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Abstract
In this paper, we analyze some theoretical properties of the problem of minimizing
a quadratic function with a cubic regularization term, arising in many methods for
unconstrained and constrained optimization that have been proposed in the last years.
First we show that, given any stationary point that is not a global solution, it is possible
to compute, in closed form, a new point with a smaller objective function value. Then,
we prove that a global minimizer can be obtained by computing a finite number of sta-
tionary points. Finally, we extend these results to the case where stationary conditions
are approximately satisfied, discussing some possible algorithmic applications.

Keywords Unconstrained optimization · Cubic regularization · Global minima

1 Introduction

In this paper, we address the solutions of the following (possibly non-convex) opti-
mization problem:

min
s∈Rn

m(s) := cT s + 1

2
sT Qs + 1

3
σ‖s‖3, (1)
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where c ∈ R
n , Q is a symmetric n × n matrix, σ is a positive real number and, here

and in the rest of the article, ‖·‖ is the Euclidean norm.
In recent years, there has been a growing interest in studying the properties of

problem (1), since functions of the form of m(s) are used as local models (to be
minimized) in many algorithmic frameworks for unconstrained optimization [1–7,
11,12,14,17–19], which have been even extended to the constrained case [2,8,16]. To
be more specific, let us consider the unconstrained optimization problem

min
x∈Rn

f (x),

where f : Rn → R is a twice continuously differentiable function. The class of
methods proposed in the above cited papers is mostly characterized by the iteration
xk+1 = xk + sk , being sk a (possibly approximate) minimizer of the cubic model

mk(s) := f
(
xk

)
+ ∇ f

(
xk

)T
s + 1

2
sT∇2 f

(
xk

)
s + 1

3
σ k‖s‖3,

where σ k is a suitably chosen positive real number. Interestingly, it can be shown
that, under suitable assumptions, this algorithmic scheme is able to achieve quadratic
convergence rate and aworst-case iteration complexity better than the gradientmethod.
In particular, if∇2 f (x) is Lipschitz continuous and sk is a global minimizer ofmk(s),
Nesterov and Polyak [18] proved a worst-case iteration count of order O(ε−3/2) to
obtain ‖∇ f (xk)‖ ≤ ε. Cartis et al. [6,7] generalized this result, obtaining the same
complexity bound, but allowing for a symmetric approximation of ∇2 f (xk) to be
used in mk(s) and relaxing the condition that sk is a global minimizer of mk(s).
Moreover, superlinear and quadratic convergence rate were proved under appropriate
assumptions, but without requiring ∇2 f (xk) to be globally Lipschitz continuous.

The intuition behind the algorithm proposed by Cartis, Gould and Toint is that the
parameter σ k plays the same role as the (reciprocal of the) trust-region radius in trust-
region methods. Moreover, some theoretical properties of trust-region models can be
extended to (1), such as the existence of necessary and sufficient conditions for global
minimizers even when m(s) is non-convex [6,14,18]. In this fashion, Cartis, Gould
and Toint proposed the Adaptive Regularization algorithm using Cubics (ARC) that,
besides having the theoretical convergence properties mentioned above, is in practice
comparable with state-of-the-art trust-region methods.

In this respect, in the above cited papers different strategies were proposed to
minimize mk(s). In particular, in [6,18] some iterative techniques were devised to
compute global minimizers, that are based on solving a one-dimensional non-linear
equation.

Starting from these considerations, here we focus on the solutions of problem (1),
pointing out some theoretical properties that, besides their own interest, may be useful
from an algorithmic point of view. In particular, we first extend the results obtained
in [15] for trust-region models and we show that, given any stationary point of (1) that
is not a global minimizer, we can compute, in closed form, a new point that reduces
m(s). So, a global minimizer of (1) can be obtained by repeating this step a finite
number of times, that is, computing at most 2(k + 1) stationary points, where k is the
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number of distinct negative eigenvalues of the matrix Q. Further, we show how this
strategy can be generalized to the case where stationary conditions are approximately
satisfied, opening to a possible practical usage of the proposed results.

The rest of the paper is organized as follows. Section 2 is the core of the paper,
where we point out some theoretical properties of the stationary points of (1) and
analyze how to compute global minima by escaping from stationary points that are not
global minimizers. In Sect. 3 we generalize these properties, considering approximate
stationary points, and we briefly discuss how these results can used in a more general
framework. Finally, we draw some conclusions in Sect. 4.

2 Properties of stationary points

In this section, we present themain results of the paper. First, let us report the definition
of stationary points of problem (1) and recall a known result on necessary and sufficient
conditions for global optimality, whose proof can be found in [6]. From now on, we
indicate with I the n × n identity matrix.

Definition 1 We say that s∗ ∈ R
n is a stationary point of problem (1) if

∇m(s∗) = c + Qs∗ + σ‖s∗‖s∗ = 0,

or equivalently,

c + Qs∗ + λs∗ = 0, (2)

λ = σ‖s∗‖. (3)

Theorem 1 Apoint s∗ ∈ R
n is a globalminimizer of problem (1) if andonly if it satisfies

stationary conditions (2)–(3) and the matrix (Q + σ‖s∗‖I ) is positive semidefinite.
Moreover, s∗ is unique if (Q + σ‖s∗‖I ) is positive definite.

Now, exploiting the close relation between problem (1) and the trust-region model
(see [9] for an overview on trust-region methods), we extend the results obtained
in [15] to show that

(i) given a stationary point s̄ of (1) that is not a global minimizer, we can compute,
in closed form, a new point ŝ such that m(ŝ) < m(s̄);

(ii) a globalminimizer of (1) can be obtained by computing atmost 2(k+1) stationary
points, where k is the number of distinct negative eigenvalues of the matrix Q.

We start by proving the first point, as stated in the following theorem.

Theorem 2 Let s̄ be a stationary point of problem (1). We define the point ŝ as follows:

(a) if cT s̄ > 0, then

ŝ := −s̄;

(b) if cT s̄ ≤ 0 and a vector d ∈ R
n exists such that dT (Q + σ‖s̄‖I )d < 0,
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(i) if s̄ = 0, then

ŝ := s̄ + αd,

with

0 < α < − 3 dT Qd

2 σ‖d‖3 ;

(ii) if s̄ �= 0 and s̄T d �= 0, then

ŝ := s̄ − 2
s̄T d

‖d‖2 d;

(iii) if s̄ �= 0 and s̄T d = 0, then

ŝ := s̄ − 2
s̄T z

‖z‖2 z,

where z := s̄ + αd and

α >
cT d −

√(
cT d

)2 + (
cT s̄

) [
dT (Q + σ‖s̄‖I )d]

dT (Q + σ‖s̄‖I )d .

We have that

m(ŝ) < m(s̄).

Proof In case (a), we can write

m(ŝ) = m(−s̄) = cT (−s̄) + 1

2
s̄T Qs̄ + 1

3
σ‖s̄‖3

< cT s̄ + 1

2
s̄T Qs̄ + 1

3
σ‖s̄‖3 = m(s̄).

Now, we consider case (b) and distinguish the three subcases.

(i) From (2)–(3), we have that c = 0. Thus, we can write

m(s̄ + αd) = m(αd) = 1

2
α2dT Qd + 1

3
σα3‖d‖3, ∀α ∈ R

n .

Consequently,

m(s̄ + αd) = 1

6
α2

(
3dT Qd + 2σα‖d‖3

)
< 0 = m(s̄),
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for all 0 < α < − 3 dT Qd

2 σ‖d‖3 .
(ii) First, we observe that

∥∥∥∥s̄ − 2
s̄T d

‖d‖2 d
∥∥∥∥
2

= ‖s̄‖2 +
(
2
s̄T d

‖d‖2
)2

‖d‖2 − 4
s̄T d

‖d‖2
(
s̄T d

)
= ‖s̄‖2. (4)

Moreover, the function m(s) can be written as

m(s) = cT s + 1

2
sT (Q + σ‖s‖I )s − 1

6
σ‖s‖3. (5)

Using (4) and (5), we can write m

(
s̄ − 2

s̄T d

‖d‖2 d
)
as

cT
(
s̄ − 2

s̄T d

‖d‖2 d
)

+ 1

2

(
s̄ − 2

s̄T d

‖d‖2 d
)T

(Q+σ‖s̄‖I )
(
s̄ − 2

s̄T d

‖d‖2 d
)

− 1

6
σ‖s̄‖3.

Rearranging and taking into account that ∇m(s̄) = Qs̄ + σ‖s̄‖s̄ + c, we obtain

m

(
s̄ − 2

s̄T d

‖d‖2 d
)

= m(s̄) + 1

2

(
2
s̄T d

‖d‖2
)2

dT (Q + σ‖s̄‖I )d − 2
s̄T d

‖d‖2∇m(s̄)T d.

(6)
Stationary conditions (2)–(3) imply that ∇m(s̄) = 0. Exploiting the fact that

dT (Q + σ‖s̄‖I )d < 0, we get m

(
s̄ − 2

s̄T d

‖d‖2 d
)

< m(s̄).

(iii) Using the definition of z, we can write

zT (Q + σ‖s̄‖I )z = (s̄ + αd)T (Q + σ‖s̄‖I )(s̄ + αd)

= s̄T (Q + σ‖s̄‖I )s̄ + α2dT (Q + σ‖s̄‖I )d
+ 2αdT (Q + σ‖s̄‖I )s̄.

From stationary conditions (2)–(3), we have that Qs̄ + σ‖s̄‖s̄ = −c. So, we
obtain

zT (Q + σ‖s̄‖I )z = α2dT (Q + σ‖s̄‖I )d − 2αcT d − cT s̄.

It is straightforward to verify that the right-hand side of the above equality is
negative for all α > α̃, where

α̃ = cT d −
√(

cT d
)2 + (

cT s̄
) [
dT (Q + σ‖s̄‖I )d]

dT (Q + σ‖s̄‖I )d .
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Consequently, since z = s̄+αd withα > α̃, it follows that zT (Q+σ‖s̄‖I )z < 0.

We can thus proceed as in case (ii) by defining the point ŝ = s̄ − 2
s̄T z

‖z‖2 z and
we get the result. 
�

Remark 1 Conditions of Theorem 2 are satisfied if and only if the stationary point s̄
is not a global minimizer. It follows from the fact that, if (a) or (b) hold at s̄, then s̄ is
not a global minimizer; vice versa, if s̄ is not a global minimizer, then (Q + σ‖s̄‖I )
is not positive semidefinite (see Theorem 1) and then (b) holds.

Now, we show how the above result can be exploited to obtain a global minimizer
of (1) by computing a finite number of stationary points. We first need the following
lemma, stating that two stationary points of problem (1) with the same norm produce
the same objective value.

Lemma 1 Let ŝ and s̄ be two points satisfying stationary conditions (2)–(3) with the
same λ. Then,

m(ŝ) = m(s̄).

Proof For every pair (s, λ) satisfying (2)–(3), we can write

m(s) = cT s + 1

2
sT (−c − λs) + 1

3
σ‖s‖3

= 1

2
cT s − 1

2
λ‖s‖2 + 1

3
σ‖s‖3 = 1

2
cT s − 1

6
σ‖s‖3.

Then,

m(ŝ) = 1

2
cT ŝ − 1

6
σ‖ŝ‖3 = −1

2
s̄T (Q + λI )ŝ − 1

6
σ‖s̄‖3

= 1

2
cT s̄ − 1

6
σ‖s̄‖3 = m(s̄).


�
The following proposition establishes a bound on the maximum number of station-

ary points with different norm. The proof follows the same line of arguments used in
[6] to characterize global minimizers of the cubic model. It is entirely reported here
for the sake of completeness.

Proposition 1 At most 2(k + 1) points that satisfy (2)–(3) with distinct values of λ

exist, where k is the number of distinct negative eigenvalues of Q.

Proof First, we observe that if λ = 0, then s = 0 is the only point that satisfies (2)–(3).
So, in the following we consider the case in which λ > 0 (i.e., s �= 0). Let V ∈ R

n×n

be an orthonormal matrix such that

V T QV = M,
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where M := diagi=1,...,n{μi } and μ1 ≤ · · · ≤ μn are the eigenvalues of Q. Now, we
can introduce the vector a ∈ R

n and consider the transformation

s = Va.

Pre-multiplying (2) by V T , we get

V T (Q + λI )s = −V T c,

and then

(M + λI )a = −β,

where β = −V T c.
The above expression can be equivalently written as

ai = − βi

μi + λ
, i = 1, . . . , n. (7)

Moreover, from (3) we get

λ2 = σ 2‖s‖2 = σ 2‖Va‖2 = σ 2‖a‖2. (8)

Using (7) and (8), we can rewrite the stationary conditions as follows:

⎧
⎨
⎩
g(λ) = 1

σ 2 ,

λ > 0,
(9)

where

g(λ) := 1

λ2

n∑
i=1

β2
i

(μi + λ)2
.

Now, we have two cases.

(i) βi = 0 for all i = 1, . . . , n (i. e., c = 0). It follows that g(λ) = 0 in all the
domain and system (9) does not admit solutions. In this case, only s = 0 satisfies
stationary conditions (2)–(3).

(ii) An index i ∈ {1, . . . , n} exists such that βi �= 0 (i. e., c �= 0). Without loss of
generality, we assume that μ1, . . . , μp ≤ 0, with p ≤ n. Then g(λ) is defined in
the following n + 2 subintervals:

(−∞,−μn) ∪ (−μn,−μn−1) ∪ · · · ∪ (−μp+1, 0
)

∪ (
0,−μp

) ∪ · · · ∪ (−μ2,−μ1) ∪ (−μ1,+∞) .
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1276 A. Cristofari et al.

Computing the derivatives of g(λ), we obtain

d

dλ
g(λ) = −2

n∑
i=1

β2
i [λ(μi + λ)]−3 (μi + 2λ),

d2

dλ2
g(λ) = 2

n∑
i=1

β2
i [λ(μi + λ)]−4

[
10λ2 + 10μiλ + 3μ2

i

]
.

It is straightforward to verify that
d2

dλ2
g(λ) > 0 in all the points where g(λ) is

defined, that is, g(λ) is strictly convex in all the non-empty subintervals that define
its domain.
Taking into account that limλ→0 g(λ) = +∞, limλ→−μi g(λ) = +∞ for all βi �=
0 and limλ→±∞ g(λ) = 0, we get that g(λ) has at most 2(n + 1) roots: at most
one in each extreme subinterval and at most two in all the other subintervals.
Now, let k ≤ p be the number of distinct negative eigenvalues μi . It follows that
system (9) has at most 2k + 1 solutions: at most two in each subinterval (0,−μk),
(−μk,−μk−1), . . . , (−μ2,−μ1), and at most one in the subinterval (−μ1,+∞).
Taking into account the case λ = 0, we conclude that there exist at most 2(k + 1)
distinct values of λ satisfying stationary conditions (2)–(3). 
�
FromLemma1 andProposition 1,we easily get the following corollary, establishing

a bound on the maximum number of distinct values assumed by the objective function
m(s) at stationary points.

Corollary 1 The maximum number of distinct values of the objective function m(s) at
stationary points is 2(k + 1), where k is the number of distinct negative eigenvalues
of Q.

At least from a theoretical point of view, Theorem 2 and Corollary 1 suggest a
possible iterative strategy to obtain a global minimizer of problem (1). Namely, we
can compute a stationary point s̄ by some local algorithm and check the conditions of
Theorem 2: if none of them is satisfied, then s̄ is a global minimizer (see Remark 1);
otherwise, we get a new point ŝ such that m(ŝ) < m(s̄) and, starting from ŝ, we can
compute a new stationary point and iterate. Corollary 1 ensures that this procedure is
finite and returns a global minimizer of problem (1).

To be rigorous, the above strategy is well defined under the assumption that sta-
tionary points can be computed in a finite number of iterations by a local algorithm.
Unfortunately, optimizationmethods only ensure asymptotic convergence and, in prac-
tice, a point s̄ is returned such that ‖∇m(s̄)‖ ≤ ε, being ε a desired tolerance. In the
next section, we show how Theorem 2 can be generalized to cope with this case and
discuss possible algorithmic applications.
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3 Extension to approximate stationary points

In this section, first we extend Theorem 2 to the case where stationary conditions are
approximately satisfied, and then we briefly discuss how these results may be used in
an algorithmic framework, showing some numerical examples.

Assuming that s̄ ∈ R
n is a non-stationary point of problem (1), of course we have

‖∇m(s̄)‖ > 0, or equivalently, |∇m(s̄)T d| > 0 for some d ∈ R
n . The next theorem

states some conditions to compute a point ŝ such that m(ŝ) < m(s̄).

Theorem 3 Given s̄ ∈ R
n, let us define the point ŝ as follows:

(a) if cT s̄ > 0, then

ŝ := −s̄;

(b) if cT s̄ ≤ 0 and a vector d ∈ R
n exists such that dT (Q + σ‖s̄‖I )d < −ε2‖d‖2,

(i) if s̄ = 0 and ε2 ≥ 0, then, assuming without loss of generality that cT d ≤ 0,

ŝ := s̄ + αd,

with 0 < α < − 3 dT Qd

2 σ‖d‖3 ;

(ii) if s̄ �= 0, s̄T d �= 0 and ε2 ≥
∣∣∣∣
∇m(s̄)T d

s̄T d

∣∣∣∣, then

ŝ := s̄ − 2
s̄T d

‖d‖2 d;

(iii) if s̄ �= 0, s̄T d = 0 and ε2 >
|∇m(s̄)T s̄|

‖s̄‖2 , then, assuming without loss of

generality that ∇m(s̄)T d ≥ 0,

ŝ := s̄ − 2
s̄T z

‖z‖2 z,

where z := s̄ + αd and α > 0 is sufficiently large to satisfy

zT (Q + σ‖s̄‖I )z < −ε2‖z‖2.

We have that

m(ŝ) < m(s̄).

Proof The proof of case (a) is the same as for Theorem 2. Now, we consider case (b)
and distinguish the three subcases.
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(i) Since we are assuming that cT d ≤ 0, we can write

m(s̄ + αd) = m(αd) = αcT d + 1

2
α2dT Qd + 1

3
σα3‖d‖3

≤ 1

2
α2dT Qd + 1

3
σα3‖d‖3

and we obtain the result by the same arguments used in the proof of point (b)-(i)
of Theorem 2.

(ii) Using (6), and exploiting the fact that dT (Q + σ‖s̄‖I )d < −ε2‖d‖2, we get

m

(
s̄ − 2

s̄T d

‖d‖2 d
)

< m(s̄) − 1

2

(
2
s̄T d

‖d‖2
)2

ε2‖d‖2 − 2
s̄T d

‖d‖2∇m(s̄)T d

≤ m(s̄) − 1

2

(
2
s̄T d

‖d‖2
)2

ε2‖d‖2 + 2

∣∣s̄T d∣∣
‖d‖2

∣∣∣∇m(s̄)T d
∣∣∣

= m(s̄) − 2

∣∣s̄T d∣∣
‖d‖2

(∣∣∣s̄T d
∣∣∣ ε2 −

∣∣∣∇m(s̄)T d
∣∣∣
)

≤ m(s̄),

where the last inequality follows from the fact that ε2 ≥
∣∣∣∣
∇m(s̄)T d

s̄T d

∣∣∣∣.
(iii) Since d �= 0, we can first assume that α > 0 is sufficiently large to satisfy z �= 0.

Replacing d with z in (6), we obtain

m

(
s̄ − 2

s̄T z

‖z‖2 z
)

= m(s̄) + 1

2

(
2
s̄T z

‖z‖2
)2

zT (Q + σ‖s̄‖I )z − 2
s̄T z

‖z‖2∇m(s̄)T z.

Taking into account that z = s̄ + αd and s̄T z = s̄T (s̄ + αd) = ‖s̄‖2, we can
write

m

(
s̄ − 2

s̄T z

‖z‖2 z
)

= m(s̄) + 1

2

(
2
‖s̄‖2
‖z‖2

)2
zT (Q + σ‖s̄‖I )z − 2

‖s̄‖2
‖z‖2 ∇m(s̄)T (s̄ + αd)

≤ m(s̄) + 1

2

(
2
‖s̄‖2
‖z‖2

)2
zT (Q + σ‖s̄‖I )z − 2

‖s̄‖2
‖z‖2 ∇m(s̄)T s̄

≤ m(s̄) + 2
‖s̄‖2
‖z‖2

(
‖s̄‖2 zT (Q + σ‖s̄‖I )z

‖z‖2 +
∣∣∣∇m(s̄)T s̄

∣∣∣
)

,

(10)
where the first inequality follows from the fact that ∇m(s̄)T d ≥ 0 and α > 0.

Now, let us define θ ∈ (0, 1) such that ε2 = 1

θ

|∇m(s̄)T s̄|
‖s̄‖2 . Exploiting the fact

that θ ∈ (0, 1) and dT (Q + σ‖s̄‖I )d < −ε2‖d‖2, for sufficiently large α > 0
we have
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(
s̄

α
+ d

)T

(Q + σ‖s̄‖I )
(
s̄

α
+ d

)

‖s̄‖2
α2 + ‖d‖2

= (s̄ + αd)T (Q+σ‖s̄‖I )(s̄+αd)

‖s̄‖2+α2‖d‖2 < − θε2.

Taking into account that z = s̄ +αd and ‖z‖2 = ‖s̄‖2 +α2‖d‖2, it follows that,
for sufficiently large α > 0,

zT (Q + σ‖s̄‖I )z
‖z‖2 < −θε2.

Combining this inequality with (10), for sufficiently large α > 0 we can write

m

(
s̄ − 2

s̄T z

‖z‖2 z
)

< m(s̄) + 2
‖s̄‖2
‖z‖2

(
−θε2‖s̄‖2 +

∣∣∣∇m(s̄)T s̄
∣∣∣
)

= m(s̄),

where the equality follows from the fact that ε2 = 1

θ

|∇m(s̄)T s̄|
‖s̄‖2 . 
�

Remark 2 It is straightforward to verify that, when s̄ is a stationary point, Theorem 3
coincides with Theorem 2.

Remark 3 Using (6), Theorem 3 can be strengthened by replacing the condition b-(ii)
with the condition that a direction d exists such that s̄ �= 0, s̄T d �= 0 and

1

2

(
2
s̄T d

‖d‖2
)2

dT (Q + σ‖s̄‖I )d − 2
s̄T d

‖d‖2∇m(s̄)T d < 0.

Remark 4 From a computational point of view, condition (a) of Theorem 3 can be
easily checked with a negligible cost. To check condition (b), we have to verify if
there exists a negative curvature direction with respect to the matrix (Q + σ‖s̄‖I ).
This can be done, for example, by calculating the smallest eigenvalue and the associate
eigenvector of that matrix. If such a direction exists, we see that, for case (b)-(i), this is
enough to ensure that m(ŝ) < m(s̄). For case (b)-(ii) and (b)-(iii), we have to check if
ε2 is sufficiently large. It is easy to verify that, if ‖∇m(s̄)‖ ≤ ε, then condition (b)-(ii)
is verified whenever ε2 ≥ ε‖d‖/|s̄T d|, and condition (b)-(iii) is verified whenever
ε2 > ε/‖s̄‖. Therefore, the threshold value of ε2 for satisfying conditions b-(ii) and
b-(iii) is related to ‖∇m(s̄)‖, that is, the tolerance we have chosen to solve problem (1).

Let us concluding this section by discussing some possible algorithmic applications
of our results, even if defining a proper optimization method is beyond the scope of the
paper. A first naive strategy to exploit Theorem 3 is checking if one of its conditions
holds after that an approximate stationary point s̄ of problem (1) is computed with the
desired tolerance by a local algorithm. If this is the case, thenwe can compute the point
ŝ and restart the local algorithm from ŝ. To provide some numerical examples, we have
inserted this strategywithin theARCalgorithmdescribed in [6,7] tominimize the cubic

123



1280 A. Cristofari et al.

model at each iteration, giving rise to an algorithm that we name ARC+. In particular,
at every iteration of ARC+ and ARC, a truncated-Newton method has been used as
local solver for the minimization of the cubic model, starting from a randomly chosen
point. The codes have been written in Matlab, using built-in functions to compute
eigenvalues and eigenvectors needed to check the conditions of Theorem 3. We have
considered a set of 130 unconstrained test problems of the form minx∈Rn f (x) from
the CUTEst collection [13] and, among them, we have then selected the 39 for which
the two algorithms performed differently and both converged to a point x∗ such that
‖∇ f (x∗)‖∞ ≤ 10−5 within a maximum number of iterations, set equal to 105. The
results on this subset of problems are reported in Table 1, where obj and iter denote
the final objective value and the number of iterations, respectively. We see that, in 28
out 39 cases, ARC+ converged in fewer iterations. Taking a look to the performance
profile [10] reported in Fig. 1, we also observe that, on the considered subset of
problems, ARC+ is more robust than ARC in terms of number of iterations. We have
then repeated the same experiments by using the Cauchy point as starting point for
the minimization of the cubic model, but no significative difference emerged between
ARC+ and ARC. This opens a question about possible relations between the Cauchy
point and the global minimizers, which can be subject of future research.

It is worth pointing out that the above described ARC+ method could be too
expensive in terms of CPU time, since it requires the computation of eigenvalues
and eigenvectors at the end of each local minimization. Nevertheless, a more refined
way to exploit Theorem 3 for algorithmic purposes can be based on checking if one of
its conditions is satisfied during the iterations of the local method, instead of at the end.
This can be done efficiently when the local method is able to detect negative curvature
directions. Assuming that a sequence of points {sk} and a sequence of directions {dk}
are produced by the local algorithm, since ∇2m(sk) = Q + σ‖sk‖I + σ

sk(sk)T

‖sk‖ , we

have (dk)T (Q + σ‖sk‖I )dk = (dk)T∇2m(sk)dk − σ
((sk)T dk)2

‖sk‖ . Therefore, if dk is

a negative curvature direction with respect to ∇2m(sk), condition (b) of Theorem 3
is verified for some ε2 ≥ 0, provided cT s̄ ≤ 0. Then, a new point that ensures a
decrease in the objective function may be easily computed. In this case, condition (b)
of Theorem 3 can therefore be checked without the need of computing eigenvalues
and eigenvectors. Finally, other checks can be included in the scheme to ensure con-
vergence of such modification of the local algorithm.

4 Conclusions

In this paper, we have highlighted some theoretical properties of the stationary points
of problem (1), whose solutions are of interest for many optimization methods. We
have shown that, given a stationary point of problem (1) that is not a global minimizer,
it is possible to compute, in closed form, a new point that reduces the objective function
value. Then, we have pointed out how a global minimum point of problem (1) can be
obtained by computing at most 2(k + 1) stationary points, where k is the number of
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Table 1 Numerical results of ARC+ and ARC on CUTEst problems. ARC+ differs from ARC in that a
globalization strategy, outlined in Theorem 3, is used to minimize the cubic model at each iteration

Problem n ARC+ ARC

obj iter obj iter

BROWNAL 200 1.00e−07 103 1.00e−07 472

BROWNBS 2 7.40e−12 27552 0.00e+00 27560

CURLY10 100 − 1.00e+04 82 − 1.00e+04 281

CURLY20 100 − 1.00e+04 53 − 1.00e+04 288

CURLY30 100 − 1.00e+04 39 − 1.00e+04 590

DECONVU 63 9.10e−07 162 8.52e−07 167

DENSCHND 3 2.63e−07 2154 2.82e−07 2293

DIXMAANH 300 1.00e+00 424 1.00e+00 423

DIXMAANJ 300 1.00e+00 4762 1.00e+00 4739

DIXMAANK 300 1.00e+00 5335 1.00e+00 5265

DIXMAANL 300 1.00e+00 5008 1.00e+00 4941

EIGENCLS 462 4.70e−09 254 4.37e−09 258

ENGVAL2 3 8.49e−16 30 2.04e−20 50

FLETCHBV 10 − 2.04e+06 551 − 2.09e+06 460

GENHUMPS 10 4.49e−12 8968 2.77e−11 9283

GENROSE 100 1.00e+00 119 1.00e+00 120

GENROSEB 500 1.00e+00 505 1.00e+00 511

GROWTHLS 3 1.00e+00 271 1.00e+00 4557

GULF 3 3.51e−06 4642 3.51e−06 4640

HAIRY 2 2.00e+01 108 2.00e+01 158

HEART8LS 8 4.91e−12 86 6.97e−17 130

HUMPS 2 1.91e−10 1611 8.40e−11 1858

JENSMP 2 1.24e+02 28 1.24e+02 47

LIARWHD 100 1.39e−19 12 2.97e−20 14

LOGHAIRY 2 1.82e−01 5177 1.82e−01 5316

MEXHAT 2 − 4.00e−02 523 − 4.00e−02 68

NONCVXU2 100 2.33e+02 571 2.33e+02 572

NONDIA 100 1.57e−18 7 9.66e−26 9

OSCIPATH 10 1.00e+00 39 1.00e+00 22

PALMER6C 8 1.64e−02 21678 1.64e−02 17418

PALMER7C 8 6.02e−01 31863 6.02e−01 24683

PALMER8C 8 1.60e−01 33434 1.60e−01 14945

PARKCH 15 1.62e+03 65 1.62e+03 250

PFIT1LS 3 2.10e−10 501 4.75e−04 2810

SINEVAL 2 2.13e−17 101 5.40e−12 137

SPARSINE 100 1.83e−14 38 1.13e−10 39

SROSENBR 100 4.02e−14 12 2.13e−17 500

VARDIM 200 6.90e−31 36 7.29e−27 37

WATSON 12 3.57e−06 82 2.84e−06 91

For each problem, the smallest number of iterations is highlighted in bold
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Fig. 1 Performance profile for the number of iterations related to the numerical experiments reported in
Table 1

distinct negative eigenvalues of the matrix Q. Further, we have extended these results
to the case where stationary conditions are approximately satisfied, sketching some
possible algorithmic applications.

We think that the most natural extension of the results presented in this paper is the
definition of a proper algorithm for unconstrained optimization, based on the iterative
computation of the solutions of problem (1), for which some preliminary ideas have
been proposed at the end of Sect. 3. This can be a challenging task for future research.
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