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Abstract
This article proposes extensions of exact and heuristic dynamic programming algo-
rithms for the traveling salesman problem with flexible time windows, which are a
limited enlargement of the generally referred to as hard time windows. The service
of a customer can be started before or after the hard time window at a penalty cost.
The addressed problem thus requires the determination of a sequence of customers
and their respective service start times in order to minimize the sum of traveling cost
with earliness and lateness cost. Computational tests are conducted on a variety of
symmetric and asymmetric instances proposed in the literature, and the advantages of
flexible windows are stressed.

Keywords Traveling salesman problem · Flexible time windows · Dynamic
programming · Labeling algorithm

1 Introduction

The aim of the traveling salesman problem with time windows (TSPTW) is to find
a minimum cost route visiting a set of customers, where each customer must be
visited only once under the hard constraint that the service starts within a given time
window. This implies that the salesman has to wait if he arrives before the start of the
time window. The problem is NP-hard because it encompasses the traveling salesman
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problem, and furthermore, Savelsbergh [30] has shown that the problem of finding a
feasible solution for TSPTW is NP-complete.

The TSPTW has applications in the job shop scheduling where the setup time
of each job depends on the previous job [5], in the single machine discrete lot-
sizing and scheduling problem with sequence dependent setup costs [19], and in the
approach cluster-first, route-second for the vehicle routing problem with time win-
dows (VRPTW) [24]. In addition, the feasibility problem of the TSPTW becomes a
separation subproblem when a branch-and-cut approach is used to solve the VRPTW
[23]. The literature on exact algorithms for the TSPTW is extensive and for a thorough
review on this topic, see [6].

When the hard time window constraints may be violated then the time windows
become soft constraints, as suggested by Sexton and Choi [32] for the single vehicle
pickup and delivery problem, and the deviations of starting the service before or after
the time windows imply a penalty cost function that is added to the total vehicle travel-
ing time. In real world situations, a soft time window corresponds to a limited increase
of the hard time window which, with the magnitude of the penalty cost parameter,
reflects the importance of a customer being served closer to the time window.

The relaxation of the hard time window constraints leads to a greater feasible
space and, as a consequence, we can have an optimal cost lower than the optimal
cost associated with the hard constrained time windows. Let pi (si ) denote the penalty
cost function, where si is the service start time outside the time window [ei , li ] of
customer i. Several variants of a linear penalty cost pi (si ) � αi (ei − si ), si < ei and
pi (si ) � βi (si − li ), si > li , where αi and βi are positive real parameters that have
been proposed in the literature of the VRPTW, are mentioned in the sequel.

Koskosidis et al. [24] and Liberatore et al. [26] suggest an unlimited starting time
service, whereas Balakrishnan [2] proposes a maximum waiting time Wmax and a
maximum penalty cost Pmax. Chiang and Russel [9] allow a maximum time window
enlargement M, i.e., [ei − M , li + M] and a maximum waiting time Wmax. In [33],
earlier starting si < ei is not allowed, but unlimited lateness si > li is permitted.
Qureshi et al. [27] suggest a semi soft penalty cost such that the upper limit of the time
window is extended to l ′i > li , the penalty cost is linear in the interval

[
li , l ′i

]
, and

service start must occur in the interval
[
ei , l ′i

]
. The limit l ′i is defined as the maximum

late arrival penalty equivalent to the time and cost of an additional single vehicle
route only serving customer i. Bhusiri et al. [8] include the maximum limit of late
arrival time in the definition of l ′i and propose a lower limit of the soft window e′

i ,
expressed as the maximum early arrival penalty equivalent to the cost of an additional
single vehicle route only serving customer i. The penalty cost is linear in the intervals[
e′
i , ei

]
and

[
li , l ′i

]
, and service start must occur in the interval

[
ei , l ′i

]
. The authors

claim that waiting time to start service incurs extra costs such as labour operating cost,
maintenance cost and parking fee, in addition to the loss of opportunity to generate
more profits. For this reason, the objective is to minimize the total waiting time as well
as the routing cost that includes the penalty cost. This is accomplished by setting the
service start time as the arrival time at each customer.

Ibaraki et al. [22] propose a comprehensive approach to the vehicle routing problem
with hard and soft time windows for the case in which the problem is decoupled into
two subproblems, as suggested by Sexton and Bodin [31], Sexton and Choi [32] and
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Fig. 1 Flexible time windows

Dumas et al. [15]. The former consists of determining the routes and the latter deter-
mines the optimal service start timeof each customer in order tominimize the penalized
total cost for violating the hard time windows. The penalty function for each customer
can be non-convex provided that it is piecewise linear and lower semicontinuous, i.e.,
pi (t) ≤ limε→0min{pi (t + ε), pi (t − ε)}.

The term flexible time window has been suggested by Taş et al. [34] and consists of
an enlargement of the hard timewindowof customer i by associated fractions f ei and f li
such that the flexible timewindow

[
e′
i , l

′
i

]
has limits expressed by e′

i � ei− f ei (li − ei )
and l ′i � li + f li (li − ei ). The service at customer i cannot start outside the flexible
window, but can start in the intervals

[
e′
i , ei

]
and

[
li , l ′i

]
with linear penalty cost

pi (si ) � δα(ei − si ), e′
i ≤ si < ei and pi (si ) � δβ(si − li ), li < si ≤ l ′i , where δα

and δβ are positive real parameters (see Fig. 1). Feasible vehicle routes are constructed
by a tabu search algorithm and the optimal service start of each customer is determined
by a linear programming (LP) formulation in order to minimize the total penalty cost
of each route for a given sequence of customers in that route. Vidal et al. [35] stress
that most timing problems, for example, vehicle routing and machine scheduling can
be formulated by means of a LP formulation, as suggested by the pioneer articles
proposed by Sexton and Bodin [31], Sexton and Choi [32], Dumas et al. [15] for
vehicle routing, and Fry and Leong [20] for machine scheduling.

In this article, we propose extensions of exact and heuristic dynamic program-
ming algorithms for the traveling salesman problem with flexible time windows
(TSPFlexTW). The objective is to determine a sequence of customers and their respec-
tive service start times so as to minimize the sum of traveling costs with earliness and
lateness costs. The sets of states or labels generated by the proposed dynamic pro-
gramming algorithms are explored according to label-correcting strategies. Regarding
exact algorithms, we extend the bi-directional resource-bounded dynamic program-
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ming proposed by Li [25], and with reference to heuristic dynamic programming, we
extend the algorithm with precedence constraints devised by Balas and Simonetti [4].

The main contributions of this article are threefold:

1. The proposition of label resources, resource extension functions and dominance
criteria to be used in label-correcting algorithms for routing and scheduling prob-
lems with flexible time window constraints.

2. The design of exact and heuristic dynamic programming algorithms for the
TSPFlexTW, which extend solutionmethods originally developed for the TSPTW.

3. The extensive computational experimentation on a variety of symmetric and asym-
metric instances from the literature and the assessment of the benefits gained by
flexible time windows compared to the hard time windows.

The remainder of the article is organized as follows. Section 2 introduces the prob-
lem description. Sections 3 and 4 describe the extension of exact and heuristic dynamic
programming algorithms for the TSPFlexTW. Computational results are reported in
Sect. 5, and conclusions are outlined in Sect. 6.

2 Problem description

The TSPFlexTW is defined on a complete graph G � (N , A) whereN � {0, 1, . . . ,
n, n + 1} is the set of nodes and A � {(i , j) : i ∈ N \{n + 1}, j ∈ N \{0}, i �� j}
represents their connecting arcs. Let C � {1, . . . , n} be the set of customers, while
nodes 0 and n+1 denote the depot as route starting and destination points, respectively.
For each customer i ∈ C, there is a service timeWi , a hard time window [ei , li ] and its
fractions f ei and f li for the time window enlargement. The time windows [e0, l0] and
[en+1, ln+1] at the depot represent the planning horizon. Following Taş et al. [34], each
flexible time window

[
e′
i , l

′
i

]
has limits expressed by e′

i � max
{
ei − f ei (li − ei ), 0

}

and l ′i � li + f li (li − ei ). Servicing a customer within
[
e′
i , ei

]
is penalized by δα for one

unit of earliness, while servicing a customer within
[
li , l ′i

]
is penalized by δβ for one

unit of lateness. Waiting up to ei is allowed at no penalty cost, but customers cannot be
served after l ′i . Moreover, each arc (i , j) ∈ A has an associated traveling cost ci j and
a traveling time ti j . If ci j � c ji and ti j � t j i the TSPFlexTW is symmetric, otherwise
is asymmetric.

Consider the following variables:

• wi : service start time at node i ∈ N ;
• αi : service earliness at node i ∈ N ;
• βi : service lateness at node i ∈ N ;

xi j �
{
1 if node j ∈ N is visited immediately after visiting node i ∈ N ;
0 otherwise.
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In the following, the TSPFlexTW is formulated as a mixed integer programming
(MIP) model, a special case of the vehicle routing problemwith flexible time windows
(VRPFlexTW) proposed by Taş et al. [34].

min
∑

i∈ N \{n+1}

∑

j∈ N \{0},

∑

(i , j)∈A
ci j xi j +

∑

i∈ N

(
δααi + δββi

)
(1)

∑

i∈ N \{n+1}
xi j � 1 j ∈ N \{0}, j �� i (2)

∑

j∈ N \{0}
xi j � 1 i ∈ N \{n + 1}, i �� j (3)

wi +Wi + ti j − [Mi j (1 − xi j )] ≤ w j i ∈ N \{n + 1}, j ∈ N \{0}, i �� j (4)

e′
i ≤ wi ≤ l ′i i ∈ N (5)

αi ≥ ei − wi i ∈ N (6)

βi ≥ wi − li i ∈ N (7)

(wi ,αi ,βi ) ≥ 0, xi j ∈ {0, 1} i , j ∈ N , i �� j (8)

where Mi j � max
{
l ′i − e′

j + ti j +Wi , 0
}
(see [13]). The objective function (1) mini-

mizes the overall cost, which includes traveling cost and service penalty. Constraints
(2) and (3) state that every nodemust be visited exactly once. Constraints (4) guarantee
that the service start time at a customer must be greater or equal to the sum of the
service start time with the service time and the traveling time of its immediate prede-
cessor. Constraints (5) ensure that the service start times are within the given flexible
time windows, while constraints (6) and (7) connect the node service start times with
the service earliness and service lateness, respectively. Constraints (8) indicate the
domain of the variables.

3 Exact dynamic programming algorithms for the TSPFlexTW

The proposed dynamic programming algorithms are based on the algorithm conceived
by Desrochers [12] for the resource constrained shortest path problem and extended
to its elementary version by Feillet et al. [16]. Such algorithms include resources to
the Ford-Bellman algorithm (see [1] for an introduction to labeling algorithms).

An essential feature of dynamic programming is to structure an optimization prob-
lem in stages corresponding to optimization subproblems that are solved sequentially.
Associated with each stage are the states that convey the relevant information of the
prior history in order to make future decisions [7, 10].

In constrained shortest path problems, stages are associated with the nodes of the
graph and each state corresponds to a feasible path from the depot 0 to a node i with
characteristics of a particular problem. The states of a node i are represented by labels
(R,C, i), where each component of the vector R denotes the consumption of a different
resource andC is the cost along the path. Another fundamental component of dynamic
programming is a recursive equation or a resource extension function associated with
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each arc of the graph and each resource. In addition, dominance rules are applied in
order to fathom dominated states.

In this section, we extend the bi-directional resource-bounded dynamic program-
ming devised by Li [25] to two variants of dynamic programming algorithms for the
TSPFlexTW.

3.1 Bi-directional resource-bounded dynamic programming for the TSPTW

Li [25] suggests the dynamic programming techniquewith a label-correcting algorithm
for the TSPTW that takes advantage of the bi-directional bounded search framework.
Let node o � 0 denote the depot as the route starting point and node d � n +1 refer to
the depot as the route destination point. In a bi-directional search, labels are extended
both forward from node o to its successors and backward from node d to its predeces-
sors. Such a label extension may result in a smaller number of non-dominated labels
than in mono-directional dynamic programming [29]. The entire route is obtained by
joining paths from the forward and backward extensions. Hereafter, we define the
components of the aforementioned algorithm.

3.1.1 Label extension

Let LFP
i � (V , s, i) denote a forward label, where i is the last reached node of the

forward path FP � (0, . . . , i), s represents the earliest time when service can start
at node i , and V is a vector that indicates the node sequence of FP � (0, . . . , i). Let
Vi be the position that node i is visited, then if node i is the kth visited node, Vi � k.
The accumulated traveling cost of LFP

i � (V , s, i) is represented by c
(
LFP
i

)
. Let

V I F denote the vector associated with the initial forward (IF) label, which is defined
as

(
V I F , 0, 0

)
with V I F

0 � 1, V I F
h � 0, h ∈ C ∪ {n + 1} and c

(
V I F , 0, 0

) � 0.
The forward extension of a label (V , s, i) to node j along arc (i , j) produces the new
label

(
V ′, s′, j

)
with cost c

(
V ′, s′, j

)
by means of the following resource extension

functions: V ′
h � Vh , if h �� j , V ′

h � Vi + 1, if h � j , as node j is the successor
of node i; the earliest time when service can start, i.e., s′ � max

{
s +Wi + ti j , e j

}
,

since there is a waiting time if node j is reached before the start of corresponding time
window e j ; the accumulated travel cost at node j is increased by ci j , i.e., c

(
V ′, s′, j

) �
c(V , s, i) + ci j .

The backward label extension is amirror of the forward label extension.A backward
path is represented by BP � (n + 1, . . . , i)with respective label LBP

i � (V , s, i) and
cost c

(
LBP
i

)
. Let T be the maximum feasible arrival time at the destination node n+1,

i.e., T � maxh∈C
{
lh +Wh + th, n+1

}
[29]. The initial label of the backward extension

is
(
V I B , T , n + 1

)
with V I B

n+1 � 1, V I B
h � 0, h ∈ C ∪ {0} and c

(
V I B , T , n + 1

) �
0. In this case, V I B denotes the vector associated with the initial backward (IB)
label. Consider that label (V , s, i) is backward extended to

(
V ′, s′, j

)
, where the

computation of V ′ is identical to the forward extension as shown above, while s′ �
min

{
s − Wj − t j i , l j

}
since s′ is the latest timewhen service can start at node j , and

c
(
V ′, s′, j

) � c(V , s, i) + c ji .
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Righini and Salani [29] suggest that the forward and the backward extensions are
allowed only if s′ ≤ T /2 and s′ ≥ T /2, respectively. A half -way point that minimizes
the half -way function

∣∣s′
FP − s′

BP

∣∣ among neighbours of a pair of nodes i and j is
then chosen to join their associated labels. In this way, each path from node o � 0 to
node d � n + 1 is generated only once.

Li [25] addresses the case where a forward label at node i can be directly extended
to reach a node j or otherwise that a backward label at node j can be extended to
reach a node i . The author argues that the conditions s′ ≤ T /2 and s′ ≥ T /2 do not
guarantee the previous extensions, and thus a feasible and possibly optimal path from
node o � 0 to node d � n + 1 is lost.

Let λ � maxh∈ N \{n+1}, �∈ N \{0}, h ���{Wh + th�} denote the maximum arc traversal
time in the graph G. Figure 2 illustrates that a feasible solution is not lost if the
forward extension from (V , s, i) to

(
V ′, s′, j

)
is allowed only if the earliest time

s′ ≤ T /2, and the backward extension from (V , s, j) to
(
V ′, s′, i

)
, only if the latest

time s′ ≥ (T /2) − λ [25]. Note that if condition s′ ≥ T /2 were applied to the latest
time instead of s′ ≥ (T /2) − λ, this would disallow the backward extension depicted
in Fig. 2b, therefore, the feasible o − d path would be lost.

The forward label extension is feasible if (1) node j has not previously been visited,
i.e., Vj � 0, (2) s′ is no later than the upper limit of time window

[
e j , l j

]
, i.e., s′ ≤ l j ,

(3) a look-ahead step, in which the new label
(
V ′, s′, j

)
can be further propagated to

visit all non-visited nodes while satisfying their time windows, and (4) s′ ≤ T /2. The
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same feasibility conditions (1) and (3) on the forward extension apply to the backward
procedure, whereas conditions (2) and (4) are replaced by s′ ≥ e j and s′ ≥ (T /2)−λ,
respectively.

3.1.2 Label dominance

Dominance tests are performed during forward and backward label extensions. Define
the set U � {h|Vh �� 0, h ∈ N } as the nodes visited by a label (V , s, i). Regarding
forward dominance, let

(
V 1, s1, i

)
and

(
V 2, s2, i

)
be two labelswith the same reached

node i and identical sets U 1 � U 2. Label
(
V 1, s1, i

)
dominates

(
V 2, s2, i

)
if

c
(
V 1, s1, i

)
≤ c

(
V 2, s2, i

)
(9)

s1 ≤ s2 (10)

and at least one of these inequalities is strict. With respect to backward dominance,
the dominance rule (10) is replaced by

s1 ≥ s2 (11)

If the triangular inequality holds for the arc traveling costs ci j and times ti j , the
condition U 1 � U 2 can be replaced by U 2 ⊆ U 1 for both forward and backward
extensions [25].

3.1.3 Label joining

Forward and backward labels are joined to yield TSPTW feasible routes. Let LFP
i �(

V F , sF , i
)
be a forward label and LBP

i � (
V B , sB , i

)
be a backward label with the

same reached node i . Their concatenation LFP
i ⊕ LBP

i consists of a feasible route
if all nodes are visited only once, and if the starting time at the forward label is less
than or equal to the starting time of the backward label, i.e., sF ≤ sB . The cost of the
resulting route is c

(
LFP
i

)
+ c

(
LBP
i

)
.

Figure 3 depicts a pseudo-code of the algorithm. Let For L , BackL and Act L
be linked lists that store the forward labels, the backward labels and the active
label pool, respectively. The algorithm is started by placing the first forward
label and the first backward label into the active label pool Act L (lines 1–3).
Nodes as well as forward and backward labels are then repeatedly treated until
Act L becomes empty (lines 4–19). Herein, ExtendF ((V , s, i), j) (line 8) and
DominanceF

(
For L ,

(
V ′, s′, j

))
(line 9) represent the label extension and label

dominance procedures in the forward extension. Analogously, ExtendB((V , s, i), j)
(line 13) and DominanceB

(
BackL ,

(
V ′, s′, j

))
(line 14) are applied to the backward

extension. Finally, for each node i ∈ N the label joining is performed by the function
Join(i) (lines 20–22) and the minimum cost route is obtained (line 23).
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Algorithm Bi-directional resource-bounded dynamic programming 

// Initialization //
1 ForL  ← {(V IF , 0, 0)},  BackL  ← {(V IB , T , n +1)}  
2 ActL  ← ForL BackL
3 ForL  ← , BackL  ← 
4 While ActL ≠ do
5 Remove label (V , s , i ) from the head of ActL
6 If (V , s , i ) is a forward label then

// Forward extension //
7 For all outgoing nodes j of  i do
8 (V', s', j ) ← Extend F ((V , s , i ), j )

// Forward dominance checking //
9 ForL ← Dominance F (ForL , (V' , s' , j ))

10 End For
11 Else

// Backward extension //
12 For all incoming nodes j of  i do
13 (V', s', j ) ← Extend B ((V , s , i ),  j )

// Backward dominance checking //
14 BackL ← Dominance B (BackL , (V' , s' , j ))
15 End For
16 End If
17 ActL  ← ForL BackL
18 ForL  ← , BackL  ← 
19 End While

// Label joining //
20 For all nodes i from 0 to n +1 do
21 Join (i )
22 End For
23 Output the TSPTW minimum cost route

Fig. 3 Bi-directional resource-bounded dynamic programming algorithm

3.2 Bi-directional resource-bounded dynamic programming algorithms
for the TSPFlexTW

We suggest two alternative forms of label correcting that includes label representation
and the respective procedures for label extension and dominance.

3.2.1 Label-correcting LP

Let the label LP
i � (V , s, i) denote a path both for a forward label and a backward

label for the TSPFlexTW. It differs from the TSPTW with respect to the flexible time
windows

[
e′
i , l

′
i

]
, i ∈ N that replace the hard time windows [ei , li ], i ∈ N in all

forward and backward calculations.
In addition to the accumulated traveling cost of the forward or backward label

c
(
LP
i

)
, there is a penalty cost corresponding to the minimum earliness and lateness
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cost pen
(
LP
i

)
associated with starting service within the flexible time windows but

earlier or later than the limits of the hard time windows. Such a minimum cost is
obtained by means of the LP model suggested by Taş et al. [34]:

pen
(
LP
i

)
� min

∑

j∈N̄

(
δαα j + δββ j

)
(12)

w j +Wj + t jh ≤ wh j , h ∈ N̄ , ( j , h) ∈ Ā (13)

e′
j ≤ w j ≤ l ′j j ∈ N̄ (14)

α j ≥ e j − w j j ∈ N̄ (15)

β j ≥ w j − l j j ∈ N̄ (16)
(
w j ,α j ,β j

) ≥ 0 j ∈ N̄ (17)

where N̄ ⊂ N is the set of nodes visited in the path P and Ā ⊂ A is the set of
traversed arcs of this path. The objective function (12) expresses the minimization of
penalty costs along the path P . Constraints (13) describe the compatibility between
the service start time of two subsequent nodes in path P . Constraints (14) impose
that the service start time at each node in path P is limited by a flexible time window.
Constraints (15) connect the earlinesswith the service start time, while constraints (16)
link the lateness and the service start time. Non-negativity constraints on variables are
represented by (17). Before solving this linear program for a forward or a backward
label LP

i � (V , s, i), the service start variable wi regarding the last reached node i is
fixed at the current value of its time resource, i.e., wi � s.

Regarding forward dominance, let
(
V 1, s1, i

)
and

(
V 2, s2, i

)
be two labels with

the same reached node i . Then the dominance criterion (9) is replaced by

c
(
V 1, s1, i

)
+ pen

(
V 1, s1, i

)
≤ c

(
V 2, s2, i

)
+ pen

(
V 2, s2, i

)
(18)

with the dominance criterion (10). The backward dominance criteria are given by (11)
and (18).

3.2.2 Label-correcting EL

Additional resources of accumulated earliness (E) early
(
LP
i

)
and accumulated late-

ness (L) late
(
LP
i

)
are added to both forward and backward label LP

i . They were
inspired by the accumulated waiting time wa

(
LP
i

)
and the accumulated delay time

de
(
LP
i

)
proposed in [8] for the vehicle routing problem with soft time windows

constraints. The resulting label is denoted LP
i � (V , s, i , early, late) with accu-

mulated traveling cost c
(
LP
i

)
and penalty cost pen

(
LP
i

)
. The flexible time windows[

e′
i , l

′
i

]
, i ∈ N also replace the hard time windows [ei , li ], i ∈ N in all label

extensions.
The label extension for three first components of (V , s, i , early, late) follows

that of TSPTW presented in Sect. 3.1.1. Let s
(
LP
j

)
denote the service start time at

123



Exact and heuristic dynamic programming algorithms for the… 589

node j ∈ N and assume the extension of LP
i along arc (i , j) ∈ A towards node

j ∈ N . The accumulated earliness early
(
LP
i

)
and lateness late

(
LP
i

)
are extended

along the forward and backward paths in the following way:

early
(
LP
j

)
�

⎧
⎨

⎩

early
(
LP
i

)
+

(
e j − s

(
LP
j

))
, if s

(
LP
j

)
< e j

early
(
LP
i

)
, if s

(
LP
j

)
≥ e j

(19)

late
(
LP
j

)
�

⎧
⎨

⎩

late
(
LP
i

)
+

(
s
(
LP
j

)
− l j

)
, if s

(
LP
j

)
> l j

late
(
LP
i

)
, if s

(
LP
j

)
≤ l j

(20)

The forward label dominance is determined by inequalities (9), (10) and the addi-
tional resource inequalities

early
(
L1
i

)
≤ early

(
L2
i

)
(21)

late
(
L1
i

)
≤ late

(
L2
i

)
(22)

The backward dominance criteria are given by (9), (11), (21) and (22). In contrast
to the label-correcting LP, the label-correcting EL temporarily disregards the value of
penalty costs pen

(
LP
i

)
until the label joining procedure.

The two variants of the exact dynamic programming algorithm (EDPA) are denoted
according to the label-correcting procedures LP and EL, i.e., EDPALP and EDPAEL.

3.2.3 Common label joining for label-correcting procedures

The last step of the label-correcting procedures LP andEL shares a common label join-
ingprocedure such that the overall costs of the concatenated paths LFP

i ⊕LBP
i are given

by c
(
LFP
i

)
+c

(
LBP
i

)
+ pen

(
LFP
i ⊕ LBP

i

)
, where pen

(
LFP
i ⊕ LBP

i

)
is determined by

the solution of LPmodel (12)–(17). In order to avoid the time-consuming computation
of such a linear program for every pair of forward and backward paths to be concate-
nated we proceed in the following way. Store the current minimum overall cost found
so far and call it best. Then the computation of pen

(
LFP
i ⊕ LBP

i

)
for the next pair of

paths is performed only if c
(
LFP
i

)
+ c

(
LBP
i

)
< best holds for such a concatenated

route LFP
i ⊕ LBP

i , otherwise it cannot improve best since pen
(
LFP
i ⊕ LBP

i

) ≥ 0.

4 Heuristic dynamic programming algorithms for the TSPFlexTW

Desaulniers et al. [11] propose a heuristic dynamic programming for the subproblem
encountered when solving the VRPTW by column generation, which corresponds to
an elementary shortest path problemwith resource constraints. Two different heuristic
strategies are suggested, the one that eliminates non-promising arcs in the set A, and
the other a modified dominance rule which is applied to eliminate a large number of
labels.
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In a first attempt to obtain effective heuristics for the TSPFlexTW, we implemented
such heuristic strategies in the dynamic programming based on the label-correcting LP
and the label-correcting EL without success. The arc elimination failed to significantly
speed up the algorithms. On the other hand, the modified dominance rule often was
too aggressive and fathomed all labels that could yield TSPFlexTW feasible solutions.

We then adopted an alternative approach by considering the dynamic programming
for the traveling salesman problemwith precedence constraints (TSPPC) presented by
Balas and Simonetti [4]. If such constraints are absent, then the dynamic programming
can be used as a heuristic that finds in linear time a local optimum over an exponential
size neighbourhood. In the following sections, we first describe the approach for the
TSPTWofBalas and Simonetti [4], and then extend it by including the label-correcting
LP and the label-correcting EL for the TSPFlexTW.

4.1 General heuristic dynamic programming for the TSPTW

The TSPTW can be addressed with a dynamic programming algorithm originally
proposed for the TSPPC. Let σ denote an initial ordering of the nodes i ∈ {0, . . . , n}
with depot 0 in the first position, and assume that k is a positive integer. The TSPPC
aims to find the minimum cost permutation π of σ satisfying π(0) � 1 and π(i) <

π( j) for all pairs of nodes (i , j) such that σ(i) + k ≤ σ( j), where notations σ( )

and π( ) are used to describe the positions of nodes in σ and π , respectively. This
means that aside from depot 0, which is fixed in the first position, any customer i
that precedes a customer j by k or more positions in the initial ordering σ must also
precedes customer j in any feasible permutation π . Figure 4 illustrates examples of
feasible and infeasible permutations for σ � (0, 5, 6, 7, 8, 9, 2, 3, 1, 4) and k � 4.
A dynamic programming formulation has been proposed in [3] for the TSPPC, which
finds the optimal solution in linear time with n +1 (i.e., depot 0 plus n customers), but
exponential time with the parameter k.

The above-mentioned property still holds when k is replaced by a parameter that
depends on the node i , k(i), i ∈ {0, . . . , n}. This fact enabled Balas and Simonetti
[4] to translate the customer time windows into precedence requirements and suggest
an efficient implementation of the Balas [3] dynamic programming for the TSPTW.
Since the complexity of this algorithm is exponential with k(i), i ∈ {0, . . . , n}, then
computer space and/or time may restrict the values of these parameters in order to
obtain a viable heuristic dynamic programming in linear time with n + 1.

The heuristic algorithm comprises three main stages. In the first stage, the TSPTW
is reformulated as a TSPPC. In the second stage, an auxiliary graph G∗ that bounds
the complexity of the algorithm is constructed. In the third stage, the problem is solved
by determining a shortest path in G∗. These stages are summarized as follows.

4.1.1 TSPTW–TSPPC reformulation

The heuristic dynamic programming starts by generating an initial ordering σ , in
which σ(0) � 1 and the customers are sorted in non-decreasing order of their time
window midpoints (ei + li )

/
2, i ∈ C.
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( )position iσ1 2 3 4 5 6 7 8 9 10 
0 5 6 7 8 9 2 3 1 4 

INITIAL ORDERING 

1FEASIBLE PERMUTATION  π
1 2 3 4 5 6 7 8 9 10 
0 7 5 8 6 9 1 3 4 2 

1 2 3 4 5 6 7 8 9 10 
0 8 5 7 3 6 9 1 4 2 

{ } ( ) ( )for all , 1,...,9 such that 4i j i jσ σ∈ + ≤

( ) ( )
87

note that 6 4 3σ σ+ ≤

( ) ( )2 2

6 5

but 6 3π π>

2INFEASIBLE PERMUTATION  π

( ) ( ) ( )1 1 10 1 and i jπ π π= <

( )position iπ
customer i

contradicting precedence constraints

( ){0,...,9}; 4i k∈TS PC  =P

σ

customer i

Fig. 4 Examples of TSPPC feasible and infeasible permutations

The ordering σ now can be used to derive precedence constraints. Node i placed in
position σ(i) has to precede node j whose position is σ( j) in any feasible route such
that e j +Wj + t j i > li . Hence, if j0 is the smallest index such that e j +Wj + t j i > li
for all j with σ( j) ≥ j0, then k(i) is defined as k(i) � min{ j0 − σ(i), K }, where K
is an upper bound on k(i) used to avoid the assignment of impractical values to this
parameter. Such a procedure is applied to every node in order to generate a TSPPC
from the underlying TSPTW.

4.1.2 The auxiliary graph G*

The core of the heuristic algorithm here described consists of the construction of the
auxiliary graph G∗ � (N ∗, A∗) associated with the TSPPC earlier obtained. This
graph contains a set Γ ∗ of n + 2 node layers, one layer for each position in the route,
with the depot appearing at the beginning and at the end of the route, both as starting
node o � 0, the only node in layer Γ ∗

1 , and the destination node d � n + 1, the only
node in layer Γ ∗

n+2. There is a one-to-one correspondence between TSPPC feasible
routes and o − d paths in G∗.

Let r be a counter assigning unique numbers to the nodes of a layer Γ ∗
i , i �� 1,

i �� n+2. Each node (i , j , r) ∈ Γ ∗
i represents a family of permutationsπ with depot 0

placed in position 1 and customer j placed in position i (i.e., π(0) � 1 and π( j) � i).
Customer j must be one of those ranked between positions max{2, i − K + 1} and
min{n + 1, i + K − 1} in the initial ordering σ . Moreover, there is a pair of sets

S−
(i , j , r) � {h : h ∈ C, σ(h) ≥ i , π(h) < i}

and
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S+(i , j , r) � {h : h ∈ C, σ(h) < i , π(h) ≥ i}

associatedwith each node (i , j , r) ∈ Γ ∗
i . The former consists of customers ranked i or

higher inσ but visited in a position lower than i in the permutationsπ considered by this
node, and the latter comprises customers ranked below i in σ but visited in a position

greater than or equal to i in such permutations. The pair
(
S−
(i , j , r), S

+
(i , j , r)

)
enables the

identification of all customers visited before j in a given node (i , j , r) and provides
an efficient routine to ascertain the compatibility between nodes of consecutive layers.
The arcs of G∗ only join nodes of consecutive layers with verified compatibility, i.e.,
nodes that can be part of the same feasible solution. Figure 5 depicts the auxiliary graph
G∗ corresponding to a TSPPC in which σ(i) � (0, 1, 2, 3, 4, 5, 6, 7) and k(i) � 3,
i ∈ {0, . . . , 7}. To elucidate the structure of the layers, nodes of two feasible o − d
paths are highlighted as well as their respective components.

Because each layer Γ ∗
i , i �� 1, i �� n + 2 shares a common structure of its node set

and of the arc set A∗ ∩ (
Γ ∗
i , Γ ∗

i+1

)
, a copy is generated in advance and then retrieved

for all 1 < i < n + 2 during the construction of G∗. The time complexity of finding
the shortest path o− d in this auxiliary graph is strongly related to the number of arcs
|A∗|. Since ∣

∣Γ ∗
i

∣
∣ ≤ (K + 1)2K−2, 1 < i < n+2, and no node of G∗ has an indegree

greater than K , the bound on the number of arcs of the auxiliary graph is given by
|A∗| ≤ K (K + 1)2K−2(n + 1). Despite the inherent intricacy of building G∗, detailed
guidelines are presented in [3] and [4].

4.1.3 Shortest path computation

Once G∗ has been built, the TSPTW solution is obtained by solving a shortest path
problem with time windows (SPPTW) defined on this auxiliary graph. The referred
SPPTW can be computed by a simplified label-correcting method whose components
are detailed next.

The algorithm for the SPPTW consists of a mono-directional dynamic program-
ming in which a label is denoted by LP

i , r � (s, i , r) with accumulated traveling
cost c(s, i , r). Indexes i and r assign such a label to the rth node of layer Γ ∗

i , i.e.,
(i , j , r) ∈ Γ ∗

i . On the other hand, resource s stands for the earliest timewhen service
can start at customer j associated with node (i , j , r) ∈ Γ ∗

i .
The initial label (0, 1, 1) has cost c(0, 1, 1) � 0 and is associated with the

node (1, 0, 1) ∈ Γ ∗
1 . The forward extension of a label (s, i , r) along arc A∗ ∩(

(i , j , r) ∈ Γ ∗
i , (i + 1, h, �) ∈ Γ ∗

i+1

)
towards node (i + 1, h, �) produces the new

label
(
s′, i + 1, �

)
with cost c

(
s′, i + 1, �

)
by means of the extensions

s′ � max
{
s +Wj + t jh , eh

}
(23)

c
(
s′, i + 1, �

) � c(s, i , r) + c jh (24)

which are feasible only if

s′ ≤ lh (25)
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destination depotj = →customer*  8 

feasible path (i): 0 1 2 3 4 5 6 7 8*− − − − − − − −

feasible path (ii): 0 2 1 3 4 5 6 7 8*− − − − − − − −

Fig. 5 Example of graph G*

Regarding the dominance procedure, a label
(
s1, i , r

)
dominates another label(

s2, i , r
)
if

s1 ≤ s2 (26)

c
(
s1, i , r

)
≤ c

(
s2, i , r

)
(27)
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Algorithm Heuristic dynamic programming 

// Initialization //
1 Set the values of  K  and  q

// TSPTW–TSPPC reformulation //
2 Generate σ = (0,...,n ) with σ(0) = 1 and customers sorted in non-decreasing order of (e i + l i )/2
3 Compute k ( i ) values by taking their upper bound K  into account

// G * construction//
4 Construct the auxiliary graph G *

// SPPTW computation //
5 NodL (1,0,1) ← {(0,1,1)} 
6 i  ← 1
7 While i  < n  + 2  do

// Label extension //
8 For all nodes (i , j , r ) in layer Γi

* do 
9 For all labels (s , i , r ) stored in NodL (i , j , r ) do

10 For all outgoing nodes (i +1, h , ) of  (i , j , r ) do
11 (s' , i +1, ) ← Extend ((s , i , r ), (i +1, h , ))

// Dominance checking //
12 NodL (i +1, h , ) ← Dominance (NodL (i +1, h , ), (s' , i +1, ), q )
13 End For
14 End For
15 End For
16 i  ← i +1
17 End While
18 Output the TSPTW route corresponding to the minimum cost label stored in NodL (n +2, n +1, 1)

Fig. 6 Heuristic dynamic programming algorithm

and at least one of these inequalities is strict. Additionally, a maximum number of q
non-dominated labels is imposed on any node ofG∗ in order to avoid an excessive com-

putation time. For each node (i , j , r) ∈ G∗, only the best q labels
(
L1
i , r , . . . , Lq

i , r

)

with respect to the accumulated traveling cost are stored.
Figure 6 shows a pseudocode of the heuristic dynamic programming. To initialize

the algorithm,we set the values of the parameters K and q (line 1).We then reformulate
the TSPTW as a TSPPC (lines 2 and 3) and construct the auxiliary graph G∗ (line
4). Afterwards, a simplified labeling procedure solves the TSPTW by computing a
SPPTWonG∗ (lines 5–18). This procedure is composed of a label extension procedure
(lines 8–15) and a label dominance checking (line 12). Herein, NodeL denotes the
set of labels associated with a node (i , j , r) ∈ G∗, Extend((s, i , r), (i + 1, h, �))

and Dominance
(
NodL(i + 1, h, �),

(
s′, i + 1, �

)
, q

)
represent the label extension

and dominance procedures, respectively. At the end of the algorithm, the TSPTW
route corresponding to the minimum cost label stored in NodL(n + 2, n + 1, 1) is
outputted.

4.2 Adaptations to the TSPFlexTW context

This section presents two variants of a dynamic programming algorithm for the
TSPFlexTW, which are adapted from the Balas and Simonetti [4] method. The first
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one, called heuristic LP, employs the label-correcting LP technique and the second
one, called heuristic EL, makes use of the label-correcting EL technique.

Both approaches start by reformulating the TSPFlexTW as a TSPPC. For this
purpose, the hard time windows are replaced by the flexible time windows in the
required calculations. The heuristic variants then proceed to construct the auxiliary
graph G∗. Once these steps have been carried out, the label-correcting LP and EL are
applied.

As far as the label-correcting LP is concerned, the additional cost-related resource
pen(s, i , r) is assigned to the label (s, i , r). Its forward propagation employs the same
resource extension functions (23) and (24) aswell as the same feasibility condition (25)
except that the flexible timewindows replace the hard ones in the calculations. Regard-
ing label dominance, if the inequality (26) is satisfied for a pair of labels

(
s1, i , r

)
and(

s2, i , r
)
, their penalty costs are obtained by means of the linear program (12)–(17).

Thus, label
(
s2, i , r

)
is fathomed if the inequality

c
(
s1, i , r

)
+ pen

(
s1, i , r

)
≤ c

(
s2, i , r

)
+ pen

(
s2, i , r

)
(28)

also holds and at least one of these inequalities is strict.
On the other hand, the label-correcting EL is based on the extended label defini-

tion (s, i , r , early, late) with accumulated traveling cost c(s, i , r , early, late) and
penalty cost pen(s, i , r , early, late). In the course of label extension, the penalty
costs are temporarily disregarded and the resources of accumulated earliness and late-
ness are recursively updated along the paths by means of the extension functions (19)
and (20). The label dominance checking is determined by rules (21), (22), (26) and
(27).

In both heuristic variants, only the best q labels
(
L1
i , r , . . . , Lq

i , r

)
with respect to

the accumulated traveling cost are stored for a given node (i , j , r) ∈ G∗. Therefore,
at the end of the extension procedure a set of at most q non-dominated labels LP

n+2, 1,
P � 1, . . . , q associatedwith the node (n + 2, n + 1, 1) ∈ G∗ is obtained. Each non-
dominated label stands for a TSPFlexTW feasible route and its overall cost is given by

c
(
LP
n+2, 1

)
+ pen

(
LP
n+2, 1

)
, where pen

(
LP
n+2, 1

)
is determined by the solution of LP

model (12)–(17). In both heuristic variants, the feasible routewith theminimumoverall

costminP�1, ..., q

{
c
(
LP
n+2, 1

)
+ pen

(
LP
n+2, 1

)}
corresponds to the best solution found.

The two variants of the heuristic dynamic programming algorithm (HDPA) are
denoted according to the label-correcting procedures LP and EL, i.e., HDPALP and
HDPAEL.

5 Computational experiments

This section describes the computational results of the proposed algorithms, which
were coded in C# and run on an Intel® Core™ i7-4790 CPU at 3,6 GHz with 16 GB
RAM. For all labeling methods, the Gurobi v.6.05 software was used to solve the LP
model (12)–(17).
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The algorithms were tested on two sets of instances. The first one consists of 135
symmetric Euclidean instances described in [14], with number of customers between
20 and 200 and time window widths ranging from 20 to 100 time units. They are
grouped into 27 classes of five instances with an equal number of customers and time
window widths. The name of each instance indicates the number of customers |C|, the
width of the time windows and the instance number in the class, e.g., n20w20.001 is
the first instance of the class of five instances with 20 customers and time windows
of 20 units. Since no travel time and travel cost matrices are available, these values
are calculated by truncated integer Euclidean distances and then adjusted to maintain
the validity of the triangular inequality by setting ti j � tih + th j , if tih + th j < ti j and
ci j � cih + chj , if cih + chj < ci j for each triple (i , j , h) ∈ N [6].

The second set is adapted from the real-world asymmetric traveling salesman
(ATSP) instances proposed in [17, 18], which are part of the TSPLIB [28]. These
instances consist of 17 ATSP problems coming from pharmaceutical product delivery
in Bologna. In the same manner as Dumas et al. [14], we generated time windows
for the ATSP customers. For each problem, we first constructed a second nearest
neighbour ATSP tour to determine the service start time at each customer. Then, four
instances were obtained by generating time windows around such service start times.
Each side of a time window consists of a random number drawn from a uniform dis-
tribution in the interval [0, width/2], where width � 50, 100, 200 or 400. The
service time is zero for all nodes. This procedure generated 68 instances grouped in
17 classes, with 33–170 customers per instance, and time windows between 50 and
400 units. The instance names specify the number of customers |C| and the width of
its time windows, e.g., ftv33w50 contains 33 customers and presents time windows
of 50 units.

The rest of this section is organized as follows. Section 5.1 assesses the performance
of the variants EDPALP and EDPAEL of the exact dynamic programming algorithm,
while the two variants HDPALP and HDPAEL of the heuristic dynamic programming
algorithm are analyzed in Sect. 5.2. Finally, Sect. 5.3 compares the best solutions
found for the TSPFlexTW symmetric instances with the corresponding TSPTW exact
results to highlight the benefits gained by flexible time windows.

5.1 Results of the exact variants EDPALP and EDPAEL

The symmetric and asymmetric instances were adapted to the TSPFlexTW context
by setting costs

(
δα , δβ

)
to (0.50, 1.00) and fractions

(
f ei , f li

)
to (0.10, 0.10) for all

i ∈ N . Such parameter settings correspond to the medium flexibility considered by
Taş et al. [34] in their main experiments. Then, EDPALP and EDPAEL were applied
with a computing time limit of 3600 s.

For each class of symmetric instances, Table 1 presents the results of exact methods
by using the following notation: Solved (number of instances for which the opti-
mal solution was found within the time limit), CPU (mean time in seconds), |For L|
(mean number of non-dominated forward labels), |BackL| (mean number of non-
dominated backward labels) and ‘−’ (no optimal solution was found within the time
limit). EDPALP solved 92 (68%) instances with up to 200 customers, while EDPAEL
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solved 65 (48%) instances with up to 100 customers. Regarding the 65 instances
for which both methods found the optimal solution, the mean computing time of
EDPALP is significantly lower than that of EDPAEL. Furthermore, EDPALP consis-
tently generated less non-dominated labels than EDPAEL. These results suggest that
the label-correcting LP procedure coupled with EDPALP yields a better dominance
procedure, which fathomsmore dominated labels and speed up the exact bi-directional
labeling algorithm.

We remark that the exact dynamic programming algorithms are sensitive to large
numbers of customers as well as to wide time windows. For example, both EDPALP
andEDPAEL solvedmost of the instanceswith timewindows of 80 units and involving
up to 40 customers. However, none of the algorithms coped with time windows with
more than 40 units for instances with 100 customers.

Analogous information is shown in Table 2 for each class of asymmetric instances,
which provides further evidence of the stronger dominance rules of EDPALP when
compared to EDPAEL. EDPALP solved 59 (86%) instances whereas EDPAEL solved
54 (79%). In terms of the 54 instances solved by both variants, EDPALP presented
lower CPU times and total of forward and backward labels. Taken together, the results
obtained for symmetric and asymmetric instances underline the advantage of EDPALP
with reference to exact dynamic programming. Detailed results, for each instance, are
provided in Section A of the Supplementary Electronic Material.

Mono-directional counterparts of the bi-directional algorithms EDPALP and
EDPAEL were considered in a second experiment in order to investigate the benefits
stemming from the bi-directional bounded search framework. In such counterparts,
labels are mono-directionally extended by just considering the forward propaga-
tion direction. They were applied to solve the same 203 symmetric and asymmetric
instances of the TSPFlexTW within an identical processing time limit. The obtained
results were compared to those of the bi-directional algorithms as shown in Table 3,
where columns ‘#Labels’ report the total number of non-dominated labels in memory
at the end of execution of each algorithm. The bi-directional version of EDPALP was
able to solve 8 more instances, reduced the mean computing time by around 33% and
the mean number of labels by around 20% when compared to the mono-directional
one. With reference to EDPAEL, the bi-directional version solved 8 more instances,
reduced the mean computing time by around 64% and the mean number of labels by
around 42% when compared to the mono-directional one. These results are consistent
with those of Righini and Salani [29] and subsequent studies, which have shown that
bi-directional labeling algorithms often outperform their mono-directional counter-
parts.

Since the bi-directional version of EDPALP achieved the best overall performance
among the exact variants, it was tested against an alternate optimal approach, i.e., a
state-of-art MIP solver. For this purpose, we used Gurobi v.6.05 branch-and-cut to
directly solve model (1)–(8) with default parameters except limiting the total process-
ing time to 3600 s. Table 4 displays such a comparison for symmetric and asymmetric
instance sets. The interested reader is referred to Section B of the Supplementary
Electronic Material for the detailed results obtained by the MIP solver.

Gurobi v.6.05 obtained optimal solutions for 92 (68%) symmetric instances with
up to 150 customers. Note that EDPALP solved the same number of instances, and
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Table 3 Comparison between mono-directional and bi-directional versions of EDPALP and EDPAEL

Algorithm Mono-directional version Bi-directional version

Solved #Labels CPU Solved #Labels CPU

EDPALP 143/203 22320.41a 200.63a 151/203 17840.36a 132.61a

EDPAEL 111/203 32553.79b 141.05b 119/203 18668.95b 49.55b

aMeans for the 143 instances that could be solved by both versions of EDPALP
bMeans for the 111 instances that could be solved by both versions of EDPAEL

Table 4 Comparison between EDPALP and Gurobi v.6.05

Instance set EDPALP Gurobi v.6.05

Solved CPU Solved CPU

Symmetric 92/135 139.08a 92/135 181.19a

Asymmetric 59/68 35.45b 67/68 25.65b

aMeans for the 81 symmetric instances that could be solved by both methods
bMeans for the 59 asymmetric instances that could be solved by both methods

successfully coped with up to 200 customers. Regarding the 81 symmetric instances
that could be solved by both methods, Gurobi v.6.05 required a mean CPU time
around 30% longer than EDPALP. Turning now to asymmetric instances, Gurobi
v.6.05 solved 67 (98%) out of the 68 instances to optimality and consumed lower
computing times for those 59 that also could be solved by EDPALP. Overall, these
results suggest an advantage of EDPALP for the symmetric set and a disadvantage
for the asymmetric one. Such a disagreement may be explained by the absence of the
triangular inequality property for the asymmetric instances. As stated by Li [25], the
exact dynamic programming algorithm is significantly faster for situations in which
the triangular inequality holds since the strengthened dominance condition mentioned
in Sect. 3.1.2 can be applied.

5.2 Results of the heuristic variants HDPALP and HDPAEL

Based on the prior experimentation carried out in [4], we tested the sets of values
{8, 10, 12, 14} and {10, 15, 20} for the parameters K and q, respectively. Within
a processing time limit of 3600 s, the best values (K , q) found were (8, 20) for
HDPALP and (12, 20) for HDPAEL. Note that, if the largest required k(i), i.e.,
maxi∈{0, ..., n}{ j0 − σ(i)}, does not exceed its imposed upper bound K and if no more
than q non-dominated labels are generated for each node (i , j , r) ∈ G∗, the heuristic
dynamic programming algorithms become exact. However, the investigated sets entail
instances with values of maxi∈{0, ..., n}{ j0 − σ(i)} beyond 20, which are too large for
practical use [5].

After the determination of these parameters, both heuristic variants were applied
to the TSPFlexTW instances by keeping the same flexible time window and cost
settings employed in the previous section. Table 5 summarizes the results obtained for
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symmetric and asymmetric instances. For each set, we report the number of instances
for which a feasible solution was found (Solved), the mean of best objective costs
found by the heuristic method in question (Obj.), its gap relative to the available
optimal solutions (Opt.), i.e., 100(Obj − Opt)/Opt, and CPU (mean time in seconds).
Detailed results, for each instance, can be found in Section C of the Supplementary
Electronic Material.

This table is revealing in several ways. As far as symmetric problems are concerned,
HDPALP solved 120 (88%) instances, presented a mean gap of 0.73% relative to the
available optimal solutions and required a mean computational time of approximately
223 s. On the other hand, HDPAEL solved 130 (96%) instances, achieved a mean gap
of 0.23% and expended a mean computational time of approximately 93 s. Moreover,
for the 119 instances solved by both methods, the reported means show that HDPAEL
provided better quality solutions and consumed lower CPU times. With reference to
asymmetric problems, both algorithms solved all instances with gaps smaller than
1.00% in regard to the available optimal solutions. HDPAEL was a little faster, while
HDPALP obtained a smaller mean gap.

From these results, the effectiveness of the heuristic dynamic programming variants
can be analyzed. Within the given time limit, HDPALP solved 188 (92%) instances
and HDPAEL solved 198 (97%) out of the 203 instances, whereas their exact bi-
directional counterparts EDPALP and EDPAEL solved 151 (74%) and 119 (58%)
instances, respectively. Such findings are not surprising since the number of labels
may grow exponentially with the number of arcs in the forward and backward paths
regarding exact dynamic programming. Conversely, the complexity of the heuristic
variants is bounded by |A∗| ≤ K (K + 1)2K−2(n + 1) [3], with parameters K and
q that control the combinatorial explosion of labels propagated along arcs in A∗.
Therefore, with an appropriated parameter setting (K , q), the heuristic algorithms
can cope with instances which are intractable for their exact counterparts.

To get additional support for the evaluation of the heuristics, we applied non-
parametric Wilcoxon signed rank test [21]. This test compares the expected values
EHDPALP [OC] and EHDPAEL [OC], where OC is the random variable that rep-
resents the objective cost obtained by the variants HDPALP and HDPAEL for
a set of instances. Ranks are assigned to each difference and we test the null
hypothesis EHDPALP [OC] � EHDPAEL [OC] with the alternative hypothesis
EHDPALP [OC] < EHDPAEL [OC] or EHDPALP [OC] > EHDPAEL [OC] at a
significance level α � 0.05. For the asymmetric problems, the null hypothesis
EHDPALP [OC] � EHDPAEL [OC] was accepted. However, the Wilcoxon test
showed that HDPAEL performance was superior to that of HDPALP for symmet-
ric instances. Since the numbers of non-dominated labels stored by both heuristic
variants become similar under the restrictions imposed by parameter q, this advantage
might be related to the HDPAEL faster dominance procedure, which does not require
time-consuming LP calculations.
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5.3 TSPFlexTW versus TSPTW

We also analyzed the traveling cost savings resulting from flexible time windows.
Optimal solution costs reported in [14] for the TSPTW symmetric instances were
compared to the corresponding solution costs obtained for the TSPFlexTW. Three
tests were carried out by considering different flexible time window scenarios: (1)
we kept the medium flexibility settings

(
f ei , f li

) � (0.10, 0.10) for all i ∈ N
and

(
δα , δβ

) � (0.50, 1.00); (2) we increased the values of flexibility fractions
to

(
f ei , f li

) � (0.25, 0.25) for all i ∈ N but kept the values of cost coefficients(
δα , δβ

) � (0.50, 1.00); and (3) we kept the values of flexibility fractions
(
f ei , f li

) �
(0.10, 0.10) for all i ∈ N but applied higher deviation costs

(
δα , δβ

) � (2.00, 4.00).
The higher values of parameters considered in scenarios (2) and (3) were also extracted
from Taş et al. [34]. For all scenarios, we applied EDPALP to solve the TSPFlexTW
instances with a computing time limit of 3600 s and, whenever it fails, HDPAEL is
employed with K � 12 and q � 20.

Table 6 summarizes the above-mentioned tests which are fully described in Sec-
tion D of the Supplementary Electronic Material. Column 1 shows the names of
instance classes. The next five columns refer to results obtained when solving
TSPFlexTW scenario (1). Column 2 reports the number of instances for which a
feasible solution was found (Solved). Columns 3–6 present the mean of TSPFlexTW
best objective costs obtained by EDPALP or HDPAEL which includes traveling and
penalty costs (Obj.), its associated mean traveling cost (Trav.), the mean percent-
age difference �1% between TSPFlexTW objective costs and TSPTW optimal costs
(Opt.), i.e.,100(Opt − Obj)/Obj, and the mean percentage difference �2% between
TSPFlexTW traveling costs and TSPTW optimal costs, i.e., 100(Opt − Trav)/Trav.
Analogous information is shown in Columns 7–11 and in Columns 12–16 for scenar-
ios (2) and (3), respectively. The bottom of this table provides the summary of the
percentage differences obtained for the three scenarios investigated. We remark that
the TSPFlexTW is a relaxation of the TSPTW, thus its optimal solution at most would
lead to the same objective cost as the TSPTW optimal cost. As a consequence, the
percentage differences defined above are non-negative whenever the TSPFlexTW is
solved to optimality, i.e., �1%, �2% ≥ 0. Nevertheless, since EDPALP fails in some
instances, which are heuristically solved byHDPAEL, negative percentage differences
are possible, i.e., �1%, �2% < 0.

From the examination of Table 6, it is possible to attest the advantages of flexible
time windows. With reference to scenario (1), percentage differences ranging from
−8.89 to 12.00% and from −6.59 to 13.42% were obtained for �1% and �2%,
respectively. The flexible time windows leaded to lower overall costs for 73 (54%)
instances and lower traveling costs for 82 (61%) instances than the hard timewindows.
Only few heuristic solutions found by HDPAEL presented higher overall costs (15%)
or higher travelling costs (6%) than the corresponding TSPTW. The TSPFlexTW
algorithm variants failed in 4 (3%) instances. As far as scenario (2) is concerned, the
higher flexibility fractions leaded to even better comparative figures resulting in overall
cost savings for 77 (57%) instances and traveling cost savings for 104 (77%) instances
when compared to TSPTW. The values of �1% range between −9.12 and 17.22%,
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whereas the values of�2% range between−2.00 and 23.89%.As a counterpart of such
an increased flexibility, the TSPFlexTW algorithms failed in 8 (6%) instances because
taking wider flexible timewindows into account implies a higher computational effort.
Finally, as expected, scenario (3) shows that higher penalty coefficients can possibly
eliminate the benefits of flexible time windows in terms of overall cost reduction since
higher penalties incur. However, traveling cost savings were preserved for a large
number of instances (44%). The values of �1% vary from −17.53 to 9.38%, while
the values of �2% are between −6.59 and 13.08%.

We note that the greatest cost savings were obtained for the instances with 20 ≤
|C| ≤ 60, since most of them could be solved to optimality by EDPALP. Furthermore,
wide time windows increase the TSPFlexTW instance difficult for a fixed |C| and may
lead to reduced and/or negative cost savings. For example, the solutions obtained on the
class n80w40 presented mean percentage differences �1% � 0.93/�2% � 1.60 for
scenario (1), �1% � 1.41/�2% � 4.67 for scenario (2), and �1% � 0.12/�2% �
0.18 for scenario (3).On the other hand, themean outcomes found on the class n80w80,
whose timewindows are 40units larger,were�1% � −2.07/�2% � −0.30,�1% �
−3.94/�2% � 2.98 and �1% � −6.87/�2% � −0.30 for scenarios (1), (2) and
(3), respectively.

6 Conclusions

We have considered flexible time windows in the traveling salesman problem
(TSPFlexTW) which are an expansion of the hard time windows (TSPTW). The ser-
vice of a customer can be started before or after the hard time window at a penalty cost
added to the objective function. This leads to a problem that requires the determination
of a sequence of customers and their respective service start times in order to minimize
the sum of traveling costs with earliness and lateness costs. Flexible time windows
result in a greater feasible space, which may lead to cost savings.

We have proposed two alternative extensions of exact and heuristic dynamic pro-
gramming algorithms originally proposed for the TSPTW to solve the TSPFlexTW.
Such algorithms make use of new label-correcting techniques, called label-correcting
LP and label-correcting EL, and they were tested on a variety of symmetric and asym-
metric instances from the literature.

The obtained results indicate that label-correcting LP leads to more effective exact
methods when compared to label-correcting EL. Moreover, bi-directional versions
of these approaches were superior to their mono-directional counterparts. The most
efficient exact method outperformed a state-of-art MIP solver for instances where
the triangular inequality holds and stronger dominance rules can be applied. We also
observed that exact algorithms are sensitive to large numbers of customers as well as
to wide time windows.

Regarding heuristicmethods, label-correctingEL outperformed label-correctingLP
for symmetric instances, while both presented a similar performance for asymmetric
instances. The most efficient heuristic quickly solved 198 out of the 203 instances
with up to 200 customers and time windows of up to 400 units by yielding a mean gap
smaller than 0.20% in regard to the available optimal solutions.
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The benefits gained by TSPFlexTW compared to the TSPTW have been also
assessed. The flexible time windows leaded to overall cost savings of up to 17.22%
and traveling cost savings of up to 23.89% depending on the flexibility settings
employed.Wider flexible time windows provided greater cost savings, whereas higher
penalty coefficients reduced such gains. Only few heuristic solutions found for harder
instances presented higher overall costs or higher travelling costs than the correspond-
ing TSPTW.

The algorithmic techniques suggested here may be applied to other types of routing
and scheduling problems with flexible time window constraints. Furthermore, the
proposed dynamic programming algorithms can be embedded in optimizationmethods
under the cluster-first, route-second approach for the VRPFlexTW.
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