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Abstract
We address the problem of testing weak optimality of a given solution of a given
interval linear program. The problem was recently wrongly stated to be polynomially
solvable. We disprove it. We show that the problem is NP-hard in general. We propose
a new algorithm for the problem, based on orthant decomposition and solving linear
systems. Running time of the algorithm is exponential in the number of equality
constraints. In particular, the proposed algorithm runs in polynomial time for interval
linear programs with no equality constraints.

Keywords Interval linear programming · Weakly optimal solution · Weak optimality
testing

1 Introduction

In this paper, we address the following problem:

Given an interval linear program, decidewhether a givenweakly feasible solution
is weakly optimal.
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This problem was recently wrongly stated to be polynomially solvable in [18]. Our
aims are the following:
– to show a counterexample to the method proposed by [18] and explain what is
wrong in their proof,

– to show that the problem is actually NP-hard in general,
– to propose an algorithm for the problem,
– to describe some polynomial cases.

Structure of the paper. In Sect. 1.1, we introduce the notion of interval linear
programming and define our problem formally. Section 1.2 provides an overview of
related work and some motivation for our paper. The introductory part of the paper
is finalized by Sect. 2.1, which provides a counterexample to the method proposed in
[18] and also points to the weakness in the proof therein.

The main results of the paper are contained in Sects. 3 and 4. In the former section,
we prove that our problem is NP-hard (via reduction from testing solvability of interval
linear systems). In the latter section, we prove that weak optimality of a given solution
of a given interval linear program can be tested by solving 2k linear programs (of the
same size), where k is the number of equality constraints in the interval linear program.

In particular, this means that if an interval linear program contains only inequality
constraints, weak optimality of a given solution can be tested in polynomial time with
one linear program. More generally, the test can be performed in polynomial time as
long as the number of equality constraints remains “small” (for example constant or
logarithmic in the number of variables and inequality constraints).

Our method is based on strong duality characterization, or, more precisely, on the
Karush–Kuhn–Tucker (KKT) conditions, similiarly as the former method in [18]. The
difference is, however, in the way how we deal with nonlinearity in the formulas. We
use a variant of disjunctive programming and orthant decomposition.

To avoid confusion at this point, we premise that reasons of distinguishing equality
and inequality constraints (which is not necessary in classical linear programming)
will be clarified in Remark 1.5.

1.1 Notation, intervals and interval linear programming

For two real matrices A, A ∈ R
m×n such that A ≤ A, an interval matrix is the set

of matrices A := {A ∈ R
m×n : A ≤ A ≤ A}. The set of all interval matrices

of dimension m × n is denoted by IR
m×n . Interval vectors and scalars are defined

analogously.
The multiplication of a real and an interval is defined as follows. Assume α ∈ R

and [a, a] ∈ IR. If α < 0, then α[a, a] = [αa, αa], otherwise α[a, a] = [αa, αa].
Throughout the paper, bold symbols are reserved for interval matrices, vectors and

scalars, while symbols in italics represent structures of real numbers. The symbol 0
denotes the zero matrix or vector of suitable dimension. Also, e is the vector of suit-
able dimension containing ones. Generally, we omit declaration of dimensions of
matrix or vector variables wherever no confusion should arise. Vectors are understood
columnwise.
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Testing weak optimality of a given solution in ILP revisited… 877

The i th row of a (possibly interval) matrix A is denoted by Ai . Similarly, ai denotes
i th element of a given vector a. The symbol diag(a) for a ∈ R

n is the diagonal matrix
with entries of a.

Definition 1.1 introduces the notion of interval linear programming and also the
interval linear systems.

Definition 1.1 (Interval linear programming)

a) Let the following interval matrices and vectors with dimensions in brackets be
given:

Af (k × m), An(k × n), Bf (� × m), Bn(� × n),

accompanied with interval vectors a ∈ IR
k, b ∈ IR

�, cf ∈ IR
m, cn ∈ IR

n .

Define Ds := Af × An × Bf × Bn × a× b and Dp := Ds × cf × cn. The sets Dp

will be called data of an interval linear program. Analogously, Ds will be data of
an interval linear system.

b) Denote a tuple from Ds by

ss := (Af , An, Bf , Bn, a, b).

Any tuple from Dp, say

sp := (ss, cf , cn) ∈ Dp

is called scenario of interval linear program. Sometimes, also ss will be called
scenario of interval linear system.

To every scenario, a linear program (1.1) (shortly LP), denoted by LP(sp), is
associated:

min
x f ,xn

(cf)Tx f + (cn)Txn s.t. (1.1a)

Af x f + Anxn = a, (1.1b)

Bf x f + Bnxn ≥ b, (1.1c)

xn ≥ 0. (1.1d)

Analogously, to every ss ∈ Ds, a linear system (1.1b)–(1.1d) is assigned; such
a system is denoted by LS(ss).

c) An interval linear program (shortly ILP) with data Dp, denoted by ILP(Dp), is
the family of linear programs {LP(sp) : sp ∈ Dp}.

d) An interval linear system with data Ds, denoted by ILS(Ds) is the family of linear
systems {LS(ss) : ss ∈ Ds}.
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To simplify, an interval linear program is the family of linear programswith coefficients
varying along given intervals. Similarly an interval linear system is the family of linear
systems.

We will use interval linear programs and systems quite often. For convenience and
readability, we will write them in short form: the interval linear program with data Dp

reads

min (cf )Tx f+(cn)Txn s.t. (1.2a)

Af x f+ Anxn = a, (1.2b)

Bf x f+ Bnxn ≥ b, (1.2c)

xn ≥ 0, (1.2d)

the interval linear system will be written in an analogous way.

Remark 1.2 (on notation) Some symbols in the paper have upper indices. These should
simplify orientation in the (not very small) amount of different symbols. The indices
are “p” for “of a program”, “s” for “of a system”, “f” for “free” (variables) and “n”
for “nonnegative” (variables).

Feasibility and optimality in classical linear programming Properties of feasibility
and optimality are well known when dealing with linear systems or programs. This
holds also for feasible or optimal solution of a linear system or program.

For all the above properties, one can define a decision problem in form “does the
particular property hold for a given (solution of) linear program/system?”. Note that
all such decision problems can be solved using algorithms for linear programming.
Feasibility and optimality in interval linear programming For interval linear sys-
tems and programs, the above properties and associated decision problems are not so
straightforward to formulate. There are at least two quite natural ways to build anal-
ogous problems. For our paper, the analogies that could be called weak problems are
interesting. In Definitions 1.3 and 1.4, we build analogies to all the above properties.
Actually, we are especially interested in Definitions 1.3a and 1.4b. For other concepts
of feasibility and optimality in interval linear programming, see Remark 1.6.

Definition 1.3 (Weak feasibility) Assume that data Ds of a system ILS(Ds) are given.

a) The system ILS(Ds) is weakly feasible, if there exists ss ∈ Ds such that LS(ss) is
feasible.

b) A given x = (x f , xn) is a weakly feasible solution of ILS(Ds), if there exists
ss ∈ Ds such that x is a feasible solution of LS(ss).

Definition 1.4 (Weak optimality) Assume that data Dp of a program ILP(Dp) are
given.

a) The program ILP(Dp) is weakly optimal, if there exists sp ∈ Dp such that LP(sp)
has an optimum.

b) A given x = (x f , xn) is a weakly optimal solution of ILP(Dp), if there exists
sp ∈ Dp such that x is an optimal solution of LP(sp).
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Testing weak optimality of a given solution in ILP revisited… 879

Remark 1.5 Unlike for linear programming, the distinguishing of inequality and equal-
ity constraints does matter here. The mutual transformation of the types of constraints
is not possible in general. For example, an equality constraint Ax = b cannot be
rewritten to the system Ax ≤ b, Ax ≥ b. The former means Ax ≤ b, Ax ≥ b for
all A ∈ A, while the latter reads A1x ≤ b, A2x ≥ b for all A1 ∈ A, A2 ∈ A. The
problem is that we lose the dependency A1 = A2 during the transformation—one calls
this the dependency problem.

Although the set of all weakly feasible solutions of the system Ax = b is the same as
the set of all weakly feasible solutions Ax ≤ b, Ax ≥ b (see [17]), the transformation
can create new weakly optimal solutions (see [7]).

For additional details on dependency problem, examples and possible transforma-
tions, see [13] and also previously mentioned [7,17].

The distinguishing of nonnegative and free variables has a bit different primary
background. In fact, it turns out that many questions in interval analysis are much sim-
pler with nonnegative variables than with free variables. Hence, the types of variables
are often treated separately. For our results, this distinction is not really necessary. We
do so just to demonstrate the generality of our results.

The formulation of the problem we are facing follows, in two variants.

Our problems

(P1) Given data Dp of an interval linear program and a solution x = (x f , xn), test
whether x is weakly optimal, i.e. decide whether x is optimal for some scenario
sp ∈ Dp.

(P2) Decide (P1). If the answer is yes, find a scenario witnessing it.

The problem (P2) is a constructive version of (P1). Note also that a scenario is
a sufficient witness of weak optimality.

Remark 1.6 Note that the weak problems ask in general the following question: Given
a property of classical linear program/system, is the property satisfied for at least
one scenario of a given interval linear program/system?”. If the quantifier “at least
one scenario” is interchanged for “every scenario”, one obtains strong problems. For
example, a feasible x is a strongly optimal solution of a given ILP(Dp), if x is an
optimal solution of LP(sp) for every sp ∈ Dp. The survey on results regarding both
the weak and strong problems in interval linear programming can be found in [8]
and the corresponding problems related to interval linear systems of equations and
inequalities in [26].

Remark 1.7 Another difference between classical linear programming and interval
linear programming is in the relation between feasibility and optimality. In linear pro-
gramming, a problem of testing optimality (of a linear program) can be transformed
to a problem of testing feasibility (of a linear system) using strong duality characteri-
zation. However, we cannnot perform such a transformation from a problem of testing
weak optimality of an interval linear program to a problem of testing weak feasibility
of an interval linear system due to the dependency problem. We discuss this in Sect. 2,
see Lemma 2.1 and Remark 2.2. This is the reason we cannot directly use the results
on interval linear systems from the book [26].
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1.2 Related work

Since the early works [4,15,21], interval linear programming became an intensively
developing discipline. A survey on results can be found in [8]. A lot of effort was
devoted to the problem of calculating the range of optimal values and the related
computational complexity issues [5,6,22,25]. Considerably less attention was paid to
the more challenging problem of characterizing and tightly approximating the optimal
solutions. This problem becomes easier in the case when there is a basis that is optimal
for each scenario [4,14,15,24]. Despite the fact that checking such basis stability is
a co-NP-hard problem [10], there are practically usable conditions, and once a basis
stability is observed, many interval linear programming problems turn to be tractable.
On the other hand, if basis stability is not confirmed, much less is known and can be
said.

The problem in question of testingweak optimality of a given solution of an interval
linear program naturally emerged when dealing with various questions and problems
regarding interval linear programming. Since that time, a partial characterization of the
weakly optimal solution set was given in [2] and an inner approximation was consid-
ered in [1]. More general concepts of solutions, extending weak and strong solutions,
were recently addressed in [16,19,20]. Particular quantified solutions were also stud-
ied in [11,12]. Duality in interval linear programming, which helps in charaterizing
of weak optimality, among others, was studied in [23].

2 Auxiliary result: strong duality in LP

In the next sections, we will strongly rely on the obvious characterization of the
set of optimal solutions of an interval linear program using strong duality theorem for
linear programming. To be precise, note that the characterization uses complementarity
constraints from KKT conditions instead of the classical zero-duality-gap constraint.
However, for linear objective functions, this makes no difference.

Lemma 2.1 (Characterization of weak optimality using strong duality) Consider an
interval linear program ILP(Dp) = ILP(Af , An, Bf , Bn, a, b, cf , cn). The solution
x = (x f , xn) is a weakly optimal solution of ILP(Dp), if and only if (x f , xn, yf , yn, sp)
is a feasible solution of the system

Af x f+ Anxn = a,

Bf x f+ Bnxn ≥ b, (2.1a)

xn ≥ 0,

(Af)Tyf+ (Bf)Tyn = cf ,

(An)Tyf+ (Bn)Tyn ≤ cn, (2.1b)

yn ≥ 0,

yni (b − Bf x f− Bnxn)i = 0, i = 1, . . . , �, (2.1c)

xni (cn − (An)Tyf−(Bn)Tyn)i = 0, i = 1, . . . n, (2.1d)
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Testing weak optimality of a given solution in ILP revisited… 881

Af ∈ Af , An ∈ An, Bf ∈ Bf , Bn ∈ Bn,

a ∈ a, b ∈ b, cf ∈ cf , cn ∈ cn
(2.1e)

for some yf , yn and (Af , An, Bf , Bn, a, b, cf , cn) = sp.

For a fixed scenario sp, the constraints (2.1a) correspond to the feasibility of primal
program, the constraints (2.1b) to the feasibility of dual program, and the constraints
(2.1c) and (2.1d) to the complementary slackness.

Proof (of Lemma 2.1) If x = (x f , xn) is a weakly optimal solution, there exists a sce-
nario sp ∈ Dp such that x is an optimal solution of LP(sp). Using the well known
strong duality theorem we know that there exists a tuple (x f , xn, yf , yn) such that
(x f , xn, yf , yn, sp) solves (2.1).

Similarly, if (x f , xn, yf , yn, sp) is a feasible solution of (2.1), we obtain that (x f , xn)
is a weakly optimal solution of ILP(Dp) for scenario sp from application of the strong
duality theorem. ��
Remark 2.2 Note that the system (2.1)

– is nonlinear and remains nonlinear even for fixed (x f , xn),
– can be rewritten to a linear system for fixed sp,
– is not a standard interval linear system due to the dependency problem: note the
multiple occurrences of individual coefficients that could be considered inter-
val coefficients (see Remark 1.5). It is rather a linear parametric system, where
parameters attain values from given intervals. This is actuallywhatmakes theweak
optimality harder to grasp than weak feasibility for interval linear program (cf. this
with classical linear program, where optimality and feasibility are essentially the
same problems).

2.1 The weakness in themethod in [18] and an counterexample

The characterization provided by Lemma 2.1 is actually fundamental for both the
method presented in the paper [18] and our method. Here, we describe how the earlier
method was intended to work and what is wrong in its derivation.

Assume a weakly feasible solution x is to be tested for weak optimality of a given
interval linear program ILP(Dp). Concrete values of Af , An, Bf , Bn, a and b are
selected such that x is weakly feasible—using the formulas suggested in [9]. Now,
these values and also x = (xn, x f ) are fixed, meaning that (2.1) is a linear system, so
the intention is to simply test such this linear system for feasibility.

Theproblem is that themethod selects coefficients of constraintswithout takingdual
program into account. In particular, the objective vectors do not influence the selected
scenario at all. Then, the weakness of the proof of the main theorem (Theorem 3.1 in
the original paper) is in the “only if” part, namely in the first sentence on page 84. The
paper states that there exists a solution satisfying the systems (20) and (21) therein
(read “there exists an optimal solution of the dual program”), however, this is not
ensured, since the scenario was chosen to satisfy the primal feasibility only.
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Example 2.3 Consider the ILP((0, ([0, 2], [0, 2]), 0, 0, 2, 0, 0, (0, 1)T))with two non-
negative variables and one equality constraint

min (0, 1)xn s.t.

([0, 2], [0, 2])xn = 2,

xn ≥ 0.

Assume we want to test the weak optimality of x = (1
1

)
. The method of [18] selects

the scenario with An = (1, 1) and says that x is weakly optimal if and only if the
system with variables y1 ∈ R, c1 ∈ R

2 (we use the notation of the original paper)

y1
(
1

1

)
= c1, (complementarity/dual feasibility constraint, (6a) in the original paper)

(
0

1

)
≤ c1 ≤

(
0

1

)
, (scenario feasibility constraint, (6f) in the original paper)

is feasible. Note that the same system can be obtained from (2.1d) and (2.1e).
This yields the result that x is not weakly optimal. This is wrong, since x is optimal

for a scenario with An = (0, 2).
Note that it actually doesn’t matter what An was selected by the method. The main

concern is that it was selected without taking objective vector into account. Assume
that the method selects some An �= (1, 1) such that xn is feasible and that the example
is modified such that cn = (1, 1)T. Now, the method says that xn is not a weakly
optimal solution, while it is: for the scenario with An = (1, 1).

3 NP-hardness proof

In this section, we prove that the problem (P1) is NP-hard.We show this by a reduction
from weak feasibility testing of an interval system of inequalities with free variables.
We lean on the well-known result stated in Lemma 3.1.

Lemma 3.1 (NP-hardness of weak feasibility, Rohn [26, p. 58]) Consider the family
of interval linear systems with free variables and inequality constraints only, in form

Bf x f ≤ b, (3.1)

i.e. the family of interval systems with data Ds := (0, 0,−Bf , 0, 0,−b).
The problem “given data Ds, decide whether ILS(Ds) is weakly feasible” is NP-

hard.

Our result follows:

Theorem 3.2 The problem (P1) is NP-hard.
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Testing weak optimality of a given solution in ILP revisited… 883

Proof Consider the family of interval linear programs with nonnegative variables and
equality constraints only, i.e. the family of interval linear programs with data in form
Dp = (0, An, 0, 0, 0, 0, 0, cn).

Using Lemma 2.1 we know that a given x is a weakly optimal solution of ILP(Dp)

if and only if the system (2.1) has a solution for the fixed x . Hence, the system reads
(zero rows and summands are omitted)

Anxn = 0,

xn ≥ 0,

(An)Tyf ≤ cn,

xni (cn − (An)Tyf)i = 0, i = 1, . . . , n,

An ∈ An, cn ∈ cn.

(3.2)

Now, assume that we want to test weak optimality of the solution xn = 0. The system
(3.2) becomes

(An)Tyf ≤ cn, (3.3a)

An ∈ An, cn ∈ cn. (3.3b)

We have that xn = 0 is a weakly optimal solution of ILP(Dp) if and only if the
inequality system (3.3a) is feasible for at least one (An, cn) ∈ (An, cn), which actually
is exactly the problem of testing weak feasibility of the interval linear systemwith data
(0, 0, (−An)T, 0, 0,−cn). For such an interval linear system, testing weak feasibility
is NP-hard due to Lemma 3.1.

Now, since an algorithm for the problem (P1) can be used to solve an NP-hard
problem (namely the problem of testing weak feasibility of interval inequality system
from Lemma 3.1), we can conclude that the problem (P1) is at least as hard. ��

4 Algorithm for (P2)

In this section, we describe an algorithm for solving the problem (P2). First, we
demonstrate the idea on a simpler case with no equality constraint. Then we show that
it can be rewritten to treat interval linear programs in their full generality.

Recall the notation introduced inDefinition 1.1: the symbol k denotes the number of
equality constraints, the number of inequality constraints is denoted by �. Our method
will be able to test weak optimality of a given point by solving 2k feasibility problems
of classical linear systems.

4.1 The simple case: inequality constraints

Weak optimality of a given (x f , xn) can be tested via solving the nonlinear system (2.1)
by Lemma 2.1. Our key idea is the following: if k = 0, the nonlinear system (2.1) can
be rewritten as a linear system. A nice geometric trick takes place here: a special form
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of disjunctive programming (see e.g. [3]) can be utilized. Disjunctive programming
is a tool for modelling (hulls of) disjunctions of some suitably represented sets (e.g.
convex polyhedra).

It is based on the observation that polyhedra can be scaled by scaling right hand
sides only. Consider P1 = {x : A1x ≤ b1} and P2 = {x : A2x ≤ b2}. The naturalway
to express the conic hull of P1 ∪ P2 is

{x : x = y1x1 + y2x2, A1x1 ≤ b1, A2x2 ≤ b2, 0 ≤ y1, 0 ≤ y2},

which is apparently nonlinear. However, the coefficients y1 and y2 can be moved into
the description of P1 and P2, removing nonlinearity:

{z : z = z1 + z2, A1z1 ≤ y1b1, A2z2 ≤ y2b2, 0 ≤ y1, 0 ≤ y2}.

Note that we actually use substitution zi = yi xi . This is possible since since yi ≥ 0.
Note also that if one of the coefficients, say yi , is zero, it means that zi is also zero.

The above linearization applied on the system (2.1) allows for deriving Theo-
rem 4.1. Similarly as in the above simple example, we scale the limits of the intervals
in Bf , Bn and b by the corresponding dual variables and substitute new variables
(Bf+, Bn+, b+) = diag(yn)(Bf , Bn, b). In particular, note that the nonlinear con-
straints (2.1c) are rewritten as constraints (4.1b). If yni = 0 for some i , then i th row
of (4.1b) is of the form 0 = 0. If yni > 0, then the constraint Bf+

i x f + Bn+
i xn = b+

i
takes place, exactly as the complementarity constraint (2.1c) does.

Theorem 4.1 Let an interval linear program ILP(Dp) with data

Dp = (0, 0, Bf , Bn, 0, b, cf , cn)

be given.
A given x = (x f , xn) is a weakly optimal solution of ILP(Dp) if and only if it

is a weakly feasible solution of ILS((0, 0, Bf , Bn, 0, b)) and there exists a solution
(Bf+, Bn+, yn) of the system

Bf+ ∈ diag(yn)Bf , Bn+ ∈ diag(yn)Bn, b+ ∈ diag(yn)b, (4.1a)

Bf+x f + Bn+xn = b+, (4.1b)

(eTBf+)T ∈ cf , (4.1c)

(eTBn+)i ∈ (cn)i ∀i ∈ {ι|xι > 0}, (4.1d)

(eTBn+)i ≤ (cn)i ∀i ∈ {ι|xι = 0}, (4.1e)

yn ≥ 0. (4.1f)

If so, a scenario witnessing weak optimality of x is

sw = (0, 0, Bf , Bn, 0, b, (eTBf+)T, cn), (4.2)

where i th row of Bf , Bn, b is determined as follows:
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– if yni > 0, then (Bf
i , Bn

i , bi ) = 1
yni

(Bf+
i , Bn+

i , b+
i ),

– else (Bf
i , Bn

i , bi ) is determined as a solution of linear system

Bf
i x f + Bn

i xn ≥ bi , Bf
i ∈ Bf

i , Bn
i ∈ Bn

i , bi ∈ bi , (4.3)

and ith row of cn is determined as

cni =
{

cni if xi = 0,
(eTBn+)i otherwise.

Proof “⇒”: We know that x is a weakly optimal solution, hence there is a scenario
sp = (0, 0, Bf , Bn, 0, b, cf , cn) and a vector yn solving the system (2.1) for the fixed x .
Then also (Bf+, Bn+, b+) = (diag(yn)Bf , diag(yn)Bn, diag(yn)b) solves the system
(4.1), since

– the rows in relations (4.1a) are only scaled or nullified rows of some constraints
in the system (2.1)

– constrains (4.1c)–(4.1f) are actually contained in system (2.1), and
– an i th row of (4.1b) either has the form 0 = 0 (if yni = 0), or (otherwise) is satisfied
via i th row of (2.1a), which is satisfied as equality due to i th complementarity
constraint in (2.1c).

“⇐” and “If so”: Assume (Bf+, Bn+, b+, yn) solves (4.1) for a given weakly
feasible x . Since x is weakly feasible, a solution (Bf

i , Bn
i , bi ) of the system (4.3)

exists for every i = 1, . . . , �. Hence, we can construct the scenario sw in (4.2).
Now, note that yn and sw solve (2.1) (and hence x is weakly optimal):

– an i th row of (2.1a) follows either from rescaling the corresponding row of (4.1b)
(for yni > 0), or from (4.3) (for yni = 0),

– the dual feasibility constraint (2.1b) is obtained simply by substitution to (4.1c),
– the complementarity constraints are obviously satisfied: if yi > 0, then i th row of
primal feasibility is satisfied as equality, if xi > 0, i th row of dual feasibility is
satisfied as equality,

– the “scenario feasibility” constraints (2.1e) are satisfied, since the scenario sw is
clearly correctly built. ��

Corollary 4.2 The problem (P2) is polynomially solvable via checking feasibility of a
linear system if the underlying interval linear program has no equality constraints
(i.e. k = 0).

The weak optimality test itself can be done by solving the system (4.1). If a scenario
witnessing optimality is also necessary, it can be obtained using (4.2) by solving
additional systems of form (4.3).

Example 4.3 Wedemonstrate the idea on a small example. The geometry behind Theo-
rem 4.1 is depicted on Fig. 1. The figure shows the space of coefficients of constraints.
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Fig. 1 Illustration of Example 4.3. The space of rows of the matrix Bf is depicted. For example, the line
Bf
2:4x = b2:4 contains pairs of coefficients (Bf

2,1, Bf
2,2), (Bf

3,1, Bf
3,2), (Bf

4,1, Bf
4,2) such that second to

fourth constraint is satisfied as equality for the given x

The setting is the following: assume that we are given interval linear program

min (cf)Tx f s.t.

Bf x f ≥ b

with

Bf =
⎛

⎝
[1.5, 3.5], [0.5, 1.5]
[0, 4.5], [−1.25,−0.75]
[−2,−1.25], [0.75, 1.5]

⎞

⎠ , b =
⎛

⎝
[2, 3.75]

−1
−1

⎞

⎠ ,

cf =
(

2
−0.5

)
, (4.4)

i.e. there are two free variables and the objective function is crisp. We are to test weak
optimality for x = (

2
1

)
.

Note that the third constraint can’t be satisfied as equality for the given x . This
enforces y3 = 0. Hence the third rows of (4.1a) and (4.1b) are null.

Our given x is weakly optimal if c is in the conic hull of all the feasible Bf
1 ∈ Bf

1
and Bf

2 ∈ Bf
2 (see the bold triangle and the bold line segment in the figure). The conic

hull itself is depicted with dashed pattern. Note that it corresponds to left hand sides
of the constraints (2.1b) and (4.1c).

The gray cones are cones of all the feasible Bf+
1 and Bf+

2 . Since their conic hull
contains c, we have that x is weakly optimal.

Just for illustration, there is also an additional fourth constraint

([−4,−2], [−1.5, 0])x f ≥ −1

in the figure. There is no Bf
4 such that x is feasible. With this fourth constraint x is not

weakly optimal.
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Fig. 2 Illustration of Example 4.4. The space of rows of the matrix Af is depicted. For example, the line
Af
2x = b2 contains pairs of coefficients (Af

2,1, Af
2,2) such that second constraint is satisfied

4.2 The general case: equations are allowed

Now consider the problem (P2) in its full generality. The key in the special case was
in the nonnegativity of yn. Assuming equality constraints, we need to consider also
free dual variables yf . However, the linearization based on disjunctive programming
requires variables with a fixed sign (nonnegative or nonpositive ones). The underlying
problem is that a nonconvex set cannot be described by just one linear system, as
shows Example 4.4:

Example 4.4 Consider now the ILP from Example 4.3 with equalities instead of
inequalities (and also only with the first two constraints):

min (cf)Tx f s.t.

Af x f = a,

where

Af =
( [1.5, 3.5] , [0.5, 1.5]

[0, 4.5] , [−1.25, −0.75]
)

, a =
([2, 3.75]

−1

)
,

cf =
(

2
−0.5

)
. (4.5)

Again, we are to test weak optimality for x = (
2
1

)
.

The space of Af
1 and Af

2 is depicted on Fig. 2. The meaning of elements of the figure
is analogous to Fig. 1.

The sets of all primarily feasible normals Af
1 and Af

2 can now be scaled by both
positive and negative factors. The resulting sets are nonconvex double-cones.

Note that for a classical linear program, these double-cones are degenerated to
a single line, which is actually a convex set.
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To emphasize: from the perspective of the method presented in Sect. 4.1, the prob-
lem is that we cannot linearize the dual feasibility constraint, because we need to sum
up points from possibly nonconvex sets. Alternatively, the problem can be viewed in
the constraints (4.1a). Consider a constraint β ∈ yβ for some β ∈ R and β ∈ IR. If
y ≥ 0 (or y ≤ 0), it can rewritten as yβ ≤ β ≤ yβ (or yβ ≤ β ≤ yβ), however, if y
can be arbitrary, the two cases must be distinguished.

However, the standard orthant decomposition of yf -space can be apparently used
here. We do so in Theorem 4.6.

Definition 4.5 For given data Dp = (Af , An, Bf , Bn, a, b, cf , cn) of an ILP and a
given sign vector σ ∈ {−1, 1}k , the testing system for Dp in orthant σ is the system
(4.6) in the form

Af+ ∈ diag(yf)Af , An+ ∈ diag(yf)An, a+ ∈ diag(yf)a, (4.6a)

Bf+ ∈ diag(yn)Bf , Bn+ ∈ diag(yn)Bn, b+ ∈ diag(yn)b, (4.6b)

Af+x f + An+xn = a+, Bf+x f + Bn+xn = b+ (4.6c)

(eT Af+ + eTBf+)T ∈ cf (4.6d)

(eT An+ + eTBn+)i ∈ (cn)i ∀i ∈ {ι|xι > 0}, (4.6e)

(eT An+ + eTBn+)i ≤ (cn)i ∀i ∈ {ι|xι = 0}, (4.6f)

yn ≥ 0, (4.6g)

diag(σ )yf ≥ 0. (4.6h)

Theorem 4.6 Assume ILP with data Dp = (Af , An, Bf , Bn, a, b, cf , cn). A solution
x = (x f , xn) is weakly optimal if and only if x is a weakly feasible solution of ILP(Dp)

and there is σ ∈ {−1, 1}k such that the testing system for Dp in orthant σ is feasible
for the fixed x. If so, a scenario witnessing optimality of x is

sw = (Af , An, Bf , Bn, a, b, (eT Af++eTBf+)T, cn), (4.7)

where i th row of Af , An, a is determined as follows:

– if yfi �= 0, then (Af
i , An

i , ai ) = 1
yfi

(Af+
i , An+

i , a+
i ),

– else (Af
i , An

i , ai ) is determined as a solution of the linear system

Af
i x f + An

i xn = ai , Af
i ∈ Af

i , An
i ∈ An

i , ai ∈ ai , (4.8)

i th row of Bf , Bn, b is determined as follows:

– if yni > 0, then (Bf
i , Bn

i , bi ) = 1
yni

(Bf+
i , Bn+

i , b+
i ),

– else (Bf
i , Bn

i , bi ) is determined as a solution of (4.3),

and ith row of cn is determined as

cni =
{

cni if xi = 0,
(eT An+ + eTBn+)i otherwise.
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Proof Very analogous to the proof of Theorem 4.1. ��
Corollary 4.7 The problem (P2) for an ILP with data Dp can be solved by solving
2k linear systems, one for every σ ∈ {−1, 1}k . Recall that k is the number of equality
constraints in the ILP. The size of the linear systems to be solved is linear in the number
of variables and constraints of the ILP.

5 Conclusions

We proved that the problem of testing weak optimality of a given solution of a given
interval linear program isNP-hard.Weproposed an algorithm, basedonorthant decom-
position, which can decide the problem via solving of 2k linear systems, where k is the
number of equality constraints in the given interval linear program. In particular, this
means that the proposedmethodworks in polynomial time for interval linear programs
with inequality constraints only.
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