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Abstract
This paper concerns a nonsmooth sparsity constrained optimization problem. We
present first and second-order necessary and sufficient optimality conditions by using
the concept of normal and tangent cones to the sparsity constraint set. Moreover,
second-order tangent set to the sparsity constraint is described and then a new second-
order necessary optimality condition is established. The results are illustrated by
several examples.

Keywords Sparsity constrained optimization · Tangent cone · Normal cone ·
N-stationary · Optimality condition · Second-order tangent set

1 Introduction

Sparsity constrained optimization (SCO) is to minimize a general nonlinear function
subject to a sparsity constraint set. There are numerous applications in which sparse
solutions are concerned, for instance in signal and image processing, denoising, model
selection, machine learning and more [8,9,13,21]. The SCO is really a combinatorial
optimization problem and it is usually NP-hard even for problems with quadratic
objective function [14]. Therefore, the classical optimization theory is not effective for
SCO and study on the existence of solutions of SCO is difficult. In recent years, sparse
optimization problems have drawn significant attentions in the theories and algorithms
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[2,5,22]. Beck and Eldar in [4] established first-order necessary optimality conditions
for smooth SCO. These conditions are then used to derive some numerical algorithms
aimed at finding points satisfying the resulting optimality criteria. In [16] the concepts
of tangent and normal cones to the sparse set are used to introduce a number of
stationary notions for smooth SCO. The first and second-order optimality conditions
together with the relation between these stationary notions are also established.

In [11], the authors studied necessary optimality conditions of a general nonlinear
sparsity optimization problem under the Robinson’s constraint qualification, and pro-
posed penalty decomposition methods for solving this problem. A characterization of
the second-order tangent set to the sparsity set is stated in [15] and the second-order
optimality conditions are presented in the smooth case.

In this paper, we present necessary and sufficient optimality conditions for a
nonsmooth sparsity constrained optimization problem. We first extend some of the
stationary notions to the nonsmooth case in terms of the Clarke generalized gradient.
Then the relationship between these notions are discussed. These concepts are used to
drive the first-order necessary and sufficient optimality conditions of SCO problems.
Despite of the involved structure of the sparsity constraint set, only mild generalized
convexity assumptions are considered in our first-order sufficient optimality result.
We also apply the notions of the first and second-order Dini directional derivatives
together with the Bouligand tangent cone to the sparsity constraint set to establish the
second-order necessary and sufficient optimality conditions. Furthermore, the second-
order tangent set to the sparsity constraint set is characterized and used to drive a new
sharp second-order necessary optimality condition for SCO.

This paper is organized as follows. In Sect. 2, we introduce the definitions and
notations to be used throughout the paper. Section 3 studies the first and second-
order optimality conditions for sparsity constrained optimization problems. Section 4
expresses the second-order tangent set for SCO and gives a second-order necessary
optimality condition for sparsity constrained optimization. Moreover, some examples
are provided to clarify our results.

2 Preliminaries

All the definitions quoted in this section are taken from [7,18,20], where the reader
can find more details, discussions and references.

Throughout this work, Rn is the usual n-dimensional Euclidean space. Let S be
a nonempty subset of Rn , the closure of S is denoted by cl S. For a given subset
J ⊆ {1, . . . , n}, denote by span{ei , i ∈ J } the subspace ofRn spanned by {ei , i ∈ J },
where ei ∈ R

n is a vector whose i th component is one and others are zeros.
Let f : Rn → R be a locally Lipschitzian function (i.e., a function satisfying the
Lipschitz condition in a neighbourhood of any point x ∈ R

n). The Clarke directional
derivative of f at x in the direction v, is defined as follows:

f ◦(x; v) := lim sup
y→x t↓0

f (y + tv) − f (y)

t
. (1)
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The function f ◦(x; .) : Rn → R is sublinear. The Clarke generalized gradient of f at
x is defined as

∂c f (x) := {ξ ∈ R
n|〈ξ ; v〉 ≤ f ◦(x; v) ∀v ∈ R

n}. (2)

It is well-known that ∂c f (x) is a nonempty, convex and compact subset of Rn .
The lower and upper Dini derivatives of f at x in the direction v ∈ R

n are given
respectively, as

D− f (x; v) := lim inf
t↓0

f (x + tv) − f (x)

t
, (3)

D+ f (x; v) := lim sup
t↓0

f (x + tv) − f (x)

t
. (4)

It is worth mentioning that if f is locally Lipschitzian, then both the lower and upper
Dini derivatives exist finitely. To derive our second-order necessary and sufficient
optimality results, we need to recall the definition of the second-order Dini directional
derivative from [20]. Let f : Rn → R be a locally Lipschitzian function and x, u, v ∈
R
n . Assume that D− f (x; u) exists. The second-order Dini directional derivative of f

at (x, u) in the direction v is defined by

D2 f (x, u, v) := lim inf
t↓0

f (x + tu + t2v) − f (x) − t D− f (x; u)

t2
.

For stationary results that are given in the next section we need to use the concept
of the Clarke partial generalized gradient, which is defined as follows [7].
Let f : R

n × R
m → R be Lipschitzian near (x1, x2) ∈ R

n × R
m . The notation

∂
(1)
c f (x1, x2) denotes the Clarke partial generalized gradient evaluated at x1, i.e., the
generalized gradient of the function x́1 �→ f (x́1, x2) defined on R

n .
Recalling that for any nonempty set S ⊆ R

n , the Bouligand tangent cone T B
S (x)

and its corresponding normal cone N B
S (x) at x ∈ cl S are defined, respectively, by

T B
S (x) :=

{
lim
k→∞

xk − x

tk
: xk

S−→ x, tk ↓ 0

}
,

N B
S (x) := {d ∈ R

n : 〈d, z〉 ≤ 0, ∀z ∈ T B
S (x)},

where xk
S−→ x means that xk ∈ S for each k = 1, 2, . . ., and limk→∞ xk = x .

Also the Clarke tangent cone TC
S (x) and its corresponding normal cone NC

S (x) at
x ∈ cl S are given as:

TC
S (x) =

{
d ∈ R

n : ∀xk S−→ x, tk ↓ 0, ∃dk → d, such that xk + tkdk ∈ S
}

,

NC
S (x) := {d ∈ R

n : 〈d, z〉 ≤ 0, ∀z ∈ TC
S (x)}.
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For any function f : Rn → R, the kernel (also called the null space) is defined by
ker ( f ) = {x : x ∈ R

n such that f (x) = 0}.
To establish new sufficient optimality conditions for SCO problems, a suitable

generalized convexity notion is required. Thus, following the pattern in [1], we give
the definition of ∂c-pseudoconvex functions.
Let f : Rn → R be a locally Lipschitzian function, f is said to be ∂c-pseudoconvex
at x̄ on S ⊆ R

n if for each x ∈ S that x �= x̄ and f (x) < f (x̄) we have

〈ξ, x − x̄〉 < 0 ∀ξ ∈ ∂c f (x̄).

Note that any convex function is also ∂c-pseudoconvex. The following theorems from
[12], shows that ∂c-pseudoconvexity is a natural extension of pseudoconvexity.

Theorem 1 If f is smooth, then f is ∂c-pseudoconvex, if and only if f is pseudoconvex.

The important sufficient extremum property of pseudoconvexity remains also for ∂c-
pseudoconvexity.

Theorem 2 An ∂c-pseudoconvex f attains its global minimum at x∗, if and only if

0 ∈ ∂c f (x
∗).

The following example from [12], shows that ∂c-pseudoconvexity is a more general
property than pseudoconvexity.

Example 1 Consider f : R → R such that f (x) := min{|x |, x2}. Then f is clearly
locally Lipschitzian continuous but not convex nor pseudoconvex. However, for all
y > x we have

f ◦(x; y − x) =
⎧⎨
⎩

−1, x ∈ (−∞,−1];
2x, x ∈ (−1, 1];
1, x ∈ (1,∞),

and thus, f is ∂c-pseudoconvex.

In the sequel, let us give the definition of pseudoconvex set due to [10]. Suppose
that S ⊂ R

n and KS(x) is a tangent cone to S at x ∈ cl S. The set S is said to be
pseudoconvex with respect to KS(x) at x if

S ⊂ x + KS(x).

It is obvious that each convex set is pseudoconvex with respect to the classical
tangent cone at each of its points.
Let f be a real-valued function defined on the set S. The sublevel set of f at x ∈ S is
given by

L(x) = L( f ; x; S) := {y ∈ S| f (y) ≤ f (x)}.
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Nonsmooth sparsity constrained optimization problems 1031

We say that f admits pseudoconvex sublevel sets with respect to the tangent cone
KL(x)(x) if its sublevel sets are pseudoconvex with respect to KL(x)(x) at each point
of x ∈ S, that is

L(x) ⊂ x + KL(x)(x) ∀x ∈ S.

To develop the second-order necessary conditions for SCO problems, we need to
use the notion of second-order tangent set from [19].
The vector w is called a second-order tangent to S ⊆ R

n at (x∗, d) ∈ S × R
n if there

exist sequences xk
S−→ x∗ and tk ↓ 0 such that

w = lim
k→∞

xk − x∗ − tkd
1
2 (tk)

2
.

The set of all second-order tangents to S at (x∗, d) is denoted by T 2
S (x∗, d). It is

easy to see that T 2
S (x∗, d) = ∅ if d /∈ T B

S (x∗) (see [19]). In general, the second-order
tangent set is not a cone, and it is not necessarily convex, even for a convex set S.

3 Optimality conditions

In this section, we study the first and second-order necessary and sufficient optimality
conditions of the following sparsity constrained optimization problem

(P) min f (x)

s.t. ‖x‖0 ≤ s,

where f : Rn → R is a locally Lipschitzian function and ‖x‖0 is the l0−norm of
x ∈ R

n , which refers to the number of nonzero elements in the vector x and s < n
is a positive integer. Let S := {x ∈ R

n : ‖x‖0 ≤ s} be the feasible region of (P) and
J ∗ = J (x∗) := supp (x∗) = {i ∈ {1, ..., n} : x∗

i �= 0}.
For this purpose we first need to recall the following auxiliary results from [16],

which compute the Bouligand and Clarke tangent and normal cones of the sparse set
S.

Theorem 3 For any x∗ ∈ S, the Bouligand tangent and normal cones of S at x∗ are
respectively,

T B
S (x∗) = {d ∈ R

n : ‖d‖0 ≤ s, ‖x∗ + μd‖0 ≤ s, ∀μ ∈ R}
=

⋃
γ

span {ei , i ∈ γ ⊇ J ∗, |γ | ≤ s}, (5)

N B
S (x∗) =

{
{d ∈ R

n : di = 0, i ∈ J ∗} = span {ei , i /∈ J ∗} if |J ∗| = s

{0} if |J ∗| < s.
(6)
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Theorem 4 For any x∗ ∈ S, the Clarke tangent and normal cones of S at x∗ are
respectively,

T C
S (x∗) = {d ∈ R

n : supp(d) ⊆ J ∗} = span {ei , i ∈ J ∗}, (7)

NC
S (x∗) = span {ei , i /∈ J ∗}. (8)

3.1 First-order optimality conditions

Our first-order optimality conditions are based on the nonsmooth versions of the
stationary concepts given in [4,16].

Definition 1 Consider the feasible point x∗ ∈ S:

1. x∗ is called an N �−stationary point of (P), if

0 ∈ ∂c f (x
∗) + N �

S(x
∗),

where � ∈ {B,C}.
2. x∗ is said to be a basic feasible (BF) point of (P) if

a. when ‖x∗‖0 < s, 0 ∈ ∂c f (x∗);
b. when ‖x∗‖0 = s, 0 ∈ ∂ J∗

c f (x∗),

where the meaning of the ∂ J∗
c f (x∗), is the Clarke partial generalized gradient subject

to the index set J ∗.

The first result of this section presents a necessary optimality condition with respect
to the N B−stationary points.

Theorem 5 Assume that x∗ is a local optimal solution of (P) and ∂c f (x∗) ⊆ TC
S (x∗).

Then x∗ is an N B−stationary point.

Proof From [6, Corollary, 6.3.9] the local optimality of x∗ implies immediately that

0 ∈ ∂c f (x
∗) + NC

S (x∗). (9)

In the case that ‖x∗‖0 = s, the result follows from (6) and (8). It remains to consider
the other case when ‖x∗‖0 < s.
The inclusion in (9) gives us a vector ξ̄ ∈ ∂c f (x∗) ∩ (−NC

S (x∗)). On the other hand,
since ∂c f (x∗) ⊆ TC

S (x∗), one has ξ̄ ∈ TC
S (x∗) ∩ (−NC

S (x∗)). Applying Theorem 4,
we get 〈ξ̄ , ξ̄ 〉 = 0, and thus ξ̄ = 0 ∈ ∂c f (x∗) which completes the proof of the
theorem. ��
Next let us prove the equivalence between the N B-stationary and basic feasibility in
the nonsmooth case.

Lemma 1 Consider the feasible point x∗ ∈ S. Then x∗ is an N B−stationary point of
problem (P) if and only if x∗ is a basic feasible point.
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Proof In the case that ‖x∗‖0 < s, the result is trivial. Thus it is sufficient to consider
the other case when ‖x∗‖0 = s. Assuming that x∗ is an N B-stationary point of (P),
then one has by (6)

0 ∈ ∂c f (x
∗) + span {ei , i /∈ J ∗}.

Thus there exists ξ̄ ∈ ∂c f (x∗) such that ξ̄i = 0 for each i ∈ J ∗, and consequently,
0 ∈ ∂ J∗

c f (x∗).
Conversely, the basic feasibility of x∗ implies that 0 ∈ ∂ J∗

c f (x∗). Using the defi-
nition of the partial generalized gradient subject to the index set J ∗, gives us a point
ξ2 ∈ R

n−|J∗| such that (0, ξ2) ∈ ∂c f (x∗). Putting the above together with (6), we
conclude that 0 ∈ ∂c f (x∗) + N B

S (x∗) and complete the proof of lemma. ��
The next corollary follows immediately from Theorem 5 and Lemma 1.

Corollary 1 Assume that x∗ is a local optimal solution of problem (P) and ∂c f (x∗) ⊆
TC
S (x∗). Then x∗ is a basic feasible point.

Nowwe turn our attention to the nonsmooth first-order sufficient optimality conditions
for (P) with respect to the pseudoconvex sets.

Theorem 6 Let x∗ ∈ S be an N B−stationary point of problem (P). Suppose also that
f is ∂c−pseudoconvex on S at x∗ and L( f ; x∗; S) is pseudoconvex with respect to
the Bouligand tangent cone. Then x∗ is a global minimum of problem (P).

Proof Suppose on the contrary that for a feasible point x �= x∗, one has f (x) < f (x∗).
By the ∂c−pseudoconvexity of f at x∗ we have for each ξ ∈ ∂c f (x∗),

〈ξ, x − x∗〉 < 0. (10)

The N B−stationarity of x∗ togetherwithTheorem3gives us a vector ξ̄ ∈ ∂c f (x∗)∩
(−N B

S (x∗)) such that 〈ξ̄ , v〉 = 0 for each v ∈ T B
S (x∗).

On the other hand, since f (x) < f (x∗)we get x ∈ L( f ; x∗; S) and the pseudocon-
vexity of L( f ; x∗; S), implies that x − x∗ ∈ T B

L(x∗)(x
∗). Obviously L(x∗) ⊆ S, and

thus T B
L(x∗)(x

∗) ⊆ T B
S (x∗) hence x−x∗ ∈ T B

S (x∗). Thereforewe have 〈ξ̄ , x−x∗〉 = 0,
which contradicts (10). ��
The following example illustrates the sufficient optimality result given in Theorem 6.

Example 2 Consider problem (P) where f (x) = f (x1, x2) := |x2| − |x1x2|, and
S := {x = (x1, x2) ∈ R

2 | ‖x‖0 ≤ 1}. Clearly S = R×{0} ∪ {0}×R and x∗ = (0, 0)
is a global optimal solution for this problem.We have f ◦(x∗; v) = |v2|, where v ∈ R

2,
∂c f (x∗) = {0} × [−1, 1] and N B

S (x∗) = {0}. Hence x∗ is an N B−stationary point. It
is easy to show that f is ∂c−pseudoconvex on S at x∗. Also one can get

L(x∗) = {y ∈ S| f (y) ≤ f (x∗) = 0} = R × {0},

and therefore T B
L(x∗)(x

∗) = R × {0}, which implies that L(x∗) is pseudoconvex with
respect to the Bouligand tangent cone.
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In the following, we show by two examples that all assumptions of Theorem 6 are
essential.

Example 3 Consider the problem (P) where f (x) = f (x1, x2) := −|x1| and S is
defined as Example 2. It is clear that f has not any global optimal solution on S.

At any feasible point of the form x̂ = (0, c), c �= 0, one has N B
S (x̂) = span{e1}

and ∂c f (x̂) = [−1, 1]×{0}, thus x̂ is an N B-stationary point. It is easy to check that f
is not ∂c-pseudoconvex at x̂ . Observing also that L(x̂) = S and T B

L(x̂)(x̂) = span{e2},
the pseudoconvexity of L(x̂) is not satisfied.
Considering now the point x̄ = (0, 0) and noting that N B

S (x̄) = {0} and ∂c f (x̄) =
[− 1, 1] × {0}, we see that x̄ is an N B-stationary point. Furthermore, since L(x̄) =
T B
L(x̄)(x̄) = S, we conclude that L(x̄) is pseudoconvex. One can easily verify that f

is not ∂c-pseudoconvex at x̄ .

The final example shows that the pseudoconvexity of the sublevel sets plays a key
role in the conclusion of Theorem 6, even if the objective function is convex and
differentiable.

Example 4 Consider the problem (P) where f (x) = f (x1, x2) := ex2 and S is given
as Example 2. It is easy to check that there is no global optimal solution for this
problemand the objective function f is convex anddifferentiable. For the feasible point

x̄ := (1, 0) ∈ S, one has ∇ f (x̄) =
(
0
1

)
. Obviously, −∇ f (x̄) ∈ span{e2} = N B

S (x̄)

and x̄ is an N B-stationary point. However, with a simple calculation we see that
L(x̄) = R×{0}∪ {0}×R− and T B

L(x̄)(x̄) = R×{0} and the pseudoconvexity of L(x̄)
is not satisfied.

3.2 Second-order optimality conditions

This subsection is devoted to the second-order necessary and sufficient optimality
conditions for problem (P) in terms of the first and second-order Dini directional
derivatives.

The following theorem presents a second-order necessary optimality condition for
problem (P) in the framework of the first and second-order Dini directional derivatives.

Theorem 7 Let x∗ ∈ S be a local optimal solution of problem (P). Then for any
v ∈ T B

S (x∗), one of the following two conditions hold:

(i) D− f (x∗; v) > 0;
(ii) D− f (x∗; v) = 0 and D2 f (x∗; v, v) ≥ 0.

Proof Taking arbitrary v ∈ T B
S (x∗) and applying (5), we get x∗ + tv ∈ S for all t ∈ R.

The local optimality of x∗ implies that

f (x∗ + tv) − f (x∗) ≥ 0,
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for sufficiently small t ∈ R. Therefore,

D− f (x∗; v) = lim inf
t↓0

f (x∗ + tv) − f (x∗)
t

≥ 0.

In the case that D− f (x∗; v) = 0, by local optimality of x∗ one has

D2 f (x∗; v, v) = lim inf
t↓0

f (x∗ + (t + t2)v) − f (x∗) − t D− f (x∗; v)

t2

= lim inf
t↓0

f (x∗ + (t + t2)v) − f (x∗)
t2

≥ 0,

and the proof is completed. ��
In the following let us state our second-order sufficient optimality result.

Theorem 8 Suppose that x∗ ∈ S and for each v ∈ T B
S (x∗) one of the following two

conditions hold:

(i) D− f (x∗; v) > 0;
(ii) D− f (x∗; v) = 0 and D2 f (x∗; v, v) > 0.

Then f has a strict local minimum at x∗.

Proof Suppose on the contrary that there exists a sequence xk
S→ x∗ such that for each

k, f (xk) ≤ f (x∗).
Denoting vk := xk−x∗

‖xk−x∗‖ , then passing to a subsequence if necessary, we can assume

that vk → v ∈ T B
S (x∗). On the other hand the Lipschitzness of f at x∗ implies that

D− f (x∗; v) = lim inf
t↓0

f (x∗ + tv) − f (x∗)
t

≤ lim inf
k→∞

f (x∗ + tkv) − f (x∗)
tk

= lim inf
k→∞

f (xk) − f (x∗)
tk

≤ 0,

where tk = ‖xk − x∗‖. Putting the above together with (i) and (i i), we deduce that
D− f (x∗; v) = 0.Wecan get sk ↓ 0 such that sk+s2k = tk . Therefore, x∗+(sk+s2k )v =
xk and we have

D2 f (x∗; v, v) = lim inf
t↓0

f (x∗ + tv + t2v) − f (x∗)
t2

≤ lim inf
k→∞

f (x∗ + (sk + s2k )v) − f (x∗)
s2k

= lim inf
k→∞

f (xk) − f (x∗)
s2k

≤ 0.
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1036 N. Movahedian et al.

Thus we arrive at a contradiction which completes the proof of the theorem. ��

Finally in this section, we present an example to illustrate the results of Theorems 7
and 8.

Example 5 Consider problem (P) where f (x) = f (x1, x2) := 2|x2| − x1 + x12

and S is defined as in Example 2. The feasible set S may be written as S =
{(0, 0), (0, c), (c, 0); c ∈ R, c �= 0}.
In the case that x́ = (0, c), c �= 0, we have T B

S (x́) = span{e2} and for any d ∈ T B
S (x́),

D− f (x́; d) =
{
2d2, if c > 0;
−2d2, otherwise .

It is easy to observe that the necessary condition of Theorem 7 is not satisfied.
For x̂ = (0, 0), T B

S (x̂) = R
2 and for any d ∈ T B

S (x̂), D− f (x̂, d) = 2|d2| − d1 which
is not necessarily nonnegative. Thus x̂ is not a local minimizer.
In the case that x̄ = (c, 0), c �= 0, since T B

S (x̄) = span{e1}, it follows that for any
d ∈ T B

S (x̄), D− f (x̄, d) = (2c−1)d1. In order to establish the necessary condition we
need to take c = 1

2 . Hence we consider the point x
∗ = ( 12 , 0). Clearly, D

− f (x∗; d) =
0 and D2 f (x∗; d, 0) = d21 > 0, for each d ∈ T B

S (x∗). Thus the necessary and
sufficient optimality conditions of Theorems 7 and 8 are fulfilled and x∗ is a strict
local minimizer.

4 Second-order tangent set

In this section we are going to develop the second-order necessary optimality condi-
tions by using the notion of the second-order tangent set. The next theorem gives the
expression of the second-order tangent of sparse set S.

Theorem 9 Let x∗ ∈ S and d ∈ T B
S (x∗). Then T 2

S (x∗, d) is given by

T 2
S (x∗, d) = {w ∈ R

n : ‖w‖0 ≤ s, ‖x∗ + μd + λw‖0 ≤ s, ∀λ,μ ∈ R} (11)

=
⋃
γ

span {ei , i ∈ γ ⊇ J (d), |γ | ≤ s}. (12)

Proof It is not difficult to show that the sets of the right hands of (11) and (12) are
equal. Thus it is sufficient to prove (11). Denote the right hand side of (11) by D.

First take arbitrary w ∈ T 2
S (x∗, d). Then there exist sequences xk

S−→ x∗ and tk ↓ 0

such that w = limk→∞ xk−x∗−tkd
1
2 (tk )2

. Since d ∈ T B
S (x∗), we get from (5) that ‖d‖0 ≤ s

and ‖x∗ + μd‖0 ≤ s for all μ ∈ R. Since xk → x∗, we can assume without loss of
generality that J (x∗) ⊆ J (xk) for all k ∈ N. Since d = limk→∞ xk−x∗

tk
, it follows that

J (d) ⊆ J (xk) for all k. All the above together with the definition ofw yield ‖w‖0 ≤ s
and also ‖x∗ + μd + λw‖0 ≤ s for each λ,μ ∈ R. Thus T 2

S (x∗, d) ⊆ D.
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Nonsmooth sparsity constrained optimization problems 1037

Conversely, take arbitrary w ∈ D. Taking a given sequence tk ↓ 0 and defining

xk = x∗ + tkd+ 1
2 t

2
k w, then obviously xk

S−→ x∗ andw = limk→∞ xk−x∗−tkd
1
2 (tk)2

, which

implies that w ∈ T 2
S (x∗, d) and completes the proof. ��

The next theorem establishes a second-order necessary optimality condition for (P) in
the framework of the second-order tangent set.

Theorem 10 Assume that x∗ is a local optimal solution of problem (P). Then for each
v ∈ T B

S (x∗) ∩ ker D− f (x∗, .), one has

D2 f (x∗; v,w) ≥ 0 ∀w ∈ T 2
S (x∗, v).

Proof Suppose that for some v ∈ T B
S (x∗) ∩ ker D− f (x∗, .) and w ∈ T 2

S (x∗, v) one
has D2 f (x∗; v,w) < 0. Hence, taking into account that D− f (x∗, v) = 0, the above
gives a sequence tk ↓ 0 such that for all k

f (x∗ + tkv + t2k w) < f (x∗).

On the other hand from Theorem 9 we have x∗ + tkv + t2k w ∈ S for all k, which
contradicts the local optimality of x∗ and completes the proof. ��
Eventually we illustrate the result of Theorem 10 in the following example.

Example 6 Consider the problem (P) where f and S are given as Example 5. It was
indicated that x∗ = ( 12 , 0) is a strict local optimal solution for this problem. Let us
show that the statement of Theorem 10 is satisfied at x∗.
A direct computation gives T B

S (x∗) = span{e1} and for each v ∈ T B
S (x∗),

T 2
S (x∗, v) = T B

S (x∗). Taking arbitrary point v ∈ T B
S (x∗), it is easy to check that

D− f (x∗, v) = 0 and D2 f (x∗; v,w) = v21 > 0 for all w ∈ T 2
S (x∗, v). Therefore, the

optimality condition of Theorem 10 holds at x∗.
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