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Abstract Auxiliary functionmethods have been considered to be practical approach-
es for finding the global minimizer of multi-model functions.Filled function methods,
as a typical representative of auxiliary function methods, obtain a global minimizer by
minimizing the objective function and the filled function cyclically. In order to improve
the efficiency of the filled function, this paper presents a new filled function which
has the same local minimizers of the objective function, and these minimizers are all
better than the current minimizer of the objective function. Therefore, it does not need
to minimize the objective function except for the first iteration in the filled function
method. Additionally, the proposed filled function excludes some disadvantages of
conventional filled functions and a classical local optimization method can be applied
directly to the new filled function to obtain a better minimizer of the original problem.
Finally, numerical experiments are made and the results show the effectiveness of the
proposed method.

Keywords Global optimization · Filled function method · Global minimizer · Local
minimizer

B Hongwei Lin
lhw@jit.edu.cn

1 Faculty of science, Jinling Institute of Technology, Nanjing 211169, People’s Republic of China

2 Information and System Science, Beifang University for Nationalities, Yinchuan 750021,
People’s Republic of China

3 School of Computer Science and Technology, Xidian University, Xi’an 710071,
People’s Republic of China

4 School of Computer Engineering, Jinling Institute of Technology, Nanjing 211169,
People’s Republic of China

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s11590-018-1275-5&domain=pdf
http://orcid.org/0000-0002-0191-0925


762 H. Lin et al.

1 Introduction

Global optimization has extensive applications in many social practices, such as engi-
neering, finance, management, decision science and so on. In recent years, many
theoretical and computational contributions have been reported for solving global
optimization problems. In general, existing approaches can be classified into two cat-
egories: deterministic methods and probabilistic methods. The former includes the
auxiliary function method [1–4], trajectory method [5,6], and covering method [7,8]
and so on. The typical representatives of the latter are genetic algorithm [10], simulated
annealing method [11], particle swarm optimization [12] and differential evolution
algorithm [13] and so on. Although the latter methods have been effectively applied to
solve many complex problems, there still some issues to solve, such as convergence
analysis, the decrease of the computational time, the selection of the parameters, etc.
Compared with the latter, the former methods turn out to be more mature in theo-
rems, but many of them have shown to be dependent on the conditions of the specific
problem. Additionally, in practical problems, most of the objective functions have
several local minimizers, which leads a great challenge for global optimization. The
key of global optimization is finding a way to escape from the current local minimizer.
Among the existing methods, the auxiliary function method appears to have several
advantages over others mainly due to its relatively easy actualization with a process
that aims at successively finding a smaller local minimizer. This paper mainly focuses
on one representative method of auxiliary function methods: filled function method
(FFM), whose main idea can be described as follows:

1. An arbitrary point is taken as an initial point to minimize the objective function
by using a local optimization method, and a minimizer of the objective function
is obtained.

2. Based on the minimizer of the objective function, construct a filled function and
take somepoints around thisminimizer as initial points tominimize the constructed
filled function. A minimizer of the filled function falls into a better region which
contains a better minimizer with smaller objective function value and it will be
found.

3. Take the minimizer of the filled function obtained in the second step as an initial
point to minimize the objective function and obtain a better minimizer of the
objective function.

By repeating process 2 and 3, a global minimizer will be found at last.
The filled function method has been applied to solve various global optimization

problems, e.g., bound-constrained and nonlinearly constrained optimization problems
[2], integer programming [14], max-cut problems [15] and so on. As one of the main
methods to solve unconstrained global optimization, since the filled function method
was proposed, considerable attention has been paid on the constructing of the new
filled functions [9,16,17]. Both theoretical and algorithmic studies demonstrate that
thefilled functionmethodhas potential. Thefilled functionmethod is an efficient global
optimization method and different filled functions have been proposed. Conventional
filled functions either are non-differentiable (evendiscontinuous) [5,6], needmore than
one adjustable parameter [1,3,4] or contain ill-conditioned term (exponential terms or
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logarithmic terms) [1,2]. Additionally, from the general framework of the FFM, we
can see that the minimizer of the filled function is generally not a minimizer of the
objective function, and a better local minimizer obtained need to solve the original
problem. Consequently, if the filled function which has the same local minimizer of
the objective function, and these local minimizers are better than the current one of
the original problem, then a minimizer of the filled function will be a better minimizer
of the original problem. Therefore the efficiency of the FFM will be higher.

To overcome the shortcomings of the conventional filled functions, a new filled
function with only one easy to adjust parameter is proposed. It is a continuously
differentiable function which excludes exponential terms or logarithmic terms. What
is more satisfactory is that any one local minimizer of the new proposed function is a
better local minimizer of the original problem.

The rest of this paper is organized as follows. Some knowledge that is basic for the
subsequent sections are given in Sect. 2. In Sect. 3, a new continuously differentiable
filled function with only one parameter is proposed and its properties are analyzed.
An algorithm with some practical considerations is given in Sect. 4, some numerical
experiment results on some testing problems are also shown in this section. Finally,
some concluding remarks are given in Sect. 5.

2 Preliminaries

In this paper, we consider the following unconstrained global optimization problem :

(P)

{
min f (x),
s.t. x ∈ Rn .

where f : Rn → R is a continuously differentiable function.

Assumption 1 f (x) is a coercive function on Rn , namely, f (x) → +∞, as ‖x‖ →
+∞.

Assumption 1 implies that there exists a box Ω = ∏n
i=1[li , ui ] ⊂ Rn whose interior

contains all global minimizers of f (x). Thus the problem (P) is equivalent to the
following problem:

min
x∈Ω

f (x) (1)

Then, we only consider problem (1) in the following. In order to analyze the properties
of the new filled function, the following assumptions are all necessary.

Assumption 2 f (x) has only a finite number of minimizers in Ω and the set of the
minimizers is denoted as

Ml = {
x∗
i |i = 1, 2, . . . , N

}

where N is the number of minimizer of f (x)
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Assumption 3 All of the local minimizers of f (x) fall into the interior ofΩ , and each
point y on the boundary ofΩ satisfies f (y) > c , where c satisfies c = max{ f (x)|x ∈
Ml}.
Additionally, some useful symbols will be adopted in the following.

k: the iteration number;
xk : the initial point in the k-th iteration;
x∗
k : the local minimizer of f (x) in the k-th iteration;
f ∗
k : the function value at x∗

k ;
S1: the set defined by S1 = {x | f (x) ≥ f (x∗

k ), x ∈ Ω\{x∗
k }};

S2: the set defined by S2 = {x | f (x) < f (x∗
k ), x ∈ Ω};

m: a constant defined by m = mini, j∈{1,2,··· N }, f (x∗
i ) 	= f (x∗

j )
| f (x∗

i ) − f (x∗
j )|.

Based on the above symbols and assumptions, the FFM was first proposed by Ge
[1,2]and has been updated as the following generations. The examples of the filled
function in the first generation are P-function [1] and G-function [2] which are listed
as follows:

P(x, r, ρ) = exp
(
−‖x − x∗

k ‖/ρ2
)

/(r + f (x)) (2)

G(x, r, ρ) = −
[
ρ2 ln(r + f (x)) + ∥∥x − x∗

k

∥∥p
]

(3)

where p is an integer, for example, p can be taken as 2.
The P-function and G-function have a common feature: there are two adjustable

parameters, r and ρ, which need to be appropriately iterated and coordinated. Because
of this limitation, the second-generation filled functions were proposed. Among them,
the best known is the Q-function [2] given by

Q(x, A) = − (
f (x) − f

(
x∗
k

))
exp

(
A

∥∥x − x∗
k

∥∥2) . (4)

The Q-function has only one adjustable parameter A, so the algorithm is sig-
nificantly efficient than those in the first generation. However, the Q-function is
susceptible to exponential terms when applied to global optimizations since its mag-
nitude increases exponentially against parameter A. The larger A, which is required
by the property of the filled function, the larger exponential may result in an overflow
in the computation. To overcome this shortcoming, the H-function was proposed in
[18] as follows:

H(x, A) = 1/ ln
(
1 + f (x) − f

(
x∗
k

)) − A
∥∥x − x∗

k

∥∥2 . (5)

TheH-function keeps the advantage of theQ-function that it has only one adjustable
parameter and that it does not include the exponential term. The H-function can be
regarded as an example of the third-generation filled functions. Nevertheless, it dis-
continues at the points whose function value is equal to the one at x∗

k . Therefore,
most local minimization algorithms used in the filled function may lose efficiency,
and the FFM will be failure to find a global minimizer of the problem (1). This leads
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to the fourth-generation (C-function) of the FFM [19]. Based on the thinking of the
C-function, a new filled function which has the same properties as the C-function is
constructed in this paper. The new filled function not only excluded from some dis-
advantages of the conventional filled function, but also has the same local minimizer
with the original problem.

3 A new filled function and its properties

The definition of the filled function is first introduced by Ge in [1]. Since the definition
of the filled function was introduced, many variations of the definition of the filled
function are given. In this paper, we adopt the revised definition of the filled function
as follows:

Definition 1 Suppose x∗
k is a current local minimizer of f (x), A continuously differ-

entiable function F(x) is said to be a filled function of f (x) at x∗
k , if it satisfies the

following properties:

(1) x∗
k is a strict local maximizer of F(x);

(2) F(x) has no stationary point in the set S1;
(3) If x∗

k is not a global minimizer of f (x), namely S2 is not empty, then there exists

a point x
′
k such that it is a local minimizer of F(x) on S2 which is a better local

minimizer of f (x) .

In order to construct a new filled function, two functions with one variable are
introduced firstly:

h(t) =
⎧⎨
⎩
1, t ≥ 0,
1 − 2t3 − 3t2, −1 ≤ t < 0,
0, t ≤ −1.

g(t) =
{
0, t ≥ 0,
t3, t < 0.

it can be seen that h(t) and g(t) are all continuously differentiable functions over
R. Based on functions h(t) and g(t) , we construct a filled function for solving the
problem (1) at a local minimizer x∗

k as follows:

F (
x, x∗

k , P
) = 1

1 + ∥∥x − x∗
k

∥∥2 × h
(
P × (

f (x) − f
(
x∗
k

))) + g
(
f (x) − f

(
x∗
k

))

(6)

where P > 0 is a parameter. We can see that the formula (6) is a continuously
differentiable function. The following theorems indicate that the function (6) is a
filled function which satisfies Definition 1.

Definition 2 A set N (x, δ) = {y|‖y − x‖ < δ} is called a neighborhood of x .

Definition 3 A point y is said to be a local minimizer (maximizer) of f (x) on a set
A, if there is δ, for ∀z ∈ N (y, δ)

⋂
A, one has f (z) � (�) f (y). If the equality does
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not hold, the minimizer (maximizer) is called strict. For ∀z ∈ A, f (z) � (�) f (y)
holds, y is called a global minimizer (maximizer) of f (x) on A

Theorem 1 Suppose x∗
k is a local minimizer of f (x) and F(x, x∗

k , P) is defined by
(6), then x∗

k is a strict local maximizer of F(x, x∗
k , P) on Ω for all P > 0.

Proof Since x∗
k is a local minimizer of the problem f (x), there exists δ > 0, such that

f (x) � f (x∗
k ) for any x ∈ Ω

⋂
N (x∗

k , δ). Then, for any x ∈ Ω
⋂

N (x∗
k , δ), x 	= x∗

k ,
one has

F (
x, x∗

k , P
) = 1

1 + ‖x − x∗
k ‖2

< 1 = F (
x∗
k , x

∗
k , P

)
. (7)

Thus, x∗
k is a strict local maximizer of F(x, x∗

k , P). �
Theorem 2 Suppose x∗

k is a local minimizer of f (x), if x is a point such that in set
S1, then x is not a stationary point of F(x, x∗

k , P) for all P > 0.

Proof By x ∈ S1, one has x 	= x∗
k and

F (
x, x∗

k , P
) = 1

1 + ∥∥x − x∗
k

∥∥2 , ∇F (
x, x∗

k , P
) = −2

(
x − x∗

k

)
(
1 + ∥∥x − x∗

k

∥∥2)2 	= 0

Namely x is not a stationary point of F(x, x∗
k , P) (where∇F is the gradient of F ). �

By the continuously differentiability of F(x, x∗
k , P) and definition of S1, we know

that ∀y ∈ S1 is not a local minimizer of F(x, x∗
k , P).

Theorem 3 Suppose x∗
k is a local minimizer but not a global minimizer of f (x) on

Ω , it means S2 is not empty, then there exists a point x
′ ∈ S2 such that x

′
is a local

minimizer of F(x, x∗
k , P) when P > 1

m .

Proof Since x∗
k is a local but not a global minimizer of f (x), there exists another local

minimizer x∗ of f (x) such that f (x∗) < f (x∗
k )

By definition of m and the continuity of f (x) , if P > 1
m , then P × ( f (x∗) −

f (x∗
k )) ≤ −mP < −1. Consequently

F (
x∗, x∗

k , P
) = (

f
(
x∗) − f

(
x∗
k

))3
< 0 (8)

By the Assumption 3, ∀y ∈ ∂Ω , one has f (y) > f (x∗
k ), there by F(y, x∗

k , P) =
1

1+‖y−x∗
k ‖2 > 0. Thus, by the intermediate value theorem of continuous functions,

there exists a point on the segment between x∗ and y denoted by [x∗, y] and the
function value at this point is 0. Assume that z is the closest point to x∗ on this
segment with F(z, x∗

k , P) = 0, then we can obtain a segment [x∗, z].
Let S(x∗) be the set of all the above line segments [x∗, z] when y ∈ ∂Ω , then it is

a closed region. By continuity of F(x, x∗
k , P), there exists a x

′ ∈ S(x∗) such that it

is a minimizer F(x, x∗
k , P) and F(x

′
, x∗

k , P) < 0. Since F(x, x∗
k , P) is continuously

differentiable, thus

123



A filled function which has the same local minimizer… 767

∇F
(
x

′
, x∗

k , P
)

= 0

�
From Theorems 1, 2 and 3, we know that if x∗

k is not a global minimizer of f (x) on

Ω , there exists a local minimizer x
′
ofF(x, x∗

k , P) onΩ which satisfies x
′ ∈ S2 when

parameter P is taken as large as possible. Meanwhile, if x∗
k is not a global minimizer

of f (x), there exists another local minimizer x∗ of f (x) such that f (x∗) < f (x∗
k )

, then ∃N (x∗, δ) such that P × ( f (x) − f (x∗
k )) < −1 for ∀x ∈ N (x∗, δ), there by

for ∀x ∈ N (x∗, δ), F(x, x∗
k , P) = ( f (x) − f (x∗

k ))
3 . It is obvious that x∗ is a local

minimizer of F(x, x∗
k , P) . Thus, we can see that a local minimizer of F(x, x∗

k , P)

is also a minimizer of f (x) whose function value is less than f (x∗
k ). Therefore, the

filled function method only need to minimize the filled function for finding a global
minimizer of the problem (1).

4 Filled function algorithm and numerical experiments

4.1 filled function algorithm and some explanations

Based on the theorems and discussions in the above section, a new filled function algo-
rithm for finding a global minimizer of f (x) and some explanations of the algorithm
are given. The algorithm is described firstly.

The filled function algorithm

Step0: Choose an upper bound Ubp of P (e.g., take it as 106) and a constant ρ > 1
(e.g., take it as ρ = 10); give the initial P (e.g., take it as 1)respectively;
Some directions ei , i = 1, 2, . . . , K , K ≥ 2n are given in advance, where n
is the dimension of the optimization problems. Set k := 1, and choose a point
xk ∈ Ω .

Step1: Minimize f (x) starting from an initial point xk ∈ Ω and obtain a minimizer
x∗
k of f (x) .

Step2: Construct

F (
x, x∗

k , P
) = 1

1+‖x−x∗
k ‖2 × h

(
P × (

f (x) − f
(
x∗
k

))) + g
(
f (x) − f

(
x∗
k

))
.

Set i = 1.
Step3: If i � K , then set x = x∗

k + δei and go to step 4; otherwise, go to Step5.
Step4: Use x as an initial point for minimization of F(x, x∗

k , P). If the minimization
sequences ofF(x, x∗

k , P)goout ofΩ , set i = i+1 andgo toStep3; otherwise, a

minimizer x
′
will be foundbyminimizingF(x, x∗

k , P), set x∗
k+1 = x

′
,k = k+1

and go to Step2.
Step5: If P < Ubp, then increase P by setting P := ρ×P andgo toStep2;Otherwise,

the algorithm stops and x∗
k is taken as a global minimizer of problem (P).

Some explanations about the above filled function algorithm are necessary.
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1. In Step0, K directions need to be chosen, in general, take K = 2n, ei =
(0, . . . , 1

i
, . . . , 0)T , i = 1, 2, . . . , n and ei = −ei−n, i = n + 1, . . . , 2n .

2. In minimization of f (x) and FF(x, x∗
k , P), a local optimization method needs to

be selected firstly. In our algorithm, the SQP method is chosen.
3. In Step3, the value of δ needs to be selected accurately. In our algorithm, δ is

selected to guarantee ‖∇F(x, x∗
k , P)‖ is greater than a threshold (e.g.,take the

threshold as 10−2).
4. Step 4 means that the local minimizer x

′
of F(x, x∗

k , P) satisfies x
′ ∈ S2 which is

a better local minimizer of f (x).
5. We notice that the Assumption 3 is necessary for analyzing the properties of

F(x, x∗
k , P). In implementation of the FFM, this assumption is not necessary.

4.2 Numerical experiments

In this section, the proposed algorithm is tested on the following ten benchmark prob-
lems which are usually used as test functions.

Problem 1 (Two-dimensional function)

min f (x) = [1 − 2x2 + c sin(4πx2) − x1]2 + [x2 − 0.5 sin(2πx1)]2,
s.t. 0 ≤ x1 ≤ 10, −10 ≤ x2 ≤ 0,

where c = 0.2, 0.5, 0.05. The global minimum function value f (x∗) = 0 for all c.

Problem 2 (Three-hump camel-back function)

min f (x) = 2x21 − 1.05x41 + 1
6 x

6
1 − x1x2 + x22 ,

s.t. −3 ≤ x1 ≤ 3, −3 ≤ x2 ≤ 3.

The global minimizer is x∗ = (0, 0)T .

Problem 3 (Six-hump camel-back function)

min f (x) = 4x21 − 2.1x41 + 1
3 x

6
1 − x1x2 − 4x22 + 4x42 ,

s.t. −3 ≤ x1 ≤ 3, −3 ≤ x2 ≤ 3.

The global minimizer is x∗ = (−0.0898,−0.7127)T and x∗ = (0.0898, 0.7127)T .

Problem 4 (Treccani function)

min f (x) = x41 + 4x31 + 4x21 + x22 ,
s.t. −3 ≤ x1 ≤ 3, −3 ≤ x2 ≤ 3.

The global minimizers are x∗ = (0, 0)T and x∗ = (−2, 0)T .
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Problem 5 (Goldstein and Price function)

min f (x) = g(x)h(x),
s.t. −3 ≤ x1 ≤ 3, −3 ≤ x2 ≤ 3,

where g(x) = 1 + (x1 + x2 + 1)2(19 − 14x1 + 3x21 − 14x2 + 6x1x2 + 3x22 ), and
h(x) = 30 + (2x1 − 3x2)2(18− 32x1 + 12x21 + 48x2 − 36x1x2 + 27x22 ). The global
minimizers is x∗ = (0,−1)T .

Problem 6 (Rosenbrock function)

min f (x) = 100(x21 − x2)2 + (x1 − 1)2,
s.t. −10 ≤ x1 ≤ 10, −10 ≤ x2 ≤ 10,

The global minimizer is (1, 1)T .

Problem 7 (Branin function)

min f (x) =
(
x2 − 1.275

x21
π2 + 5 x1

π
− 6

)2

+ 10
(
1 − 0.125

π

)
cos x1 + 10,

s.t. −5 ≤ x1 ≤ 10, 0 ≤ x2 ≤ 15,

The global minimizer are (−3.142, 12.275)T , (3.142, 2.275)T and (9.425, 2.475)T .

Problem 8 (Two-dimensional Shubert function)

min f (x) =
{

5∑
i=1

i cos[(i + 1)x1] + i

} {
5∑

i=1
i cos[(i + 1)x2] + i

}
,

s.t. −10 ≤ x1 ≤ 10, −10 ≤ x2 ≤ 10.

This problem has 760 minimizers in total. The global minimum value is f (x∗) =
−186.7309.

Problem 9 (Shekel’s function)

min f (x) = −
5∑

i=1

[
4∑
j=1

(x j − ai, j )2 + ci

]−1

,

s.t. 0 ≤ x j ≤ 10, j = 1, 2, 3, 4,

where the coefficients ai, j ,ci ,i = 1, 2, 3, 4, 5, j = 1, 2, 3, 4 are given in Table 1.
All localminimizers are approximately equal to (ai,1, ai,2, ai,3, ai,4)T with function

value −1/ci ,i = 1, 2, 3, 4, 5.

Problem 10 (n-dimensional Sine-square II function)

min f (x) = π
n

{
10 sin2 πx1 + g(x) + (xn − 1)2

}
,

s.t. −10 ≤ xi ≤ 10, i = 1, 2, . . . , n,
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Table 1 The coefficient for
Problem 9

i ai,1 ai,2 ai,3 ai,4 ci

1 4.0 4.0 4.0 4.0 0.1

2 1.0 1.0 1.0 1.0 0.2

3 8.0 8.0 8.0 8.0 0.3

4 6.0 6.0 6.0 6.0 0.4

5 3.0 7.0 3.0 7.0 0.5

where g(x) = ∑n−1
i=1 [(xi − 1)2(1 + 10 sin2 πxi+1)]. The global minimizer of this

problem is x∗ = (1, . . . , 1) for all n.

The proposed algorithm is executed on the above 10 test problems and the perfor-
mance is compared with that of the algorithms in [18–20]. In the related Tables, the
following symbols are adopted.

Prob: the problem number 1–10;
ObjEval: the number of the total function evaluations of the original objective;
FilledEval: the number of the total function evaluations of the filled function;
x0: an initial point;

The initial value of P is taken as 1 and Ubp is taken as 106 for all problems;

NFFM: the algorithm proposed in this paper;
HFA: the algorithm proposed in [18].
CFA: the algorithm proposed in [19].
NFA: the algorithm proposed in [20].
Time: the CPU time for the algorithm to stop. In general, CPU -time is dependent
on the tuning of parameter P and the performance of the computer.

The choice of the tuning parameter P is given by the filled function algorithm. The
proposed algorithm is programmed in Matlab 2014a for working on the Windows 10
system with Intel(R) Core(TM)i5-3340M CPU and 4G RAM.

The proposed algorithm is executed on the above 10 test problems, for Problems 1–
5, 8–10, the performance is comparedwith that of the algorithm in [20]. Theminimizers
obtained by the above two algorithms are listed in Tables 2, 3, 4, 5, 6, 7, 8, 9, 10, 11,
12, 13, 14, 15, and 16.

From Tables 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, and 17, We can see that
for all test problems, both the proposed algorithm (NFFM) and the algorithm proposed
in [20] (NFA) can find the global optimal solutions for 8 test problems. However, the
NFFMused nomore iterations to find the global optimal solution. In particular, for test
Problem 1 in all three cases, and Problems 8 and 10, the NFFM used fewer iterations
to find the optimal solutions than the NFA. For example, for Problem 1 in the case that
c = 0.05 and x0 = (10,−10) shown in Table 4, the NFFM only needs 7 iterations to
find the global optimal solution, but the NFA needs 8 iterations. For Problem 6, there
are 760 local minimizers, and the NFFM only needs 4 iterations to find the global
optimal solutions, but the NFA needs 6 iterations. Thus, the proposed algorithm is
more efficient than the algorithm in [20].
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Table 2 Results for Problem 1 with c = 0.2 and x0 = (6, −2)T

NFFM NFA

k x∗
k f ∗

k P x∗
k f ∗

k

1 (5.7221,− 1.8806)T 2.5070 1 (5.7221,− 1.8806)T 2.5070

2 (3.7387,− 1.2649)T 0.6165 1 (4.7387,− 1.7417)T 1.6212

3 (1.0000,− 0.0000)T 2.8229e−010 10 (4.7096,− 1.3985)T 1.3566

4 (3.7387,− 1.2649)T 0.61647

5 (2.7380,− 0.78836)T 0.088673

6 (1.8784,− 0.34585)T 0

Table 3 Results for Problem 1 with c = 0.5 and x0 = (0, 0)T

NFFM NFA

k x∗
k f ∗

k P x∗
k f ∗

k

1 (0.0420,− 0.0948)T 0.5175 1 (0.042023,− 0.094772)T 0.51745

2 (1.0000, 0)T 1.5257e−009 10 (0.99991,− 1.2524e−4)T 2.2389e−7

3 (1.0000,− 2.2205e−14)T 0

Table 4 Results for Problem 1 with c = 0.05 and x0 = (10, − 10)T

NFFM NFA

k x∗
k f ∗

k P x∗
k f ∗

k

1 (8.7299,− 3.2965)T 9.0733 1 (8.7299,− 3.2965)T 9.0733

2 (7.7280,− 2.8347)T 6.5031 1 (7.7280,− 2.8347)T 6.5031

3 (6.7248,− 2.3724)T 4.3943 1 (6.7248,− 2.3724)T 4.3943

4 (5.7198,− 1.9162)T 2.7434 1 1(5.7198,− 1.9162)T 2.7434

5 (4.7129,− 1.4890)T 1.5351 1 (4.7129,− 1.4891)T 1.5351

6 (2.7300, − 0.7934)T 0.1022 1 (3.7305,− 1.2306)T 0.61844

7 (1.8513,− 0.4021)T 4.3885e−011 10 (2.7300, − 0.79341)T 0.10216

8 (1.8513,− 0.40209)T 0

Table 5 Results for Problem 2 with initial point (− 2, − 1)T

NFFM NFA

k x∗
k f ∗

k P x∗
k f ∗

k

1 (− 1.7476,− 0.8738)T 0.2986 1 (− 1.7476,− 0.87378)T 0.29864

2 1.0e−004 × (0.8343, 0.9603)T 1.5130e−008 10 (0, 0)T 0
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Table 6 Results for Problem 2 with initial point (2, 1)T

NFFM NFA

k x∗
k f ∗

k P x∗
k f ∗

k

1 (1.7476, 0.8738)T 0.2986 1 (1.7476, 0.87378)T 0.29864

2 1.0e−004 × (0.8343, 0.9603)T 1.5130e−008 10 (0, 0)T 0

Table 7 Results for Problem 3 with initial point (− 2, 1)T

NFFM NFA

k x∗
k f ∗

k P x∗
k f ∗

k

1 (− 1.6071, 0.5687)T 2.1043 1 (− 1.6071, 0.56865)T 2.1043

2 (0.0898, 0.7127)T − 1.0316 1 (0.089842, 0.71266)T − 1.0316

Table 8 Results for Problem 3 with initial point (2, −1)T

NFFM NFA

k x∗
k f ∗

k P x∗
k f ∗

k

1 (1.6071,− 0.5687)T 2.1043 1 (1.6071,− 0.56865)T 2.1043

2 (− 0.0898,− 0.7127)T − 1.0316 1 (− 0.089842,− 0.71266)T − 1.0316

Table 9 Results for Problem 3 with initial point (− 2, − 1)T

NFFM NFA

k x∗
k f ∗

k P x∗
k f ∗

k

1 (− 1.7036,− 0.79608)T − 0.2155 1 (1.7036,− 0.79608)T − 0.21546

2 (− 0.0899,− 0.7127)T − 1.0316 10 (− 0.089842,− 0.71266)T − 1.0316

Table 10 Results for Problem 4
with initial point (− 1, 0)T

NFFM NFA

k x∗
k f ∗

k P x∗
k f ∗

k

1 (− 1.0000, 0)T 1.0000 1 (− 1.0000, 0)T 1.0000

2 (0, 0)T 0 10 (0, 0)T 0

Table 11 Results for Problem 5 with initial point (− 1, − 1)T

NFFM NFA

k x∗
k f ∗

k P x∗
k f ∗

k

1 (− 0.6000,− 0.4000)T 30.0000 1 (− 0.60000,− 0.40000)T 30.000

2 (0, − 1.0000)T 3.0000 1 (0, − 1.0000)T 3.0000
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Table 12 Results for Problem 8 with initial point (1, 1)T

NFFM NFA

k x∗
k f ∗

k P x∗
k f ∗

k

1 (1.08651.0865)T 0 1 (1.0865, 1.0865)T 2.8841e−17

2 (3.2800, 4.8581)T −46.511 1 (1.3200, 1.8703, e−12)T −13.052

3 (4.2760, 4.8581)T −79.411 1 (1.3200, 4.8581)T −37.681

4 (5.4892, 4.8581)T −186.7309 1 (3.2800, 4.8581)T −46.511

5 (4.2760, 4.8581)T −79.411

6 (5.4892, 4.8581)T −186.73

Table 13 Results for Problem 9 with initial point (1, 1, 1, 1)T

NFFM NFA

k x∗
k f ∗

k P x∗
k f ∗

k

1 (1.0001, 1.0002, (1.0001, 1.0002,

1.0001, 1.0002)T − 5.0552 1 1.0001, 1.0002)T − 5.0552

2 (4.0000, 4.0001, (4.0000, 4.0001,

4.0000, 4.0001)T − 10.1532 1 4.0000, 4.0001)T − 10.153

Table 14 Results for Problem 9 with initial point (6, 6, 6, 6)T

NFFM NFA

k x∗
k f ∗

k P x∗
k f ∗

k

1 (5.9987, 6.0003, (5.9987, 6.0003,

5.9987, 6.0003)T − 2.6829 1 5.9987, 6.0003)T − 2.6829

2 (7.9996, 7.9996, (7.9996, 7.9996,

7.9995, 7.9996)T − 5.1008 1 7.9996, 7.9996)T − 5.1008

3 (4.0000, 4.0001, (4.0000, 4.0001,

4.0000, 4.0001)T − 10.1532 1 4.0000, 4.0001)T − 10.153

Table 15 Results for Problem 10 with n = 7 and initial point (2, 2, 2, 2, 2, 2, 2)T

NFFM NFA

k x∗
k f ∗

k P x∗
k f ∗

k

1 (1.9899, 1.9897, 1.9896, 1.9896 (1.9899, 1.9897, 1.9896, 1.9896

1.9896, 1.9896, 1.9898)T 2.1767 1 1.9896, 1.9896, 1.9898)T 2.1767

2 (1.0000, 1.0000, 1.0000, 1.0000, (1.0000, 1.0000, 1.0000, 1.0000

1.0000, 1.0000, 1.0000)T 7.4665e-011 1 1.0000, 1.0000, 1.0000)T 0
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Table 16 Results for Problem 10 with n = 10 and initial point (6, 6, 6, 6, 6, 6, 6, 6, 6, 6)T

NFFM NFA

k x∗
k f ∗

k P x∗
k f ∗

k

1 (5.9490, 5.9979, 5.9980, 5.9980, (5.9490, 5.9979, 5.9980, 5.9980,

5.9980, 5.9980, 5.9980, 5.9980, 5.9980, 5.9980,

5.9980, 5.9980, 5.9980)T 78.4316 1 5.9980, 5.9980, 5.9980)T 78.432

2 (− 0.97956, 5.9871, 5.9980, 5.9980, (− 1.9696, 5.9943, 5.9980, 5.9980,

5.9980, 5.9980, 5.9980, 5.9980, 5.9980, 5.9980,

5.9980, 5.9980, 5.9980)T 71.8841 1 5.9980, 5.9980, 5.9980)T 73.450

3 (1.9900, 1.0000, 1.0000, 1.0000, (− 0.97956, 5.9871, 5.9980, 5.9980,

1.0000, 1.0000, 1.0000, 5.9980, 5.9980, 5.9980,

6.0000, 6.0000, 6.0000)T 26.7135 1 5.9980, 5.9980, 5.9980)T 71.884

4 (1.0000, 1.0000, 1.0000, 1.0000, (0.012709, 5.9476, 5.9979, 5.9980,

1.0000, 1.0000, 1.0000 5.9980, 5.9980, 5.9980,

, 1.0000, 1.0000, 1.0000)T 0 1 5.9980, 5.9980, 5.9980)T 70.890

5 (1.0000, 1.0000, 1.0000, 1.0000,

1.0000, 1.0000, 1.0000,

1.0000, 1.0000, 1.0000)T 0

Table 17 The results obtained by NFFM and NFA on Problems 1–5, 8–10

Prob x0 NFFM NFA

Time ObjEval + FilledEval Time ObjEval + FilledEval

1 (c = 0.2) (6,− 2)T 2.653418 60 + 71 5.837520 222 + 486

1 (c = 0.5) (0, 0)T 1.825776 30 + 58 3.103819 63 + 283

1 (c = 0.05) (10,− 10)T 2.840004 42 + 194 4.057149 217 + 469

2 (− 2, − 1)T 2.182257 27 + 22 4.400483 57 + 265

2 (2, 1)T 2.762833 27 + 22 4.983860 57 + 265

3 (− 2, 1)T 1.884487 27 + 33 3.963400 51 + 237

3 (2, − 1)T 1.873671 27 + 33 3.842301 51 + 237

3 (− 2, − 1)T 1.979559 39 + 53 3.950833 53 + 252

4 (− 1, 0)T 1.268946 3 + 31 3.998480 36 + 243

5 (− 1, −1)T 2.929603 42 + 79 4.796678 87 + 295

8 (1, 1)T 2.706970 24 + 60 4.449131 144 + 240

9 See Table 13 6.416832 20 + 140 9.545932 85 + 380

9 See Table 14 7.051653 20 + 231 9.820829 135 + 571

10 n = 7 See Table 15 12.404419 56 + 634 22.592902 232 + 1090

10 n = 10 See Table 16 17.074316 88 + 795 25.662697 392 + 862
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Table 18 The average total number of the evaluations of the objective function and the filled function

Prob The performance of NFFA The performance of HFA The performance of CFA

2 57 × 10 218 × 4 216 × 4

3 119.6 × 10 103.5 × 4 99.25 × 4

4 41.1 × 10 74 × 4 74 × 4

5 142 ×10 207 × 4 195 × 4

6 164.2 × 10 392 × 4 392 × 4

7 27.3 × 10 80.75 × 4 80.75 × 4

8 53.3 × 10 168 × 3 1563 × 3

9 272.4 × 10 9805.25 × 4 3070.25 × 4

To evaluate its effectiveness, the new filled function algorithm was used to find
the global minimizers of the Problems 2–8 and 9. In all tests, ten initial points were
randomly generated. The experimental results are presented in Table 18, in which the
data are the average total number of evaluations of function f (x) and FF(x, x∗

k , P)

when the global minimizer was found. (The number of directions is taken as 2n, in
Problem 6, and Ω is taken as [− 10, 10] × [− 10, 10].)

The performance of the HFA and CFA can be seen in reference [19]. In [19],
four initial points were taken randomly, then the average number of evaluations of
the objective function can be computed excluding unsuccessful tests. The results are
listed in Table 18.

The means of the dates in Table 18 are as follows: When used HFA to solve
problem 2, the number of evaluations of the objective function are 345, 109, 340, 78
respectively, then the date in table is denoted as (345+109+340+78)/4×4 ; When
used HFA to solve Problem 8, the number of evaluations of the objective function
are −, 259, 131, 114 (− denote the test is unsuccessful) respectively, then the date in
table is denoted as (259 + 131 + 114)/3 × 3

From Table 18, the total number of evaluations of function f (x) and FF(x, x∗
k , P)

of the new FFM is less than the ones HFA andCFA except for Problem 3. Therefore,
the new algorithm is better than HFA and CFA in performance.

5 Concluding remarks

This paper presented a newfilled function. It excluded some limitations of conventional
filled functions and had the same local minimizer which is better than the current
local minimizer with the original problem. Therefore, the computational cost would
be highly reduced since we avoid minimizing the objective function and the filled
function cyclically. We compared our proposed method with existing ones on several
testing optimization problems. The experimental results showed the effectiveness of
our method on practical problems.
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