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Abstract
In this paper,wepresent a full-Newton feasible step interior-point algorithm for solving
monotone horizontal linear complementarity problems. In each iteration the algorithm
performs only full-Newton step with the advantage that no line search is required. We
prove under a new and appropriate strategy of the threshold that defines the size of
the neighborhood of the central-path and of the update barrier parameter that the
proposed algorithm is well-defined and the full-Newton step to the central-path is
locally quadratically convergent. Moreover, we derive the complexity bound of the
proposed algorithm with short-step method, namely, O(

√
n log n

ε
). This bound is the

currently best known iteration bound for monotone HLCP. Some numerical results
are provided to show the efficiency of the proposed algorithm and to compare with an
available method.

Keywords Horizontal linear complementarity problems · Interior-point methods ·
Full-Newton step · Polynomial complexity

1 Introduction

Given two square matrices M, N ∈ R
n×n and a vector q ∈ R

n , the horizontal linear
complementarity problem (HLCP) consists in finding a pair x, y ∈ R

n such that

x ≥ 0, y ≥ 0, Ny − Mx = q, xT y = 0. (1)

It is worth noting that the HLCP becomes the standard LCP if N is nonsingular. HLCP
also includes linear optimization (LO) and convex quadratic optimization (CQO), and
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finds many applications in economic equilibrium problems, traffic assignment prob-
lems, and optimization problems [7]. There are a variety of solutions approaches for
HLCP which have been studied intensively. Among them, path-following interior-
point methods (IPMs) gained much more attention than other methods [14,17]. These
methods are powerful tools to solve a wide large of mathematical problems such
as LO [14,18,20], CQO [1,18], LCP [2,7,18,20], linearly constrained optimization
(LCOO) [3], the semidefnite optimization (SDO) [5,12], and the semidefnite lin-
ear complementarity problem (SDLCP) [4]. Theoretically, HLCP can be solved by
using any algorithm for LCP, but directly solving HLCP is a better choice than using
any algorithm for LCP for solving the HLCP. The close connection between HLCP
and LO, CQO, and LCP problems, many IPMs have been successfully extended to
HLCP. For instance, Bonnans and Gonzaga [6] studied the HLCP and derived general
properties for algorithms based onNewton iterations. Huang et al. [9] proposed a high-
order feasible interior-point method for HLCP with polynomial complexity, namely,
O(

√
n log ε0

ε
). Monteiro et al. [13], studied the limiting behavior of the derivatives

of certain trajectories associated with the monotone HLCP. Zhang [14], presented
a class of infeasible IPMs for HLCP and showed under certain conditions, that the
algorithm has O(n2 log 1

ε
) as a bound of iterations. Here some other relevant refer-

ences can be found in [5,7,14,15]. Earlier, Achache [2] presented a short-step feasible
IPM for monotone standard LCP. He showed that the algorithm enjoys the iteration
bound, namely, O(

√
n log n

ε
). This study is followed by reporting some numerical

results. Besides, Wang et al. [17] analyzed IPMs for P∗(κ)-HLCP based on a new
eligible parametric kernel function. They established its complexity and presented
some numerical results. Khierfam [11] presented an infeasible interior-point method
for HLCPwhere he improved the iteration bound for an earlier proposed version. Very
recently, Darvay et al. [8] designed a feasible IPM for LO by using a new reformulation
of the central-path based on an algebraic equivalent transformation of the nonlinear
equations which defines the central-path. They established its iteration bound. More-
over, they reported some numerical tests to validate the effective of their algorithm.
Also Yong [19] proposed an iterative method based on the fixed point principle for
solving monotone LCP. He showed its global convergence to a solution of LCP after
a finite number of iterations. He reported some numerical results to show the ability
of his method.

The goal of this paper is to present a full-Newton step feasible interior-point algo-
rithm for monotone HLCP. The idea of this algorithm is to follow the centers of the
perturbed HLCP by using only full-Newton steps with the advantage that no line
search is required and restricts iterates in a small neighborhood of the central-path by
introducing a suitable proximity measure during the solution process. Then we prove
across a new appropriate choice of the defaults of the threshold of the parameter τ

which defines the size of the neighborhood of the central-path and of the update barrier
parameter θ that our algorithm is well-defined and the full-Newton step to the central-
path is locally quadratically convergent. Moreover, we derive its complexity bound,
namely, O(

√
n log n

ε
) which coincides with the best known iteration bound for such

feasible IPMs. Finally, we report some numerical results to show the ability of this
approach. Our testing problems are reformulated from the so-called NP-hard absolute
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value equations and from CQO problems. Moreover, to confirm the performance of
our method in practice, a comparison of our obtained numerical results with those
obtained with an available non interior-point iterative method is made.

The paper is organized as follows. In Sect. 2, the full-Newton step feasible interior-
point algorithm for HLCP is presented. In Sect. 3, the complexity analysis and the
currently best known iteration bound for short-stepmethods are established. In Sect. 4,
numerical results are reported. Finally, a conclusion and future works are drawn the
last section of the paper.

The following notations are used throughout the paper.For a vector x ∈ R
n , the

Euclidean and the infinity norm are denoted by ‖x‖ and ‖x‖∞, respectively. Given
two vectors x and y in R

n , xy = (xi yi )1≤i≤n denotes their coordinate-wise product
and the same as for the vectors x/y = (xi/yi )1≤i≤n ,

√
x = (

√
xi )1≤i≤n and x−1 =

(1/xi )1≤i≤n . For x ∈ R
n , X denotes the diagonal matrix having the components of

x as diagonal entries, i.e., X = Diag(x). The identity and the vector of all ones are
denoted by I and e, respectively. If f (x) ≥ 0, is a real valued function of a real
non-negative variable, then f (x) = O(x) means that f (x) ≤ cx for some constant
c. Finally, for a matrix A ∈ R

n×n , σmin(A) and σmax(A) denote the smallest and the
maximal singular value of A, respectively.

2 A full-Newton step interior-point algorithm for HLCP

In this section, we study first the central-path of HLCP and the search directions.
Finally, we state the generic full-Newton step feasible interior-point algorithm for
HLCP.

2.1 Central-path for HLCP

Throughout this paper, we assume that (1) satisfies the following assumptions [6,21].

• (Interior-point-condition (IPC)). There exists a pair of vectors (x0, y0) such that

Nx0 − My0 = q, y0 > 0, x0 > 0.

• (Monotonicity of (1)). The pair of matrices [N , M] satisfies

Nu − Mv = 0 ⇒ uT v ≥ 0, for any u, v ∈ R
n .

These two assumptions imply the existence of a solution for HLCP. Finding an approx-
imate solution of HLCP is equivalent to solving the following system:

{
Ny − Mx = q,

xy = 0, x ≥ 0, y ≥ 0.
(2)

The basic idea of the path-following interior-point algorithm is to replace the second
equation in (2), the so-called the complementarity condition for (1), by the parame-
terized equation xy = μe with μ > 0. Thus one may consider the following system:
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{
Ny − Mx = q,

xy = μe.
(3)

The system (3) has a unique solution denoted by (x(μ), y(μ)) for each μ > 0 [18].
Then we call (x(μ), y(μ)) the μ-center of HLCP. The set of μ-center (with μ running
through all positive real numbers) is called the central-path of HLCP. If μ → 0, then
the limit of the central-path exists and since the limit point satisfy the complementarity
condition xy = 0, the limit yields a solution for HLCP [6].

2.2 Search directions for HLCP

Now, we want to define search directions (Δx,Δy) that move in the direction of the
μ-centers (y(μ), x(μ)). ApplyingNewton’smethod for (3) for a given strictly feasible
point (x, y), i.e., the IPC holds, we get the following linear system:

{
NΔy − MΔx = 0,
XΔy + YΔx = μe − xy,

(4)

where X = Diag (x) and Y = Diag (y). The unique solution (Δx, Δy) of (4) is
guaranteed by our assumptions since the bloc matrix

(−M N
Y X

)

is nonsingular (cf Proposition 3.1 in [21]). Therefore, the new iterate is obtained by
taking a full-Newton step according to:

x+ := x + Δx, y+ := y + Δy.

Denote

v =
√
xy

μ
, (5)

and

dx = vΔx

x
, dy = vΔy

y
. (6)

One can easily check that

μdxdy = ΔxΔy, and xΔy + yΔx = μv(dx + dy). (7)

Now due to (6) and (7), system (4) becomes

{
N̄dy − M̄dx = 0,
dx + dy = pv,

(8)
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Generic feasible IPM for HLCP
Input:
A threshold parameter 0 < τ < 1 (default τ = 2√

10
);

an accuracy parameter ε > 0;
a fixed barrier update parameter 0 < θ < 1 (default θ = ( 6

23n )
1/2);

a strictly feasible point (x0, y0) and μ0 = 1
2 s.t. δ(x0y0;μ0) ≤ τ.

begin
x := x0; y := y0; μ := μ0;
While nμ ≥ ε do
Solve system (4) to obtain (Δx, Δy);
Update x := x + Δx; y := y + Δy;
μ := (1 − θ)μ;

end while
end.

Fig. 1 Algorithm 2.3

where M̄ = MXV−1, N̄ = NYV−1 with V := Diag(v) and,

pv = v−1 − v.

For the analysis of the algorithm,we use a norm-based proximitymeasure δ(v) defined
by:

δ := δ(xy;μ) = 1

2
‖pv‖. (9)

Clearly,

δ(v) = 0 ⇔ v = e ⇔ xy = μe.

Hence, the value of δ(v) can be considered as a measure for the distance between the
given pair (x, y) and the corresponding μ-center (x(μ), y(μ)).

2.3 Algorithm for HLCP

The interior-point primal-dual algorithm for HLCP works as follows. First, we use
a suitable threshold (default) value τ > 0, with 0 < τ < 1 and we suppose that
a strictly feasible initial point (x0, y0) exists such that δ(x0y0;μ0) ≤ τ, for certain
μ0 is known. Using the obtained search directions (Δx,Δy) from (4) and taking a
full-Newton step, the algorithm produces a new iterate (x+, y+) = (x +Δx, y+Δy).
Then, it updates the barrier parameter μ to (1 − θ)μ with 0 < θ < 1 and solves the
Newton system (4), and target a new μ-center and so on. This procedure is repeated
until the stopping criterion nμ ≤ ε is satisfied for a given accuracy parameter ε. The
generic feasible full-Newton step interior-point algorithm for HLCP is now presented
in Fig. 1.
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3 Complexity analysis of the algorithm

In this section, we will show across the new defaults θ and τ , described in Fig. 1, that
Algorithm 2.3 is well-defined and solves the HLCP in polynomial complexity.

3.1 Feasibility and locally quadratically convergence of the feasible full-Newton
step

We first investigate the feasibility of a full-Newton step. Then we mainly prove that
the iterate is locally quadratically convergent. We first quote the following technical
lemma which will be used later.

Lemma 1 Let δ > 0 and (dx , dy) be a solution of system (8). Then, we have

0 ≤ dTx dy ≤ 2δ2, (10)

and
‖dxdy‖∞ ≤ δ2, ‖dxdy‖ ≤ √

2δ2. (11)

Proof For the first part of the first statement, let dx and dy be the unique solution of
system (8), hence from the first equation of it, we have N̄dy − M̄dx = 0. Substitution
N̄ = NYV−1 and M̄ = MXV−1, then MXV−1dy − NYV−1dx = 0. But since the
pair [N , M] is in the monotone HLCP, so by assumption 2, we conclude that

(XV−1dy)
T (YV−1dx ) = dTx dy ≥ 0.

For the second part of it, it follows trivially from the following equality

4δ2 = ‖pv‖2 = ‖dx + dy‖2 = ‖dx‖2 + ‖dy‖2 + 2dTx dy ≥ 2dTx dy .

For the second statement, we have

dxdy = 1

4
((dx + dy)

2 − (dx − dy)
2),

and

‖dx + dy‖2 = ‖dx − dy‖2 + 4dTx dy .

But since dTx dy ≥ 0, it follows that

‖dx − dy‖ ≤ ‖dx + dy‖.
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On the other hand,

‖dxdy‖∞ = 1

4
‖(dx + dy)

2 − (dx − dy)
2‖∞

≤ 1

4
max(‖dx + dy‖2∞, ‖dx − dy‖2∞)

≤ 1

4
max(‖dx + dy‖2, ‖dx − dy‖2)

≤ 1

4
‖dx + dy‖2 = 1

4
‖pv‖2 = δ2.

Therefore, ‖dxdy‖∞ ≤ δ2. To prove the last part of it, we have,

‖dxdy‖2 = eT (dxdy)
2 = 1

16
eT ((dx + dy)

2 − (dx − dy)
2)2

= 1

16
‖(dx + dy)

2 − (dx − dy)
2‖2

≤ 1

16
(‖(dx + dy)

2‖2 + ‖(dx − dy)
2‖2)

≤ 1

16
(‖dx + dy‖4 + ‖dx − dy‖4)

≤ 1

8
‖dx + dy‖4 = 1

8
‖pv‖4 = 2δ4.

Hence, ‖dxdy‖ ≤ √
2δ2. This completes the proof. �

Lemma 2 The full-Newton step is positive if and only if e + dxdy > 0.

Proof We have,

x+y+ = (x + Δx)(y + Δy) = xy + xΔy + yΔx + ΔxΔy.

Using (6) and (7), we get

x+y+ = μ(e + dxdy).

If x+ > 0 and y+ > 0 then x+y+ > 0 and so e+dxdy > 0.Conversely, let 0 ≤ α ≤ 1
and define x(α) := x + αΔ(x), y(α) := y + αΔ(y), we have

x(α)y(α) = xy + α(μe − xy) + α2ΔxΔy.

If e + dxdy > 0 then μe + ΔxΔy > 0 and ΔxΔy > −μe. Hence

x(α)y(α) > (1 − α)xy + (α − α2)μe ≥ 0.

So x(α)y(α) > 0 for each 0 ≤ α ≤ 1. Since x(α) and y(α) are linear functions of α

and x(0) = x > 0 and y(0) = y > 0, then x(1) = x+ > 0 and y(1) = y+ > 0. This
completes the proof. �
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For convenience, we may write

v2+ = x+y+
μ

.

It is easy to deduce that

v2+ = e + dxdy ⇔ x+y+ = μ(e + dxdy). (12)

Lemma 3 If δ < 1, then x+ > 0 and y+ > 0. Thus concludes that x+ > 0 and y+ > 0
are strictly feasible for (1).

Proof FromLemma 3.2, we have seen that x+ > 0, y+ > 0 if and only if e+dxdy > 0.
Because,

1 + (dxdy)i ≥ 1 − |(dxdy)i | ≥ 1 − ‖dxdy‖∞ for all i,

so, by (11), it follows that 1 + (dxdy)i ≥ 1 − δ2. Thus e + dxdy > 0 if δ < 1. This
completes the proof. �

The next lemma shows the influence of the full-Newton step on the proximity
measure.

Lemma 4 If δ < 1. Then

δ+ := δ(v+;μ) ≤ δ2√
2(1 − δ2

.

Proof We have

2δ+ = ‖v+ − v−1+ ‖.

Due to (12), we have v+ = √
e + dxdy and v−1+ = e√

e+dxdy
. Thus implies that

2δ+ =
∥∥∥∥∥

dxdy√
e + dxdy

∥∥∥∥∥ ≤ ‖dxdy‖√
1 − ‖dxdy‖∞

.

It follows from (11) that δ+ ≤ δ2√
2(1−δ2)

. This completes the proof. �

Corollary 1 Let δ ≤ 2√
10
, thus δ+ ≤ δ2 which means the locally quadratically con-

vergence of the full-Newton step to the central-path.
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3.2 Updating the barrier parameter

The following lemma gives an upper bound for the duality gap after a full-Newton
step.

Lemma 5 Let δ ≤ 2√
10
. Then after a full-Newton step the duality gap for the pair

(x+, y+) satisfies
xT+ y+ ≤ 2μn. (13)

Proof Using (12), we have

xT+ y+ = μeT (e + dxdy) = μ(n + dTx dy).

Using (10), it follows that

xT+ y+ ≤ μ(n + 2δ2).

Now, let δ ≤ 2√
10
, then

xT+ y+ ≤ μ

(
n + 4

5

)
.

But since for all n ≥ 1, n + 4
5 ≤ 2n, this gives the required result. �

In the next lemma, we investigate the effect on the proximity of a full-Newton step
followed by an update of the barrier parameter μ.

Lemma 6 Let δ ≤ 2√
10

and μ+ = (1 − θ)μ, where 0 ≤ θ ≤ 1. Then

δ2(x+y+;μ+) ≤ 2

15
+ θ2(n + 4

5 )

4(1 − θ)
+ 4θ

15
.

In addition, if δ ≤ 2√
10
, θ = ( 6

23n )1/2 and n ≥ 2, then δ(x+y+;μ+) ≤ 2√
10
.

Proof We have,

4δ2(x+y+;μ+) =
∥∥∥∥√

1 − θv−1+ − 1√
1 − θ

v+
∥∥∥∥
2

=
∥∥∥∥√

1 − θ(v−1+ − v+) − θ√
1 − θ

v+
∥∥∥∥
2

= (1 − θ)‖v−1+ − v+‖2 + θ2

1 − θ
‖v+‖2 − 2θ(v−1+ − v+)T v+

= (1 − θ)‖v−1+ −v+‖2+ θ2

1 − θ
‖v+‖2 − 2θ(v−1+ )T v++2θ(v+)T v+.
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As (v−1+ )T v+ = n and (Lemma 3.5)

(v+)T v+ = ‖v+‖2 = 1

μ
xT+ y+ ≤

(
n + 4

5

)
,

it follows that

δ2(x+y+;μ+) ≤ (1 − θ)δ2+ + θ2(n + 4
5 )

4(1 − θ)
+ 2θ

5
.

Let δ ≤ 2√
10
, then δ2+ ≤ 2

15 , and we deduce that

δ2(x+y+;μ+) ≤ 2(1 − θ)

15
+ θ2(n + 4

5 )

4(1 − θ)
+ 2θ

5
.

Now, taking θ = ( 6
23n )1/2 then θ2 = 6

23n , hence, we get

δ2(x+y+;μ+) ≤ 2(1 − θ)

15
+

6
23n (n + 4

5 )

4(1 − θ)
+ 2θ

5
.

Now, as
6(n+ 4

5 )

23n ≤ 42
115 for all n ≥ 2, then

δ2(x+y+;μ+) ≤ 2

15
+ 21

230(1 − θ)
+ 4θ

15
.

Again, for n ≥ 2, we have θ ∈ [0, ( 3
23 )

1/2]. Letting

f (θ) = 2

15
+ 21

230(1 − θ)
+ 4θ

15
.

The function f (θ) is continuous and monotone increasing on [0, ( 3
23 )

1/2]. Therefore,

f (θ) ≤ f

((
3

23

)1/2
)

= 0.37256 <
4

10
, for all θ ∈

[
0,

(
3

23

)1/2
]

.

Then, after the barrier parameter is update to μ+ = (1 − θ)μ with θ = ( 6
23n )1/2 and

if δ ≤ 2√
10
, then

δ(x+y+;μ+) ≤ 2√
10

.

This completes the proof. �
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From Lemma 3.6, we deduce that for the defaults τ = 2√
10

and θ = ( 6
23n )1/2, Algo-

rithm 2.3 is well-defined since the conditions x > 0, y > 0 and δ(x+y+;μ+) ≤ 2√
10

are maintained during the solution process.

3.3 Iteration bound

We conclude this section with a theorem that gives us the iteration bound of Algorithm
2.3. Before doing this we apply the results obtained in the previous subsections and
get the following lemma.

Lemma 7 Assume that x0 and y0 are strictly feasible starting point such that
δ(x0y0;μ0) ≤ 2√

10
for certain μ0 > 0. Moreover, let xk and yk be the iterate

produced by Algorithm 2.3, after k iterations. Then the inequality (xk)T yk ≤ ε is
satisfied for

k ≥ 1

θ
log

(
2nμ0

ε

)
.

Proof From (13), it follows that

(xk)T yk ≤ 2nμk = 2n(1 − θ)kμ0.

Then the inequality (xk)T yk ≤ ε holds if

2n(1 − θ)kμ0 ≤ ε.

Taking logarithms, we obtain

k log(1 − θ) ≤ log ε − log(2nμ0)

and using − log(1− θ) ≥ θ for 0 ≤ θ ≤ 1, then we observe that the above inequality
holds if

kθ ≥ log ε − log(2nμ0) = log

(
2nμ0

ε

)
.

This implies the lemma. �
Theorem 1 If θ = ( 6

23n )1/2 and μ0 = 1
2 , then Algorithm 2.3 requires at most

O
(√

n log
n

ε

)

iterations for getting an ε-approximate solution of (1).

Proof Let θ = ( 6
23n )1/2 andμ0 = 1

2 , by usingLemma3.7, the proof is straightforward.
�
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4 Numerical results

In this section, we test Algorithm 2.3, on some monotone HLCPs which are reformu-
lated from three interesting problems, namely the absolute value equation (AVE) (see,
e.g. [10,12,15]), convex quadratic optimization programs and the monotone standard
LCP, respectively.
The AVE considered here, is of the type:

Ax − B|x | = b, (14)

where A, B ∈ R
n×n , b ∈ R

n and |x | denotes the vector in R
n with absolute values

of components of x . Indeed, for x ∈ R
n , we define x+ = max(x, 0) and x− =

max(0,−x). Then it is easy to conclude that

x+ ≥ 0, x− ≥ 0, x = x+ − x−, |x | = x+ + x− and x+T x− = 0.

Therefore, the AVE is equivalent to the following HLCP: find x+ ≥ 0 and x− ≥ 0
such that {

Nx+ − Mx− = q
x+T x− = 0,

(15)

with N = A − B, M = A + B and q = b. It shown under the condition that
σmin(A) > σmax(B) (cf. Proposition 2.3 in [10]), that the HCLP in (15), is reduced
to a P-matrix standard LCP and therefore the HLCP has a unique solution (x+, x−)

for every b (cf. Theorem 3.3.7 in [7]). Hence, the AVE has x = x+ − x− as the
unique solution. Now, for the implementation of Algorithm 2.3, our accuracy is set to
ε = 10−6 and we use different values of the barrier parameters μ0 and θ in order to
improve its performances. The Algorithm 2.3 is implemented on software MATLAB
7.9 and run on a PC with CPU 2.67 GHz and 4G RAMmemory and double precision
format. Now, four problems of monotone HLCP are constructed from two randomly
AVE problems and from a convex quadratic program and a monotone standard LCP.
To this end we compare our Algorithm 2.3 with an iterative fixed point method.

Problem 1 Consider the AVE problem of type (14), where A, B and b are given by

A =

⎛
⎜⎜⎜⎜⎝

8 0 −1 1 −20
1 1 1 4 25
1 −5 0 8 −10
0 8 1 −6 1
3 5 −3 0 10

⎞
⎟⎟⎟⎟⎠ , B =

⎛
⎜⎜⎜⎜⎝

−1.5 0 1.5 0.5 0.1
0 0.25 1 0 0.5
1 0.6 1 0.4 0.5
0 0.3 1 1 0
1 0 1 0 0

⎞
⎟⎟⎟⎟⎠ , b = e ∈ R

5.

One can easily check that theAVE in problem 1, has a unique solution since σmin(A) =
2.8215 > σmax(B) = 2.7434. Therefore the corresponding HLCP in (15) is strictly
monotone and its data is given by
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Table 1 Numerical results for Problem 1

θ μ0

0.5 0.05 0.005 0.0005 0.00005

Iter CPU Iter CPU Iter CPU Iter CPU Iter CPU

( 6
23n )1/2 51 0.011 42 0.0149 33 0.0194 24 0.0079 16 0.0087
1

2
√
n

52 0.0091 43 0.0112 34 0.0095 25 0.0110 16 0.0136

M =

⎛
⎜⎜⎜⎜⎝

9. 5 0 −2. 5 0.5 −20. 1
1 0.75 0 4 24. 5
0 −5. 6 −1 7. 6 −10. 5
0 7. 7 0 −7 1
2 5 −4 0 10

⎞
⎟⎟⎟⎟⎠ , N =

⎛
⎜⎜⎜⎜⎝

6. 5 0 0.5 1. 5 −19. 9
1 1. 25 2 4 25. 5
2 −4. 4 1 8. 4 −9. 5
0 8. 3 2 −5 1
4 5 −2 0 10

⎞
⎟⎟⎟⎟⎠ ,

and q = b. The strictly feasible starting point for Algorithm 2.3, is

x−
0 = (2.6677, 0.4111, 1.3168, 0.3506, 1.6744)T ,

and

x+
0 = (1.3825, 4.9548, 2.7173, 4.6145, 1.1166)T .

The unique solution of the corresponding HLCP is

x− = (0, 0, 0, 0, 0.0735)T ,

and

x+ = (0.0286, 0.6808, 0.4270, 0.5953, 0)T .

Therefore, the unique solution of the AVE is given by

x = (0.0285, 0.6808, 0.4270, 0.5953, −0.0753)T .

The numerical results with different theoretical and relaxed barrier values of μ0 and
θ are shown in Table 1.

Problem 2 The matrices A, B ∈ R
n×n , and the vector b ∈ R

n of the AVE problem
are given by
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A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

6 0.5 0.5 . . . 0.5 0
0.5 6 0.5 . . . 0.5 0

0.5 0.5 6 · · · 0.5
...

...
...

. . .
. . . 0.5 0

0.5 0.5 0.5 . . . 6 0
0 0 . . . 0 0 6

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

and

B =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

−1 0.5 0.5 . . . 0.5 0
0.5 −1 0.5 . . . 0.5 0

0.5 0.5 −1 · · · 0.5
...

...
...

. . .
. . . 0.5 0

0.5 0.5 0.5 . . . −1 0
0 0 . . . 0 0 −1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

and

b = (21, 28, . . . , 28, 21)T .

The numerical results with different size of n are summarized in Tables 2 and 3. For
the initialization of the corresponding HLCP, we take

x−
0 = 1

2
e and x+

0 = (3.4286, 4.5, . . . , 4.5, 3.4286)T .

The unique solution of HLCP is given by

x+ = (3, 4, . . . , 4, 3)T and x− = (0, . . . , 0)T .

Therefore the unique solution of the AVE is

x = (3, 4, . . . , 4, 3)T .

Next example is constructed from a convex quadratic program.

Problem 3 Let us consider the following convex quadratic program:

(P) min
x

cT x + 1

2
xT Qx : Ax ≤ b, x ≥ 0,

where Q is a symmetric semidefinite matrix in R
n×n , c ∈ R

n , b ∈ R
m , x ∈ R

n and
A ∈ R

m×n with rank(A) = m. Cottle [7] showed by invoking the K.K.T optimality
conditions that x is an optimal solution of P if and only if there exists y ∈ R

m+, and
λ ∈ R

n+ such that
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Table 2 Numerical results with θ = ( 6
23n )1/2

Size n μ0

0.5 0.05 0.005 0.0005 0.00005

Iter CPU Iter CPU Iter CPU Iter CPU Iter CPU

6 57 0.0284 47 0.0265 37 0.0271 27 0.0281 17 0.0269

12 83 0.0346 68 0.0283 54 0.0259 39 0.0265 25 0.0206

18 103 0.0452 85 0.0407 67 0.0312 49 0.0372 31 0.0265

24 120 0.0381 99 0.0340 78 0.0349 57 0.0368 36 0.0318

50 176 0.1385 145 0.1169 114 0.0734 83 0.0794 53 0.0510

100 251 0.7036 207 0.5885 163 0.4844 119 0.3945 75 0.3019

200 357 10.2619 295 9.4354 232 7.7834 169 5.7430 107 3.5279

1100 846 3549.9 698 2148 549 1511.3 401 1635 253 771.8659

Table 3 Numerical results with θ = 1
2
√
n

Size n μ0

0.5 0.05 0.005 0.0005 0.00005

Iter CPU Iter CPU Iter CPU Iter CPU Iter CPU

6 58 0.0292 48 0.0193 38 0.0256 28 0.0216 18 0.0316

12 85 0.0379 70 0.033 55 0.0307 40 0.0277 26 0.0199

18 105 0.0505 87 0.0321 68 0.0468 50 0.033 32 0.0338

24 122 0.0349 101 0.0354 80 0.0552 58 0.0436 37 0.0212

50 179 0.1258 148 0.1109 117 0.0964 85 0.0825 54 0.0604

100 256 0.7376 211 0.6271 167 0.5164 122 0.4129 77 0.3067

200 365 10.5878 301 9.5922 237 7.9824 173 5.8425 109 3.6946

1100 864 4170 713 2149.9 561 1552.9 410 1684.3 258 828.3743

⎧⎨
⎩

Qx + c + AT y − λ = 0
yT (b − Ax) = 0,
λT x = 0

⇔
⎧⎨
⎩

λ = Qx + c + AT y
μ = −Ax + 0y + b,
λT x + μT y = 0, x, y, λ, μ ≥ 0.

Therefore the K.K.T optimality conditions are equivalent to the following monotone
HLCP

Nw − Mz = q, wT z = 0, w, z ≥ 0

where

N = I , M =
(

Q AT

−A 0

)
, q =

(
c
b

)
, w =

(
λ

μ

)
, z =

(
x
y

)
.

123



1054 M. Achache, N. Tabchouche

Table 4 Numerical results for Problem 3

θ μ0

0.5 0.05 0.005 0.0005 0.00005

Iter CPU Iter CPU Iter CPU Iter CPU Iter CPU

( 6
23n )1/2 51 0.0046 42 0.0052 33 0.0042 24 0.0049 16 0.0036
1

2
√
n

52 0.0051 43 0.0057 34 0.0044 25 0.0050 16 0.0037

Let us consider the following convex quadratic program P with the following data:

A =
(

3 4 −2
−3 2 1

)
, Q =

⎛
⎝ 2 1 0
1 4 0
0 0 6

⎞
⎠ , b = (10, 2)T , c = (1, −2, 4)T .

Therefore the data of the corresponding monotone HLCP is given by

M =

⎛
⎜⎜⎜⎜⎝

2 1 0 3 −3
1 4 0 4 2
0 0 6 −2 1

−3 −4 2 0 0
3 −2 −1 0 0

⎞
⎟⎟⎟⎟⎠ , N = I , q = (1, −2, 4, 10, 2)T .

The starting point for Algorithm 2.3, is given by

z0 = e ∈ R
5 and w0 = (4, 9, 9, 5, 2)T .

The unique solution of the HLCP is given by

z∗ = (0, 0.5, 0, 0, 0)T

and

w∗ = (1.5, 0, 4, 8, 1)T .

So the unique minimum x∗ of P is attained at the point

x∗ = (0, 0.5, 0)T .

The numerical results with different theoretical and relaxed barrier values of μ0 and
θ are shown in Table 4.

In the next example,we compare the performance ofAlgorithm2.3with an available
non-interior-point method, namely, an iterative fixed point algorithm developed earlier
by Long [19]. In fact, if we take y = |z| − z ≥ 0 and x = |z| + z ≥ 0 in (1), then the
HLCP can be equivalently transformed into a system of fixed point equations
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(N + M)z = (N − M) |z| − q. (16)

Based on (16), and assume that the matrix (N + M) is nonsingular, then the iterative
fixed point algorithm can be described below as follows.
Fixed Point Algorithm.
Given an initial point z0 ∈ R

n ;
compute zk+1 = (N + M)−1(N − M)

∣∣zk∣∣ − (N + M)−1q;
set xk+1 = zk+1 + ∣∣zk+1

∣∣; until the iteration sequence {xk}k≥0 is convergent.
Yong specialized in the HLCP with N = I i.e., in monotone standard LCP, he proved
under suitable conditions that the iterative fixed point method is globally convergent
to a solution of HLCP. For more details the interested reader can consult the refer-
ence [19].

Problem 4 [19] Let us consider the following monotone standard LCP with the fol-
lowing data:

M =

⎛
⎜⎜⎜⎜⎜⎝

4 −1 0 . . . 0
−1 4 −1 . . . 0
0 −1 4 . . . 0
...

...
...

. . .
...

0 0 0 . . . 4

⎞
⎟⎟⎟⎟⎟⎠

, N = I , q = −e.

The starting point for Algorithm 2.3, is

x0 = e and y0 = (2, 1, . . . , 1, 2)T .

The unique solution of the HLCP is given by

x∗ = (0.3660, 0.4641, 0.4904, 0.4974, 0.5, . . . ,

0.5, 0.4974, 0.4904, 0.4641, 0.3660)T

and

y∗ = (0, . . . , 0)T .

So the unique solution z∗ obtained by the iterative fixed point method is

z∗ = (0.1830, 0.2321, 0.2452, 0.2487, 0.25, . . . ,

0.25, 0.2487, 0.2452, 0.2321, 0.1830)T .

The numerical results obtained by these two algorithms are shown in Table 5.

Comments. Across the obtained numerical results stated in the above tables, we see
that Algorithm 2.3 offers with these new defaults a solution for monotone HLCPs.
Moreover, Algorithm 2.3 obtains better numerical results with the relaxed parameter
μ0 = 0.00005 and the update barrier θ = ( 6

23n )1/2, since the number of iterations is
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Table 5 Numerical results for
Problem 4

Size n Algorithms

Fixed point algorithm Algorithm 2.3

Iter CPU Iter CPU

5 37 0.0401 16 0.0903

10 55 0.0215 23 0.0133

50 122 0.2030 53 0.1650

100 255 0.6410 75 0.2021

500 810 991.2144 170 348.6089

significantly reduced. Also our obtained numerical results compete well with those
obtained with the classical strategy of the update barrier parameter, namely, θ = 1

2
√
n
.

Moreover, across the numerical results obtained for Problem 4, confirm that Algorithm
2.3 performs well in practice in comparison with the iterative fixed point method since
the number of iterations and the CPU times produced by Algorithm 2.3, are always
less than those obtained by this latter.

5 Conclusion and future works

We have presented an interior-point algorithm of primal-dual type for solving mono-
toneHLCP.Weproved that the complexity of this short-step algorithm isO (√

n log n
ε

)
.

Moreover, the resulting analysis is based on a new neighborhood of the central-path
with size τ = 2√

10
and with the update barrier θ = ( 6

23n )1/2. The Algorithm 2.3
offered through the HLCP, a solution of an important class of NP-hard absolute value
equations and for convex quadratic programs.

Some interesting topics remain for further research. Firstly, the extensions of Algo-
rithm 2.3, to linear complementarity problems over symmetric cones. Secondly, the
development of infeasible interior-point algorithm based on the analysis (feasible)
given in this paper seems to be an interesting topic.
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