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Abstract
The linear semidefinite programming problem is considered. To solve it, the variant
of the primal simplex method, that generalizes the corresponding method for linear
programming problems, is proposed. The passage from one extreme point of the
feasible set to another one is described. The main attention is given to pivoting in
the case, when the extreme point is irregular, i.e. the “triangular” number of rank of
the matrix in the basic point is less than number of equality type constraints in the
problem. The approach for finding a starting extreme point is proposed too. The local
convergence of the method is proven.

Keywords Linear semidefinite programming · Extreme points · Primal simplex
method · Two-phase method · Local convergence

1 Introduction

Linear semidefinite programming problems are very important generalizations of lin-
ear programming problems [1–3]. The semidefinite optimization problem, represented
in standard form, can be expressed as a problem of minimizing a linear objective func-
tion on the cone of positively semidefinite symmetricmatrices subject to linear equality
constraints [4,5]. Many convex nonlinear problems of mathematical programming, as
well as problems of discrete and combinatorial optimization are reduced to such type
statements [4,6]. Moreover, semidefinite programming includes second order cone
programming as a special case [7].

To date, effective primal-dual methods proposed in [4,5] for solving linear semidef-
inite programming problems mainly generalize interior point techniques earlier
developed for linear programming problems. The simplex-type methods had been
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studied lesser, and there are a number of reasons for this. Among them, one of the
main ones is the lack of polyhedral property for the cone of positively semidefinite
matrices. As a consequence, the feasible region has infinitely many extreme points.
Nevertheless, there are some methods which are extensions of primal simplex method
for linear programming.

In [8] a fairly universal generalization of the simplexmethod for problemswith con-
straints defined in the form of linearmatrix inequalities is proposed. Another version of
the simplex method for semi-definite programming, using finite approximations of the
coneof positively semidefinitematrices, is given in [9]. For problemsof conic program-
mingwith arbitrary closed convex cones, the generalization of the simplexmethodwas
considered in [10]. Pivoting procedure for a class of second-order cone programming
problems having one second-order cone, but possibly additional non-negative vari-
ables, have been proposed in [11]. Simplex-type algorithms for second-order cone pro-
gramming via semi-infinite programming reformulation were considered also in [12].

The purpose of this paper is to develop a standard simplex pivoting procedure
similar to one used in linear programming. The main attention is given to pivoting
in the case, when the number of equality type constraints does not coincide with the
number of variables in the problem, equal to the so-called “triangular” number (the
number of elements of symmetric matrices on and below the main diagonal). The
preliminary variant of the method was proposed earlier in [13]. Here we present also
the special procedure for finding an extreme point of the feasible set in the case when
only an arbitrary point of this set is known. The approach used at this first stage of the
method is borrowed from the affine-scaling method proposed in [14]. In this method
it is allowed to move along the faces of the feasible set and in addition to jump from
one face to another.

Thework consists of five sections. In Sect. 1, we give the formulation of the problem
and present the optimality conditions. In Sect. 2, main assertions concerning the char-
acterization of extreme points and their nondegeneracy are formulated. In Sects. 3 and
4, the passage from one extreme point of the feasible set to another one is described.
In the end of the Sect. 4, we prove also the local convergence of the method. Finally,
in Sect. 5 we consider the approach for finding an extreme point of the feasible set
when only an arbitrary admissible point of this set is known.

Here is the notation used throughout this paper. We denote by D(a) the diagonal
matrix with a vector a on its diagonal. We use also “,” for adjoining vectors or com-
ponents of a vector in a row and “;” for adjoining them in a column. Thus for instance
a = [a1; . . . ; an]. The same rule is applied for matrices. The identity matrix of order
n is denoted by In . The zero n-dimensional vector and the zero (m × n) matrix are
denoted by 0n and 0mn , respectively.

2 The semidefinite optimization problem and optimality conditions

Let Sn denote the space of real symmetric matrices of order n, and let Sn+ denote the
cone of positive semidefinite matrices from S

n . To specify that a matrix M ∈ S
n is

positively semidefinite, we will also use the inequality M � 0. The dimension of Sn

is equal to so-called nth “triangular” number n� = n(n + 1)/2.
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The inner product of two matrices M1 and M2 from S
n is defined as M1 • M2 =

tr (M1M2). In the case where M1 and M2 are positively semidefinite matrices from
S
n , the inequality M1 • M2 ≥ 0 takes place. Moreover, M1 • M2 = 0 if and only if
M1M2 = M2M1 = 0nn . The cone Sn+ is self-dual.

Consider the linear semidefinite programming problem in standard form

min C • X ,

Ai • X = bi , i = 1, . . . ,m, X � 0.
(1)

Here the matrices C , X , and Ai belong to the space Sn . We assume that the matrices
Ai , 1 ≤ i ≤ m, are linearly independent. The dual problem to (1) is

max〈b, u〉,
m∑

i=1
ui Ai + V = C, V � 0, (2)

whereb = [b1; . . . ; bm],V ∈ S
n , and angular brackets stand for usualEuclidean scalar

product in R
m . Below the matrix V = C − ∑m

i=1 u
i Ai , depending from u ∈ R

m , is
denoted by V (u). We suppose that both problems (1) and (2) have solutions.

Let X∗ be an optimal solution of problem (1), and let [u∗, V∗] be an optimal solution
of problem (2). There is the relation V∗ = V (u∗) between u∗ ∈ R

m and V∗, and
both symmetric positive semidefinite matrices X∗ V∗ commute among themselves.
Therefore, there exists the orthogonal matrix Q such that X∗ = QD(η∗)QT V∗ =
QD(θ∗)QT , where D(η∗) and D(θ∗) are diagonal matrices with vectors η∗ and θ∗
at diagonals. These vectors are composed from eigenvalues of matrices X∗ and V∗
respectively, i.e.

η∗ =
[
η1∗; . . . ; ηn∗

]
, θ∗ =

[
θ1∗ ; . . . ; θn∗

]
.

For any pair of eigenvalues ηi∗ and θ i∗, 1 ≤ i ≤ m, the following complementary condi-
tion holds, which means that ηi∗ ≥ 0, θ i∗ ≥ 0 and ηi∗θ i∗ = 0. The strict complementary
condition means in addition that ηi∗ + θ i∗ > 0 for all 1 ≤ i ≤ m.

Consider the optimality conditions for pair of problems (1) and (2). Since we
suppose that solutions of these problems exist, the following system of equalities and
inequalities

X • V = 0,
Ai • X = bi , 1 ≤ i ≤ m,

V = C − ∑m
i=1 u

i Ai ,

X � 0, V � 0

(3)

has the solution.
Let us write the equalities from (3) in different form using the operation of vector-

ization of matrices. For a square matrix M of order n, denote by vecM the column
vector of length n2, in which columns of M are stacked one after another. If the matrix
M is symmetric, then, instead of vecM , it is reasonable to use the column vector
svecM of smaller dimension n�. This vector contains the lower parts of columns of
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M starting from the diagonal element, and each off-diagonal element is multiplied by√
2. Then the scalar product M1 • M2 of two matrices M1 ∈ S

n and M2 ∈ S
n can be

written as the usual scalar product in the spaceRn� , i.e.M1•M2 = 〈svecM1, svecM2〉.
Using the vector representation of matrices, we can rewrite the equalities from (3) in
the following form

〈svecX , svecV 〉 = 0, AsvecsvecX = b, svecV = svecC − AT
svecu. (4)

Here Asvec is the matrix of size m × n� with the rows svecAi , 1 ≤ i ≤ m.
For passing from vecM to svecM and vice versa, for passing from svecM to vecM ,

we will need special elimination and duplication matrices (see [15,16]), denoted by
L̃n and D̃n . They are full rank matrices of size n� × n2 and n2 × n�, respectively. If
M is a symmetric matrix of order n, then svecM = L̃nvecM and vecM = D̃nsvecM .
Observe that L̃n and D̃n are somewhat different from the elimination and duplica-
tion matrices Ln and Dn from [15]; specifically, L̃n = D(svecEn)Ln and D̃n =
DnD−1(svecEn).Here En is the squarematrix of ordernwith all elements equal to one.

Variousways of solving the system (4), supplemented by requirements thatmatrices
X and V must be positive semidefinite, lead to various numerical methods for solving
the problems (1) and (2). Below we will consider one of these ways which can be
treated as the generalization of the simplex method for linear programming problems.

3 Extreme points of the feasible set

Let

FP =
{
X ∈ S

n+ : Ai • X = bi , 1 ≤ i ≤ m
}

,

be the feasible set of problem (1). In what follows, we will concern with faces and
extreme points of FP . The set FP is an intersection of the cone S

n+ with the affine
set FA = {

X ∈ S
n : Ai • X = bi , 1 ≤ i ≤ m

}
. Since both these sets are convex,

faces of the set FP are intersections of faces of Sn+ and FA. Faces of the cone Sn+ are
defined by subspaces L of the space R

n , namely G is the face of Sn+ if and only if
G = G(L) = {

M ∈ S
n+ : R(M) ⊆ L

}
. Here R(M) denote the space of columns of

the matrix M . If the dimension of L is equal to r , then rank M ≤ r for all matrices
M from G. Furthermore, the dimension of G(L) is equal to r�. The matrix M ∈ G(L)

can be represented as M = QΛQT , where Q is a full rank matrix of the size n × r ,
and Λ ∈ S

r+. For all matrices M ∈ G(L) the matrix Q is the same. The dual face
G�(L) to the G(L) is the face which is defined by the orthogonal subspace L⊥, i.e.
G�(L) = G(L⊥).

The minimal face of the cone Sn+ containing the point X has the following form

Gmin(X;Sn+) = {Y ∈ S
n+ : R(Y ) ⊆ R(X)}.
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Thus, if the matrix X ∈ S
n+ has rank r , then the face Gmin(X;Sn+) is isomorphic

to the cone S
r+, and, therefore, has the dimension r�. The dual face G∗

min(X;Sn+) is
isomorphic to the cone Sn−r+ and has the dimension (n − r)�.

Getting over from the cone Sn+ to the feasible set FP , we obtain that the minimal
face for the point X ∈ FP with respect to the set FP is defined now as

Gmin(X;FP ) = Gmin(X;Sn+)
⋂

FA = {Y ∈ FP : R(Y ) ⊆ R(X)} .

Let r be rank of the matrix X ∈ FP , and let

X = QD(η)QT , η = [ηB; ηN ] , ηB > 0r , ηN = 0n−r , (5)

be the Cholesky factorization of X . Here Q is an orthogonal matrix of order n. We
denote by QB the n × r submatrix of Q formed from the first r columns of Q. We
denote also by AQB

i = QT
B Ai QB , 1 ≤ i ≤ m. The dimension of the face Gmin(X;FP )

is equal to value

dimGmin(X;FP ) = r� − rank
[
AQB
1 , . . . , AQB

m

]
. (6)

The point X is an extreme point of the feasible set FP if and only if the dimension
of the face Gmin(X;FP ) is equal to zero. According to (6) the matrix X ∈ FP of the
rank r is an extreme point of the set FP if and only if

rank
[
AQB
1 , . . . , AQB

m

]
= r�. (7)

For linearly independent matrices A1, A2, . . . , Am this equality can take place only
in the case, where r� ≤ m [10].

Therefore, the point X ∈ FP may be extreme only when the rank r of X is such that
r� ≤ m. We say that the extreme point X ∈ FP is regular, if r� = m. Otherwise, in
the case, where r� < m, we call the extreme point X irregular. Note that all extreme
points of FP are irregular, if m is not a “triangular” number.

The tangent space to the cone Sn+ at the point X ∈ FP , for which the factorization
(5) holds, has the following form [17]:

TX =
{

Q

[
G F
FT 0

]

QT : G ∈ S
r , F ∈ R

r×(n−r)
}

.

Thedimension ofTX is definedby the rankof thematrix X and is equal ton�−(n−r)�.

Let us give the definition of a nondegenerate point [18].

Definition 1 The point X ∈ FP is called nondegenerate, if TX +NA = S
n , whereNA

is the subspace in Sn , which is parallel to the affine set FA.

The dimension of the subspace NA is equal to n� − m. Since dim S
n = n�, the

equality TX + NA = S
n takes place if and only if dim TX + dim NA ≥ n�. Thus, in
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order the extreme point X ∈ FP be nondegenerate, the following inequalities between
the dimension of the space Sn , the rank of the matrix X and the number of equalities
m must be fulfilled: r� ≤ m ≤ n� − (n − r)�.

Let for a point X ∈ FP the factorization (5) be valid, and let QB and QN be the
sub-matrices of the orthogonal matrix Q, consisting from the first r and subsequent
n − r columns of Q, respectively. As it is shown in [18], in order that the point X be
nondegenerate, it is necessary and sufficient that the matrices

[
QT

B Ai QB QT
B Ai QN

QT
N Ai QB 0(n−r)(n−r)

]

, 1 ≤ i ≤ m,

be linearly independent.
In what follows, we assume that all extreme points of the setFP are nondegenerate.

Moreover, if the point X is irregular, then the rank r of X satisfies to the condition
r� > m − r . In this case we say, that the problem (1) is quasi-regular.

4 Pivoting at regular point

Let the starting extreme point X0 ∈ FP be given, and let the sequence of extreme
points {Xk} be generated in such a way, that the values of the objective function in
problem (1) monotonically decrease from iteration to iteration.

Assume that X ∈ FP is a current extreme point. Assume also that the rank of X
is equal to r < n, and the Cholesky factorization (5) is valid for X . It is possible to
rewrite (5) in the following form

X = QBD(ηB)QT
B . (8)

Here ηB = [η1; . . . ; ηr ] > 0r , and, as before, QB is the submatrix of the orthogonal
matrix Q, consisting from the first r columns of Q. For simplicity, we assume in this
section that X is a regular extreme point.

If X is not an optimal solution, it is desirable to pass to the new extreme point
with the lesser value of the objective function. Let us describe this passage, using the
optimality conditions (3). The idea of updating the point X is similar to one using in
the simplex method for linear programming. First of all, we define from (3) the dual
variable u ∈ R

m and calculate the weak dual variable V = V (u).
It follows from properties of the matrix trace that

X • V = tr
(
QBD(ηB)QT

BV
)

= tr
(
D(ηB)V QB

)
= D(ηB) • V QB ,

where V QB = QT
BV QB . Therefore, the equality X •V = 0 is certainly satisfiable for

the matrix V such that V QB = 0rr .
Denote by AQB

svec the m × r� matrix, whose rows are the vectors svec(AQB
i ), 1 ≤

i ≤ m. Then the equality V QB = 0rr is reduced to the following system of linear
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equations with respect to the vector u:

svecV QB = svecCQB − (AQB
svec)

T u = 0r� , (9)

where CQB = QT
BCQB .

Since by assumption the extreme point X is regular, (9) is a system of m equations
with respect to m unknowns. Moreover, according to (7) the square matrix AQB

svec is
nonsingular. Solving the system (9), we obtain

u =
(
AQB

svec

)−T
svecCQB , (10)

where notation M−T is used instead of (MT )−1. In the case, when the matrix V =
V (u) is positive semidefinite, X with [u, V ] are the solutions of problems (1) and (2)
respectively.

Assume further that V is not a positive semidefinite matrix. Observe also that the
matrix V is similar to the matrix V Q = QT V Q, and thus, its eigenvalues coincide
with eigenvalues of V Q . But V Q is a bordering matrix, since the upper left block
of V Q is zero. Therefore, if off-diagonal blocks of V Q are non-zero, then among all
eigenvalues of V Q there exist at least one negative [16].

Consider the Cholesky factorization V = HD(θ)HT of the matrix V , where H is
an orthogonal matrix, and θ is the vector of eigenvalues of V . Denote by h j the j th
column of the matrix H (the eigenvector of V ). Then V can be written also in the form

V =
n∑

j=1

θ j h j h
T
j .

Let θk be a negative eigenvalue, and let hk be the corresponding eigenvector. Then
V hk = hTk V hk = θk < 0 or, in somewhat other representation,

V hk = Chk − 〈u,Ahk 〉 = θk < 0. (11)

Here we introduce the value Chk = hTk Chk and the m-dimensional vector Ahk with
components hTk Ai hk , 1 ≤ i ≤ m.

Proposition 1 The vector hk does not belong to the subspace R(QB) generated by
the columns of the matrix QB.

Proof Indeed, if we assume that hk = QBz for some nonzero vector z ∈ R
r , then

we would have Vhk = V QBz = θk QBz. Multiplying this equality on the left by
the matrix QT

B , we get V
QB z = θk z, which is impossible, because V QB is the zero

matrix. The assertion is proven. 
�
Using the rank one matrix hkhTk , we pass to the new point X̄ by setting

X̄ = X + αΔX , ΔX = QBΔZQT
B + hkh

T
k , (12)

where ΔZ ∈ S
r , and α > 0.
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The matrix ΔZ we select in such a way that

Ai • QBΔZQT
B + Ai • hkh

T
k = 0, 1 ≤ i ≤ m. (13)

Then the updated point X̄ satisfies all equality constraints in problem (1).
Since matrices M1M2 and M2M1 have the same trace, the equalities (13) can be

rewritten as (
AQB
i

)
• ΔZ + hTk Ai hk = 0, 1 ≤ i ≤ m. (14)

If we replace matrices by their vector representations, then this system takes the form

AQB
svec svecΔZ + Ahk = 0m . (15)

Solving the system (15), we obtain

svecΔZ = −
(
AQB

svec

)−1
Ahk . (16)

Let us compute C • ΔX . According to (12) the equality

C • ΔX = CQB • ΔZ + Chk

holds. Then, taking into account (11), we get after substitution of the vector svecΔZ
from (16)

C • ΔX =
〈
svecCQB , svecΔZ

〉
+ Ch jk = −

〈

svecCQB ,
(
AQB

svec

)−1
Ahk

〉

+ Chk

= −
〈(
AQB

svec

)−T
svecCQB ,Ahk

〉

+ Chk = Chk − 〈u,Ahk 〉 = θk < 0.

(17)

Hence, the objective function decreases along the direction ΔX . Therefore, in this
case the matrixAQB

svec plays the role of basic matrix. Moreover, the matrix QB and the
vector ηB can be treated as the basic pair of variables, i.e. the basic set consisting from
the eigenvectors and eigenvalues.

For passage to the new extreme point (the updated basic pair) we must determine
the step-size α > 0. Denote X̄(α) = X + αΔX . Then the following formula

X̄(α) = X + αΔX = QB [D(ηB) + αΔZ ] QT
B + αhkh

T
k

is valid. Since the rank one matrix hkhTk is positive semidefinite, the matrix X̄(α)

remains positive semidefinite for α sufficiently small. Therefore, the maximal possible
step-size ᾱ can be find from the condition that the negative eigenvalue appears at first
time among all eigenvalues of M(α) = D(ηB) + αΔZ .

Let P be a nonsingular matrix of order r with the help of which both symmetric
matrices D(ηB) and ΔZ are reduced to the diagonal form, that is D(ηB) = PPT ,
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ΔZ = PD(λ)PT . Therefore, M(α) = P[D(ē) + αD(λ)]PT , where ē is the r -
dimensional vector with all components equal to one. It can be seen from here that the
choice of ᾱ depends on the negative component of the vector λwith maximal absolute
value. Presuppose that it is the component λ∗. Then ᾱ = −λ−1∗ . If λ ≥ 0r , the problem
(1) does not have solution, since X̄(α) ∈ FP for any α > 0. Furthermore, due to (17)
C • X̄(α) → −∞, when α → +∞.

Let the face Γ ∗
min(Xk;Sn+) be dual to the minimal face Γmin(Xk;Sn+). If the eigen-

vector hk of the matrix V (u) belongs to Γ ∗
min(Xk;Sn+), then the equality QT

Bhk = 0r
holds. The vector hk is in fact a column of the matrix QN . Hence, in this case we
exclude some vector from the basic set of eigenvectors (the columns of the matrix
QB) and introduce instead of it the new eigenvector of X , which is a column of QN .

5 Pivoting at irregular point

Assume now that the extreme point X ∈ FP is irregular, that is r� < m, and assume
also for definiteness m = r� + p, where p < r . In this case the system of equations
(9) is undetermined and, thus, can have the whole set of solutions.

Let us take the normal solution with minimal norm among all possible solutions

u =
(
AQB

svec

) [(
AQB

svec

)T (
AQB

svec

)]−1

svecCQB . (18)

Here by (7) the matrix AQB
svec has full rank equal to r�.

Again, we compute the weak dual variable V = V (u). Let θk be the negative
eigenvalue of the matrix V , and let hk be the corresponding eigenvector. It is a column
of the orthogonal matrix H . As before, the vector hk does not belong to the subspace
R(QB).

Now formula (12) for search direction ΔX is non-applicable, since system (15)
for finding the vector svecZ is overdetermined. This system has a solution only if the
vector Ahk belongs to the null-space of the matrix (AQB

svec)
T .

In order to eliminate this drawback, we alter the approach for choosing the matrix
ΔX . Namely, we define now ΔX in the form

ΔX = [QB hk]

[
ΔZ w

wT 1

]

[QB hk]
T , (19)

where ΔZ ∈ S
r and w ∈ R

r . Observe that this direction ΔX coincides with the
direction (12), when w = 0r .

Let us take

w = 1

2
W̃ y, W̃ = [

w̃1, . . . , w̃p
]
, (20)

where all columns w̃ j ∈ R
r , 1 ≤ j ≤ p, of the matrix W̃ are linearly independent,

and y ∈ R
p. Furthermore, we require that the vectors qw j = QBw̃ j , 1 ≤ j ≤ p, be

orthogonal to the vector hk , i.e.
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〈hk, qw j 〉 =
〈
QT

Bhk, w̃ j

〉
= 0, 1 ≤ j ≤ p. (21)

All vectors qw j , 1 ≤ j ≤ p, belong to the subspaceR(QB). The vector qy = QBW̃ y
also belongs to this subspace, and according to (21) hTk qy = 0.

Now we have instead of (14)

AQB
i • ΔZ + 2

〈
QT

B Aihk, w
〉
+ hTk Ai hk = 0, 1 ≤ i ≤ m,

or after substitution of the vector w from (20)

AQB
i • ΔZ +

〈
QT

B Aihk, W̃ y
〉
+ hTk Ai hk = 0, 1 ≤ i ≤ m. (22)

The second term in (22) can be rewritten also as
〈
QT

B Aihk, W̃ y
〉
= 〈hk, Ai QBW̃ y〉.

Let B be a matrix of the size m × p with the (i, j) element equal to hTk Aiqw j ,
1 ≤ i ≤ m, 1 ≤ j ≤ p, that is

B =
⎡

⎢
⎣

hTk A1QBw̃1 . . . hTk A1QBw̃p
...

hTk AmQBw̃1 . . . hTk AmQBw̃p

⎤

⎥
⎦ .

Note that By =
[
A
hkqy
1 ; . . . ; Ahkqy

m

]
, where A

hkqy
i = hTk Aiqy, 1 ≤ i ≤ m.

Putting together all equations (22), we obtain

AQB
svecsvecΔZ + By + Ahk = 0m . (23)

The system (23) is a system of m equations with respect to m unknowns, namely,
components of the vectors svecΔZ ∈ R

r� and y ∈ R
p.

We take the (p × m) matrix Ũ , whose rows are linearly independent vectors
ũ1, . . . , ũ p from the null-space of the matrix (AQB

svec)
T . Further, we compose from

(AQB
svec)

T and Ũ the square matrix Ω = [
(AQB

svec)
T ; Ũ]

of order m. The matrix Ω is
non-singular, and their rows generate the space Rm .

Let Φ denote the square non-singular matrix Φ = (AQB
svec)

T AQB
svec of order r�.

After multiplying the system (23) from the left on the matrix Ω we get the equivalent
system which is decomposed in two subsystems

Φ svecΔZ + (AQB
svec)

T
[
By + Ahk

]
= 0r� , Ũ

[
By + Ahk

]
= 0p. (24)

We find from the first subsystem (24)

svecΔZ = −Φ−1(AQB
svec)

T
[
By + Ahk

]
. (25)
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Proposition 2 LetR(B) andR(AQB
svec) be columns spaces of the matricesB andAQB

svec,
respectively. Let alsoR(B) ∩ R(AQB

svec) = ∅. Then the matrix ŨB is nonsingular.

Proof We will show that the homogeneous system of equations ŨBy = 0p has only
the trivial solution y = 0p. By contradiction, assume that this is not a case. Then there
exists the nonzero vector y ∈ R

p, satisfying this system. Since B is a full rank matrix,
the nonzero vector z = By must belong to the null-space of the matrix Ũ , which
coincides with the column space of the matrix AQB

svec. We come to contradiction. The
assertion is proven.

Solving the second subsystem (24) and taking into consideration the assertion 2,
we get

y = −
(
ŨB

)−1
ŨAhk . (26)

Denote B̃ = B
(
ŨB

)−1
Ũ . Then after substituting the vector y into expression (25)

for svecΔZ we get

svecΔZ = Φ−1(AQB
svec)

T
[
B̃ − Im

]
Ahk . (27)

Compute now the derivative of the objective function along ΔX .

Proposition 3 The matrix ΔX is the decreasing direction for the objective function in
problem (1). Moreover, C • ΔX = θk .

Proof We have

C • ΔX =
[
QT

BCQB QT
BChk

hTk CQB hTk Chk

]

•
[

ΔZ w

wT 1

]

.

Hence,
C • ΔX = 〈svecCQB , svecΔZ〉 + 2〈CQBhk , w〉 + Chk , (28)

where CQBhk = QT
BChk .

We will compute separately the first and the second terms in the right hand side of
(28). For the first term we obtain

〈svecCQB , svecΔZ〉 = 〈svecCQB , Φ−1(AQB
svec)

T
[
B̃ − Im

]
Ahk 〉

= 〈AQB
svecΦ

−1svecCQB ,
[
B̃ − Im

]
Ahk 〉

= 〈u,
[
B̃ − Im

]
Ahk 〉 = 〈u, B̃Ahk 〉 − 〈u,Ahk 〉.

Moreover, due to (26) 〈u, B̃Ahk 〉 = −〈u,By〉 = −∑m
i=1 u

i A
hkqy
i .

For the second term in (28) the following equality

2〈CQBhk , w〉 = 〈CQBhk , W̃ y〉 = 〈Chk, Q
BW̃ y〉 = 〈hk,Cqy〉 = Chkqy ,
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holds, where Chkqy = hTk Cqy .
According to (11) Chk − 〈u,Ahk 〉 = hTk V hk = θk . Taking also into account that

Vhk = θkhk and that the vector qy = QBW̃ y is orthogonal to the vector hk , we obtain

Chkqy − ∑m
i=1 u

i A
hkqy
i = hTk Vqy = θkhTk qy = 0. Therefore,

C • ΔX = θk < 0.

Thus, the objective function in the problem (1) decreases along the direction ΔX . The
assertion is proven.

The choice of the maximal possible step-size α is carried out similar to the regular
case. The matrix X is positive semidefinite. It follows from (19) that the symmetric
matrix X̄(α) = X + αΔX will remain positive semidefinite for α sufficiently small.
The maximal possible ᾱ can be found from the condition that this matrix preserves
its positive semi-definiteness. Therefore, ᾱ must be the minimal positive number such
that

det

[
D(ηB) + αΔZ αw

αwT α

]

= 0.

Under α > 0 we have

det

[
D(ηB) + αΔZ αw

αwT α

]

= α det
[
D(ηB) + α

(
ΔZ − wwT

)]
.

Hence, determination of ᾱ reduces to determination of minimal positive α such that
det

[
D(ηB) + α

(
ΔZ − wwT

)] = 0. Both matrices D(ηB) and G = ΔZ − wwT

are symmetric, the matrix D(ηB) is positive definite. Therefore, these matrices can
be reduced by congruent transformation to the diagonal form with the help of a non-
singular matrix P , i.e. D(ηB) = PPT , G = PD(λ)PT .

If among all components of the vector λ = [λ1, . . . , λr ]T there exists at least one
negative component, then the value ᾱ is finite and it is equal to ᾱ = −λ−1∗ , where λ∗
is the maximal by absolute value negative component of the vector λ. Otherwise, the
problem (1) has not solution.

Consider the question about convergence of the method. For simplicity, let us
assume that at each iteration we take the negative eigenvalue θk such that its absolute
value is maximal among all other negative eigenvalues.

Theorem 1 Let the problem (1) be quasi-regular. Let also the starting extreme point
X0 ∈ FP be such, that the set FP (X0) = {X ∈ FP : C • X ≤ C • X0} is bounded.
Then either the sequence of extreme points {Xk} ⊂ FP (X0), generated by simplex-
method, is finite and in this case the last extreme point is the solution of problem (1),
or the sequence {Xk} is infinite and any limit point of {Xk} is the solution of (1) too.

Proof If the sequence {Xk} is finite, then method is stopped at some iteration. This
event may occur only if all eigenvalues of the matrix Vk = V (uk) involved in the
determination procedure of uk are non-negative. Hence, the pair [uk, Vk] is the feasible
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point in the dual problem (2). But in this situation all optimality conditions (3) are
fulfilled, therefore, Xk is the solution of the problem (1).

Let us consider now the case, where the sequence {Xk} is infinite. Since this
sequence is bounded, there exist the limits points of {Xk}. Let Xks → X̄ . Because of
the done assumptions and the rule for the step-size αk choice, regardless the extreme
point Xk with rank r is regular or irregular, the next point Xk+1 will be an extreme
point with the same rank r . Therefore, the point X̄ is an extreme point too.

All points Xks from the sequence {Xks } are such that corresponding matrices
QB from factorization (8) have the same Frobenius norm, to be exact, ‖QB‖F =
(
tr QT

BQB
)1/2 = √

r . Consequently, these matrices QB belong to the compact set,
and it is possible to extract from {Xks } the subsequence, for which the corresponding
matrices QB converge to certain matrix Q̄B such that Q̄T

B Q̄B = Ir . Without loss of
generality, we regard that the sequence {Xks } possesses this property.

Consider the matrix (AQ̄B
svec)

T , entering in the system (9) for finding the vector of
dual variables ū at the point X̄ . Since X̄ is an extreme point, this matrix has full rank
coinciding with the row rank. From here, taking into consideration the continuity of
vectors svecCQB , we conclude that solutions uks defined either by formula (10) or by
formula (18) converge to ū.

Determine the matrix V̄ = V (ū). This matrix V̄ must be positive semi-definite.
Indeed otherwise V̄ would have a negative eigenvalue. However, eigenvalues of matri-
ces are Lipschitz continuous. Therefore, matrices Vks sufficiently close to V̄ also have
negative eigenvalues. Hence, these iterations correspond to the passage from the points
Xks to the next points Xks+1 with the step-size αks > 0. Moreover, the value of the
objective function decreases by αks θ̄

ks , where θ̄ks is a negative component of θks with
a maximum absolute value. However, it follows from (16) or (27) that matrices ΔXks
are bounded by norm at FP (X0). Therefore, we have C • Xks+1 < C • X̄ at certain ks
iteration. In view of monotone decrease of the values of the objective function along
the trajectory, this contradicts to convergence of {Xks } to X̄ . The theorem is proven.


�

It is possible to show that, if the problems (1) and (2) are nondegenerate and their
solutions are strictly complementary, then the bounded set FP (X0) from conditions
of the theorem (1) exists.

6 Initial stage of themethod

Suppose that we have a point X ∈ FP , which is not an extreme point of FP . Suppose
also that rank of X is equal to r ≤ n, and for X the Cholesky factorization (5) holds.
As before, we assume, that the positive eigenvalues of X are at the beginning of the
vector η = [ηB; ηN ], and QB is the n × r left submatrix of an orthogonal matrix Q.

We replace the basic problem (1) by its reduction on the minimal face Gmin(X;Sn+):

min C • X ,

Ai • X = bi , 1 ≤ i ≤ m, X ∈ Gmin(X;Sn+).
(29)
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Taking into account that points fromGmin(X;Sn+) can be represented as X = QBZQT
B ,

where Z ∈ S
r+, we rewrite the problem (29) in the following form

min CQB • Z ,

AQB
i • Z = bi , 1 ≤ i ≤ m, Z � 0.

(30)

The optimality conditions (3) for semidefinite programming problem (30) and for
dual problem to it can be written also as

Z ◦ V QB = 0, V QB = CQB − ∑m
i=1 u

i AQB
i ,

AQB
i • Z = bi , 1 ≤ i ≤ m, Z � 0, V QB � 0,

(31)

where M1 ◦ M2 = [M1M2 + M2M1] /2 is the symmetrized product of matrices M1
and M2. Using the well-known formula vecM1M2M3 = (

MT
3 ⊗ M1

)
vecM2, where

the symbol⊗ denotes the Kronecker product of matrices, we obtain, that the equalities
from (31) can be represented as

Z̃⊗ svecV QB = 0r� , AQB
svec svecZ = b, svec V QB = svecCQB −

(
AQB

svec

)T
u.

(32)
Here and in what follows Z̃⊗ = L̃r Z⊗D̃r , and Z⊗ = 1

2 [Z ⊗ Ir + Ir ⊗ Z ] is the
Kronecker product of Z .

We substitute the vector svec V QB from the third equality (32) to the first one. Then
after multiplying both sides of this equality by the matrixAQB

svec we obtain the equation

ΓQB (Z̃⊗)u = AQB
svec Z̃

⊗svecCQB , (33)

in which ΓQB (Z̃⊗) = AQB
svec Z̃⊗(AQB

svec)
T . The matrix ΓQB (Z̃⊗) is nonsingular, if

matrices AQB
i , 1 ≤ i ≤ m, are linearly independent. In the case, where r� ≥ m,

necessarily the matrix ΓQB (Z̃⊗) is nonsingular. It follows from assumption that the
point X is nondegenerate.

Solving the system (33), we get u(Z) = Γ −1
QB

(Z̃⊗)AQB
svec Z̃⊗svecCQB . Thus,

svecV QB = P(Z̃⊗)svecCQB , where P(Z̃⊗) = Ir� − (AQB
svec)

TΓ −1
QB

(Z̃⊗)AQB
svec Z̃⊗.

After substitution of the vector svecV QB in the first equality (31) we derive the
system of nonlinear equations

Z̃⊗ P(Z̃⊗) svecCQB = 0r� (34)

with respect to the matrix Z .
Using the left hand side of equation (34), it is possible to pass from Z to another

point Z̄ with decreasing of the value of the objective function in problem (30), namely,
Z̄ = Z−αΔ(Z),whereα > 0, andΔ(Z) is a symmetricmatrix forwhich svecΔ(Z) =
Z̃⊗ P(Z̃⊗) svecCQB . The direction ΔZ is such that equalities AQB

i • Δ(Z) = 0,
1 ≤ i ≤ m, hold, and CQB • Δ(Z) ≥ 0.
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Denote X̄(α) = QB [D(ηB) − αΔ(Z)] QT
B . Since the matrix D(ηB) is positive

definite, the matrix D(ηB) − αΔ(Z) for sufficiently small α remains positive definite
too. The maximal possible step-size α∗ can be found from the condition that some
eigenvalue of the matrix D(ηB) − αΔ(Z) for the first time becomes zero. In this case
the feasible point X̄(α∗) is such that the rank of the matrix X̄(α∗) is less than the
rank r of the matrix X . If X̄(α∗) is not an extreme point, it is necessary to repeat the
procedure.

7 Conclusion

We have proposed the numerical simplex-type method for linear semidefinite pro-
gramming problems. The method can be regarded as the specific way for solving the
system of optimality conditions (3). There is also the dual simplex-type method for
solving the linear semidefinite programming problems [19]. In this method another
approach is used for solving the system of optimality conditions. The pivoting proce-
dures for both methods are quite analogous to the procedures used in primal and dual
simplex methods for linear programming. Simplex-type methods for semidefinite and
second order cone programming are particular important in the case when one must
solve a sequence of problems whose structures are similar to one another.
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