , J F(xk)vk〉|. Hence, by the definition of ε1k , ε1k ≤
2βmax

σ

∑r
i=1(C

k
i − Fi (xk+1)) and, by (8) ε1k ≤ 2βmax

σ

∑r
i=1 Qk+1(Ck

i − Ck+1
i ). Since

Qk+1 = 1 +
k∑

i=0

i∏

m=0

ηk−m ≤ 1 +
k∑

i=0

ηi+1
max ≤

∞∑

i=0

ηimax ≤ 1

1 − ηmax

we obtain that

0 ≤ ε1k ≤ 2βmax

σ(1 − ηmax)

r∑

i=1

(Ck
i − Ck+1

i ). (27)

On the other side, by (8), Ck
i = Ck−1

i + Fi (xk )−Ck−1
i

Qk
, for all k ≥ 1 and we have that

Ck
i − Fi (xk) = (1 − 1

Qk
)(Ck−1

i − Fi (xk)). Then, by using (8) again:
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ε2k = 2βmaxαk
(Qk − 1)

Qk

r∑

i=1

(Ck−1
i − Fi (x

k))

= 2βmaxαk(Qk − 1)
r∑

i=1

(Ck−1
i − Ck

i ).

Since Qk − 1 ≤ ηmax
1−ηmax

and αk ≤ 1 we get

ε2k ≤ 2βmaxηmax

(1 − ηmax)

r∑

i=1

(Ck−1
i − Ck

i ). (28)

Adding up from k = 0 to k = N at the inequalities (27) and (28) where N is any
positive integer and defining C−1 = C0, we get

N∑

k=0

εk ≤ 2βmax

σ(1 − ηmax)

r∑

i=1

(C0
i − CN+1

i ) + 2βmaxηmax

(1 − ηmax)

r∑

i=1

(C0
i − CN

i ).

Since N is an arbitrary positive integer, βmax > 0, σ > 0, ηmax < 1 and F(x∗) ≤
Ck for all k, we conclude that

∑∞
k=0 εk < ∞ as we wanted to prove. ��

The previous theorem formulates conditions under which the sequence generated
by the nonmonotone Algorithm 2.1 is a quasi-Féjer sequence. Some comments con-
cerning the assumption L �= ∅ are in order. When the Armijo line search is considered
the assumption used is the following [8,9]:

Assumption Every R
r+-decreasing sequence {yk} ⊂ F(C) := {F(x) : x ∈ C} is

R
r+-bounded from below by an element of F(C), i.e., for any {yk} contained in F(C)

with yk+1 < yk for all k, there exists x̄ ∈ C such that F(x̄) ≤ yk for all k.

It is well-known that in the classical unconstrained (convex) optimization case, this
condition, known as R

r+- completeness, is equivalent to existence of solutions of the
optimization problem and it is standard for ensuring existence of efficient points for
vector optimization problems.

Thus, in the monotone case [8,9], since the sequence {F(xk)} is R
r+− decreasing,

by the above assumption, there exists a point x̂ ∈ {x ∈ C : F(x) ≤ F(xk)} and an
analogous of Lemma 4 is proved with the inequality ‖xk+1 − x̂‖2 ≤ ‖xk − x̂‖2 +
2βmaxαk |〈wk, J F(xk)vk〉|, instead of (22).

In the nonmonotone case, we consider the set L defined by (25) by considering Ck

instead of F(xk) since {Ck} is a R
r+-decreasing sequence. This fact is the responsible

for the appearance of the last term in (22) and for ε2k in the proof of Theorem 2.
Observe finally that the assumption L �= ∅ is verified when F is a linear mapping or

being nonlinear F(C) is a convex set or even when the original problem has a solution.

Theorem 3 Assume that F : R
n → R

r is R
r+-convex and that the hypotheses of the

previous theorem hold. Then, any sequence {xk} generated by Algorithm 2.1 converges
to a weak Pareto optimum point.
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Proof By Theorem 2, since {xk} is a quasi-Féjer sequence convergent to L , it follows,
from Theorem 1 in [5], that {xk} is bounded. So, since C is closed, {xk} ⊂ C has
at least one feasible limit point. Thus, there exist x∗ ∈ C and K ⊂ N such that
limk∈K xk = x∗. By Theorem 1, x∗ is stationary for problem (1). Using the R

r+-
convexity of F, from Lemma 5.2 in [7], it follows that x∗ ∈ C is a weak Pareto
optimum solution of (1).

Let us prove now that x∗ ∈ L. Since Ck+1 ≤ Ck for all k, then, for each k0 fixed
we have that Ck ≤ Ck0 for all k > k0. Then, F(xk) ≤ Ck0 for all k > k0. Thus, by
taking limit for k ∈ K and using the continuity of F we obtain that F(x∗) ≤ Ck0 .

Then, F(x∗) ≤ Ck for all k ∈ K . Thus x∗ ∈ L. Then, by Theorem 1 in [5], since
{xk} has a cluster limit point x∗ ∈ L we conclude that {xk} converges to x∗ ∈ C as
we wanted to prove. ��

5 Conclusions

We have presented a new algorithm for multiobjective optimization with convex con-
straints. At each iteration the search direction was computed by considering a variable
steplength instead of a fixed parameter. The novelty feature has been the use of a
nonmonotone line search technique instead of the classical Armijo strategy.

Stationarity of the accumulation points of the sequences generated by the proposed
algorithm has been established in the general case, and, under standard convexity
assumptions, full convergence to weak Pareto points of any sequence has been proved.

Future work will be focused on the study of a numerical implementation of Algo-
rithm 2.1 by incorporating a variable steplength βk which may be updated using the
ideas underlying the spectral parameter from the scalar case [1,3,21]. The use of the
nonmonotone PGM as a method to solve the subproblem inside of an Augmented
Lagrangian type method to solve multiobjective problems with general constraints is
also left as a topic for a future work.

Acknowledgements The authors are indebted to the anonymous referees whose comments helped a lot to
improve the quality of the paper.
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