
Optim Lett (2019) 13:3–21
https://doi.org/10.1007/s11590-018-1267-5

ORIGINAL PAPER

A tolerance function for the multiobjective set covering
problem

Lakmali Weerasena1 · Margaret M. Wiecek2

Received: 3 July 2017 / Accepted: 24 April 2018 / Published online: 3 May 2018
© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Abstract The multiobjective set covering problem (MOSCP), an NP-hard combi-
natorial optimization problem, has received limited attention in the literature from the
perspective of approximating its Pareto set. The available algorithms for approximat-
ing the Pareto set do not provide a bound for the approximation error. In this study, a
polynomial-time algorithm is proposed to approximate an element in the weak Pareto
set of the MOSCP with a quality that is known. A tolerance function is defined to
identify the approximation quality and is derived for the proposed algorithm. It is
shown that the tolerance function depends on the characteristics of the problem and
the weight vector that is used for computing the approximation. For a set of weight
vectors, the algorithm approximates a subset of the weak Pareto set of the MOSCP.

Keywords Approximation algorithm · Approximation error · Representation ·
Combinatorial optimization · Efficient solution · Max-ordering

1 Introduction

Multiobjective combinatorial optimization (MOCO) problems involve optimizing
more than one objective function on a finite set of feasible solutions. Somewell-known
MOCO problems include the traveling salesman problem (TSP), the set covering
problem (SCP), the minimum spanning tree problem (MSTP), and the knapsack prob-

B Lakmali Weerasena
lakmali-weerasena@utc.edu

Margaret M. Wiecek
wmalgor@clemson.edu

1 University of Tennessee at Chattanooga, 615 McCallie Ave, Chattanooga, TN 37403, USA

2 Clemson University, O-110 Martin Hall, Clemson, SC 29634, USA

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s11590-018-1267-5&domain=pdf


4 L. Weerasena, M. M. Wiecek

lem (KP). During the past decades the interest in solving MOCO problems has been
growing and surveys summarizing those efforts are given by Ehrgott [6], Ehrgott and
Gandibleux [8], and Ulungu and Teghem [24]. Because there may not exist a single
optimal solution to a MOCO problem as the objective functions are in conflict with
each other, a solution set is defined based on the concept of Pareto optimality. Solving a
MOCO problem is then understood as computing the elements in the Pareto set. In this
paper, attention is given to the multiobjective set covering problem (MOSCP) that has
received limited attention in the literature from the perspective of the approximation
of its Pareto set.

TheMOSCP has the same structure as the well-known single objective set covering
problem (SOSCP). An instance of the SCP consists of a finite set of the items and a
family of subsets of the items so that every item belongs to at least one of the subsets
in the family. When we consider the SOSCP, each set in the family has a positive
scalar cost. The goal of the SOSCP is to determine a subset of sets, among the sets in
the family, so that all items are included by at least one set in the subset and the total
costs of the selected sets is minimized. When there are p scalar costs for each set in
the family, the SCP is called the MOSCP.

Some real-world applications such as the emergency medical service problem [5]
or the reserve site selection problem [18,27] are modelled as the bi-objective SCP
(BOSCP). For example, in the reserve site selection problem a reserve system con-
taining some etiological species is partitioned into reserve sites. The species can be
considered as items and the reserve sites can be represented by subsets. The problem
is to find a subset of reserve sites covering a given set of species in a reserve system.

The SCP is in the category of NP problems and it is shown to be NP-complete
by Karp [14]. Therefore, the SOSCP and MOSCP are also NP-hard problems. For
NP-hard problems, we are typically interested in finding a near optimal solution, that
is, a solution that yields the objective value that is worse than the optimal objective
value by a factor of ρ > 0. An algorithm providing a near optimal solution with a
factor ρ is called a ρ-approximation algorithm. Chvátal [4] and Vazirani [26] propose
polynomial-time approximation algorithms for the SOSCP.Chvátal’s [4] algorithmhas
the factor ρ being a function of the cardinality of the largest subset while Vazirani’s
[26] algorithm has the factor equal to logm where m is the number of items. The
SOSCP is a well-studied problem and different methods have been proposed in the
literature to address it ([3,19], and others).

The MOSCP has not received as much attention as the SOSCP and only a few
studies are found in the literature. Liu [15] proposes a heuristic algorithm gener-
ating only one solution of the MOSCP. Saxena and Arora [23] formulate the SCP
with quadratic objective functions and develop a heuristic enumeration technique for
solving the MOSCP. The authors convert the quadratic objective functions to linear
objective functions by assuming that all objective functions are differentiable and use
the Gomory cut technique to get the efficient solutions. Jaszkiewicz [12,13] proposes
an algorithm called the Pareto memetic algorithm (PMA) and provides a comparative
study of multiobjective metaheuristics for the BOSCP. The performance of the PMA
is compared with nine well-known multiobjective metaheuristics and it is concluded
that the performance depends on the problem structure. Prins et al. [22] propose a
heuristic-based two-phase method (TPM) to find the Pareto set of the BOSCP. In the

123



A tolerance function for the multiobjective set covering… 5

first phase, the scalarized SCP is solved with a heuristic algorithm to find a subset of
the Pareto set called the supported Pareto set. In the second phase, the Pareto points
located between two supported Pareto points are found using a heuristic algorithm.
This heuristic optimizes one objective function at a time and requires that the SOSCP
be reformulated by Lagrangian relaxation. Lust et al. [16] and Lust and Tuyttens [17]
adapt a very large-scale neighborhood search [1] for the MOSCP and compare the
performance of the adaptation, a two-phase local search algorithm (2PPLS), with the
PMA and TPM for the BOSCP. The performance of their algorithm also depends on
the problem structure. Weerasena et al. [28] propose a heuristic algorithm that parti-
tions the feasible region of theMOSCP into smaller subregions based on the neighbors
of a reference solution and then explores each subregion for the Pareto points of the
MOSCP. They compare the performance of their algorithm with the PMA, TPM and
2PPLS for the BOSCP. In general, their algorithm performs better than the TPM and
PMA and is competitive with 2PPLS. Florios and Mavrotas [10] propose a method
to find the Pareto set of multiobjective integer programs, called AUGMECON2, to
produce all Pareto points of the MOSCP. The authors present their results on small
size BOSCPs.

In summary, all the above studies but one propose heuristic approaches to obtaining
the Pareto points of the MOSCP. The method by Florios and Mavrotas [10] is the only
exact approach. As the MOSCP is an NP-hard problem, from the computational point
of view the right direction of research is to approximate the Pareto set or its elements.
However, neither the authors quoted above claim that their methods approximate the
Pareto set or its elements, nor they provide performance guarantee for their algorithms.
Contrary to those approaches, the objective of this paper is to propose an algorithm
for approximating a point in the Pareto set of the MOSCP and compute the quality of
this approximation.

To accomplish this, we follow the concept of Pareto set approximation by Papadim-
itriou and Yannakakis [21] and its generalization by Vanderpooten et al. [25]. The
former recognize that the Pareto set of a MOCO problem is typically exponential in
its size and therefore, finding all Pareto points is computationally infeasible. Even for
two objective functions, determining whether a point belongs to the Pareto set is an
NP problem. They propose an approximation of the Pareto set which they call the
(1+ ε)-approximate Pareto set and define the approximation as a set of solutions such
that for every Pareto point there exists another point within a factor of (1 + ε) where
ε > 0. This definition has already been considered for other NP-hard MOCO prob-
lems such as the TSP [2] and the KP [9], but not yet for the MOSCP. Vanderpooten
et al. [25] define sets representing the Pareto set and propose the concept of tolerance
function as a tool for modeling representation quality.

Using these authors‘ terminology, in this paper we develop an algorithm to approx-
imate a weak Pareto point of the MOSCP with the quality given by an associated
tolerance function. The algorithm appears to be the first approach in the literature
to provide the approximation along with a known tolerance function, a feature not
available for the existing methods. In the algorithm, the weighted-max-ordering for-
mulation [7] of theMOSCP serves as the single objective optimization problemwhose
optimal solution provides the approximation. For a set of weight vectors, the algorithm
approximates a subset of the weak Pareto set of the MOSCP.

123



6 L. Weerasena, M. M. Wiecek

The paper is organized as follows. In Sect. 2, the formulation and terminology of
the MOSCP are provided. An exact approach to computing the Pareto points and the
concept of representation of the Pareto set for the MOSCP are also included. The
algorithm and the derivation of the tolerance function are presented in Sect. 3. The
computational work is presented in Sect. 4 and the paper is concluded in Sect. 5.

2 Problem formulation

In the MOSCP, there is a set of m items, E = {e1, e2, . . . , em} with the index set
I = {i : i = 1, 2, . . . ,m}, and a set of n subsets of E , S = {S1, S2, . . . , Sn} with the
index set of J = { j : j = 1, 2, . . . , n}. The items are grouped into subsets of E
and an item ei in E is covered by a set S j provided ei in S j . An instance of the SCP
is given by the sets E and S. The binary coefficient ai j is equal to 1 if an item ei is
covered by a set S j and otherwise ai j is equal to 0 for i ∈ I and j ∈ J . A cover is
defined as a sub-collection {S j : j ∈ J ∗ ⊆ J }which is a subset of S such that all items
of E are covered, where J ∗ is the index set of selected sets for the sub-collection.

Let x ∈ Rn be the decision variable defined as follows,

x j =
{
1 if S j is selected for a cover
0 otherwise,

for j ∈ J.

As mentioned in the Introduction, in the SCP each item must be covered by at least
one set, i.e., a cover is sought to cover all items. Thus the feasible region X is defined
as X = {x ∈ Rn :

∑
j∈J

ai j x j ≥ 1 for i ∈ I and x j ∈ {0, 1} for j ∈ J }.
Every feasible vector x ∈ X is associated with a cover and vice versa.
The MOSCP has p conflicting objectives. Let cqj > 0 be the cost of a set S j with

respect to objective q for q = 1, 2, . . . , p. The cost of a cover with respect to objective
q is given by

∑
j∈J∗ c

q
j . In the MOSCP the goal is to find a cover such that the costs

with respect to all objective functions are minimized.
The MOSCP can be presented as follows:

min z(x) =
⎡
⎣z1(x) =

n∑
j=1

c1j x j , z2(x) =
n∑
j=1

c2j x j , . . . , z p(x) =
n∑
j=1

cpj x j

⎤
⎦

subject to x ∈ X.

(2.1)

Example 1 Let E = {e1, e2, e3, e4, e5, e6} be a set of items and S1 = {e1, e2}, S2 =
{e1, e2, e3, e4}, S3 = {e3, e4, e5, e6}, S4 = {e1, e3, e6} be four sets with cost vectors
c1 = (2, 1, 4, 3)T and c2 = (1, 3, 5, 1)T , respectively. For example, the collection
{S2, S3} covers all items in S and thus forms a cover.

123



A tolerance function for the multiobjective set covering… 7

2.1 Preliminaries and basic definitions

LetRp be a finite dimensional Euclidean vector space. We first introduce some basic
notations. For y1, y2 ∈ Rp, to define an ordering relation on Rp, the following
notation will be used for p > 1.

1. y1 � y2 if y1k ≤ y2k for all k = 1, 2, . . . , p;
2. y1 ≤ y2 if y1k ≤ y2k for all k = 1, 2, . . . , p and y1 �= y2;
3. y1 < y2 if y1k < y2k for all k = 1, 2, . . . , p.

In particular, using componentwise orders, the nonnegative orthant ofRp is defined
as Rp

� = {y ∈ Rp : y � 0}, the nonzero orthant of Rp is defined as Rp
≥ = {y ∈

Rp : y ≥ 0} and positive orthant of Rp is defined as Rp
> = {y ∈ Rp : y > 0}.

Solving the MOSCP is understood as finding its efficient solutions and Pareto
outcomes.

Definition 1 A point x∗ ∈ X is called

1. a weakly efficient solution of the MOSCP if there does not exist x ∈ X such that
z(x) < z(x∗).

2. an efficient solution of the MOSCP if there does not exist x ∈ X such that z(x) ≤
z(x∗).

The set of all efficient solutions and the set of all weakly efficient solutions are
denoted by XE and XwE respectively. The set of all attainable outcomes, Y , for
feasible solutions, x ∈ X , is obtained by evaluating the p objective functions. That
is Y := z(X) ⊂ Rp. The image z(x) ∈ Y of a (weakly) efficient solution is called a
(weak) Pareto outcome. The image of (XwE ) XE is denoted by (z(XwE )) z(XE ) and
is referred to as the (weak) Pareto set. Given the definition of an (weakly) efficient
solution of the MOSCP, we define a (weak) Pareto cover for the MOSCP.

Definition 2 A (weak) Pareto cover is a cover that is associated with an (weakly)
efficient solution of the MOSCP.

2.2 Finding efficient solutions of the MOSCP

The approximation algorithm we propose in this paper is developed based on the
weighted-max-ordering method, an exact method for finding the efficient solutions of
multiobjecive optimization problems (MOOPs). In this section, we first briefly review
this method and include the result needed when proving the accuracy of the algorithm.

2.2.1 Exact method

The underlying concept of the weighted-max-ordering method is to minimize the
highest (worst) objective function value, zq . The weighted-max-ordering problem
associated with the MOSCP can be written as follows:

min max
q=1,2,...,p

λq zq(x)

subject to x ∈ X
(2.2)

123



8 L. Weerasena, M. M. Wiecek

where λ = (λ1, λ2, . . . , λp)
T ∈ Rp

>. The following result is useful for the MOOP [7,
p. 132] and we state it for the MOSCP.

Proposition 1 Let x∗ ∈ X. Then x∗ ∈ XwE of the MOSCP if and only if there exists
λ ∈ Rp

> such that x∗ is an optimal solution of problem (2.2).

The details of an error function for the MOSCP are given in Sect. 2.2.2.

2.2.2 Approximation

As mentioned in the Introduction, approximating the Pareto set of a MOCO problem
with a performance guarantee is a motivating challenge. The concept of (1 + ε)-
approximate Pareto set forMOCOproblems defined by Papadimitriou andYannakakis
[21] and others makes use of a constant ε to quantify the representation error. To be
able to deal with the Pareto set of the MOSCP we define the tolerance function and a
related representation as in Vanderpooten et al. [25].

Definition 3 Let Y be a set inRp. A vector-valued function t : Rp → Rp such that

(1) for all y ∈ Y, y � t (y), and
(2) for all y1, y2 ∈ Y, if y1 � y2 then t (y1) � t (y2),

is called a tolerance function.

Example 2 Let Y ⊂ R2 be the outcome set associated with the BOSCP in Exam-
ple 1. Then Y = {y1 = (6, 6)T , y2 = (5, 8)T , y3 = (7, 9)T , y4 = (8, 9)T , y5 =
(9, 7)T , y6 = (10, 10)T }. A function t : R2 → R2, defined as t (y) = 1.5y, satisfies
Definition 3 and therefore is a tolerance function.

In the next section we present the main theoretical results of this paper.

3 Approximating a Pareto point of the MOSCP

We now develop the algorithm to approximate an element in the weak Pareto set of
the MOSCP. We prove that the tolerance ε(·) yield by the algorithm depends on the
parameter λ, where λ ∈ Rp

>, and the problem data, and that t (y) = (1 + ε(·))y is a
tolerance function as defined in Definition 3.

3.1 Vector cost effectiveness

We first present the concept of the cost effectiveness of a set. The key idea of our
approach is based on the following observation: when we select a set to include in a
minimum cost cover, we consider not only the cost of the set but also the coverage
of the set, that is, the items this set covers. Refer again to Example 1. The set S1
covers 2 items for 2 unit cost with respect to the first objective, while the set S2 covers
4 items for 1 unit cost with respect to the same objective. Intuitively, it is clear that
selecting S2 ismore beneficial than selecting S1 since it coversmore items for less cost.
Therefore, when we construct a minimum cost cover, it seems reasonable to choose

123



A tolerance function for the multiobjective set covering… 9

a set having a small cost and a large coverage. Consequently, in the construction of
the algorithm, when selecting a set we consider these two aspects: the minimum cost
and the maximum coverage. This is equivalent to selecting a set having a small ratio
of cost to coverage. The ratio (cost/coverage) is called the cost effectiveness of the set
and is denoted by α j for a set S j . We propose a concept for defining cost effectiveness
based on the weighted-max-ordering method which defines the cost effectiveness as
a vector of cost effectiveness ratios, where each ratio is the scalar cost effectiveness
with respect to one objective. The vector cost effectiveness of a set S j is defined as
follows:

α j =
[
λ1c

1
j/|S j |, . . . , λpc

p
j /|S j |

]T

= [α1
j , . . . , α

p
j ]T ,

(3.1)

where |S j | is the cardinality of the set S j and λ ∈ Rp
>. We use Definition 4 to select

a set to include in a cover with respect to the vector cost effectiveness preference.

Definition 4 A set S j1 is preferred to a set S j2 for j1 �= j2 with respect to the vector
cost effectiveness, denoted as α j1 


mo
α j2 , if

max
q=1,2,...,p

[α1
j1, . . . , α

p
j1
]T ≤ max

q=1,2,...,p
[α1

j2 , . . . , α
p
j2
]T .

3.2 Algorithm

The concept of vector cost effectiveness leads to the development of an approximation
algorithm that returns a cover for theMOSCP associated with the weight λ ∈ Rp

>. The
algorithm employs Procedure 1 that identifies a preferred sets S j∗ and the associated
vector cost effectiveness α j∗ according to Definition 4. The algorithm is presented in
generic form and referred to as Algorithm 1. The symbols Ē , J̄ and C denote the set
of currently covered items in E , the index set of selected sets for covering items in E ,
and a cover, respectively. We assign α j∗ to the items covered by the set S j∗ as their
prices and refer to α j∗ as the price of an item covered by S j∗ . We let p(ei ) denote the
price of item ei .

The algorithm approximately solves a collection of SOSCPs obtained from scalariz-
ing theMOSCPwith weights λ ∈ Rp

>. Pseudo-codes of the algorithm and an auxiliary
procedure are given below. The outline of Algorithm 1 is the following: the algorithm
starts with the empty sets Ē, J̄ and the empty set as the current cover, that is, initially
C = ∅. In the main step, Procedure 1 is called to calculate the vector cost effective-
ness values, α j s, for all sets based on the scalarized costs and uncovered items, and
to determine a set to be added to the current cover. Once the best set, S j∗ , has been
selected based on the Definition 4, the index j∗ is added to the index set, J̄ , and all
items in S j∗ are added to Ē . For each item ei covered in this step, the price is set
as p(ei ) = α j∗ . Algorithm 1 is run until all items in E have been covered. Upon
termination, the algorithm yields a cover associated with a feasible solution, x̄ , where
the components of x̄ identify the sets selected to be in the cover.

123



10 L. Weerasena, M. M. Wiecek

Algorithm 1 Generic Algorithm for the MOSCP

1: Input: E , S, cq for q = 1, 2, . . . , p, λ ∈ Rp
> where

p∑
q=1

λq = 1.

2: Initialization: E = ∅, J = ∅ and C = ∅.
3: while E �= E do
4: Call Procedure 1 to obtain α j∗ and S j∗ .
5: for i = 1 → n do
6: if ei ∈ S j∗ ∩ (E \ E) then
7: p(ei ) = α j∗ , J = J ∪ j∗, J ⊆ J
8: end if
9: end for
10: end while

11: Return: Cover, C = {S j : j ∈ J }.

Pseudo-code of the generic algorithm

Procedure 1 Vector cost effectiveness
1: Initialization: α j∗ = (∞,∞, . . . ,∞)

2: for j = 1 → n do
3: if j ∈ J \ J then

4: α j = (α1
j , α

2
j , . . . , α

p
j )

T =
(

λ1
c1j

|S j∩(E\E)| , λ2
c2j

|S j∩(E\E)| , . . . , λp
cpj

|S j∩(E\E)|

)T

5: if max{α1
j , α

2
j , . . . , α

p
j } ≤ max{α1

j∗ , α
2
j∗ , . . . , α

p
j∗} then

6: α j∗ = α j
7: end if
8: end if
9: end for

10: Return: α j∗ and S j∗

Pseudo-code of Procedure 1

To evaluate the performance of Algorithm 1, we show that the cost of the cover
associated with x̄ , the solution yield by Algorithm 1 with a weight λ, can be used to
get a bound on the cost of a weak Pareto cover associated with the optimal objective
function value of problem (2.2).

In the proofs presented in this section, we use the symbol �a� to denote the ceiling
of a which is the smallest integer not less than a, where a is a real number. Given the
data of the MOCSP, we define

ck1min = min{ck11 , ck12 , . . . , ck1n }
ck2max = max{ck21 , ck22 , . . . , ck2n },

(3.2)

123



A tolerance function for the multiobjective set covering… 11

for k1, k2 ∈ {1, 2, . . . p}.
The main observation about Algorithm 1 is given in Lemma 1 in which we estimate

the price p(ek) of an item ek assigned by Algorithm 1, where ek is an item covered in
the iteration k.

Lemma 1 Let x∗ ∈ X be an optimal solution of problem (2.2) for λ ∈ Rp
> and ek be

an item covered in the kth iteration of Algorithm 1. Then

p(ek) � δ

m − k + 1
z(x∗)

where δ = max
k1,k2=1,2,...,p,

k1 �=k2

{
λk2

⌈
c
k2
max

c
k1
min

⌉}
.

Proof By Proposition 1, x∗ ∈ XwE . Let S∗ be the weak Pareto cover associated
with x∗. Then S∗ = {S∗

1 , S
∗
2 , . . . , S

∗
r∗} where {S∗

1 , S
∗
2 , . . . , S

∗
r∗} is a collection of

sets from the family S and r∗ is the number of sets in the weak Pareto cover.

We know that E =
⋃r∗

l=1
S∗
l and

⋃r∗

l=1
S∗
l is a weak Pareto cover with the cost

[λ1
∑r∗

l=1
c1l , . . . , λp

∑r∗

l=1
cpl ]T . At any iteration of Algorithm 1, the uncovered

items are given by E \ E . Since a weak Pareto cover covers all items, at any iteration,

E \ E can be expressed as E \ E =
⋃r∗

l=1
(S∗

l ∩ (E \ E)). Thus we have,

|E \ E | ≤
r∗∑
l=1

|S∗
l ∩ (E \ E)|. (3.3)

Note that at any iteration, the uncovered items in S∗
l are contained in S∗

l ∩ (E \ E) for
l = 1, 2, . . . , r∗ and if all items in S∗

l are covered then S
∗
l ∩(E \E) = ∅. Consider now

the iteration in which an item ek is covered. Let S j∗ be the set selected in this iteration
to cover the item ek and let α j∗ be the vector cost effectiveness of this set. We obtain a
bound for α j∗ using the weak Pareto cover S∗. Let S∗

l ∈ S∗ and αl = [α1
l , . . . , α

p
l ]T

be the cost effectiveness of S∗
l . We consider the following two cases.

Case 1 Let l ∈ J \ J , that is, some items in S∗
l are not covered by Algorithm 1 and

thus the set S∗
l is a candidate for S j∗ . In this case, the uncovered items in S∗

l are given
by S∗

l ∩ (E \ E) and

S∗
l ∩ (E \ E) = S j ∩ (E \ E) for some j ∈ J \ J .

We calculate α j vectors for all unselected sets based on formula (3.1) and select a best
set using Definition 4. Thus, by Definition 4, we obtain

(
α1
j∗ , . . . , α

p
j∗
)T 


mo

1

|S∗
l ∩ (E \ E)|

(
λ1c

1
l , . . . , λpc

p
l

)T for all l ∈ J \ J . (3.4)

123



12 L. Weerasena, M. M. Wiecek

Case 2 Let l /∈ J \ J , that is, all items in S∗
l are covered by Algorithm 1. In this case

S∗
l ∩ (E \ E) = ∅ and

cql
|S∗

l ∩(E\E)| = ∞. Thus we obtain

(
α1
j∗ , . . . , α

p
j∗
)T 


mo

1

|S∗
l ∩ (E \ E)|

(
λ1c

1
l , . . . , λpc

p
l

)T for all l /∈ J \ J . (3.5)

From (3.4) and (3.5) we conclude that α∗
j 

mo

αl for l = 1, 2, . . . , r∗, or equivalently

(
α1
j∗ , . . . , α

p
j∗
)T 


mo

1

|S∗
l ∩ (E \ E)|

(
λ1c

1
l , . . . , λpc

p
l

)T for all l = 1, 2, . . . , r∗

and also

|S∗
l ∩ (E \ E)|(α1

j∗ , . . . , α
p
j∗
)T 


mo

(
λ1c

1
l , . . . , λpc

p
l

)T for all l /∈ J \ J . (3.6)

Now suppose that αk1
j∗ |S∗

l ∩ (E \ E)| is the maximum component of the left-hand-side

vector in (3.6) and λk2c
k2
l is the maximum component of the right-hand-side vector in

(3.6) for some k1, k2 ∈ {1, 2, . . . , p}, respectively. That is, αk1
j∗ |S∗

l ∩(E \E)| ≤ λk2c
k2
l

for some k1, k2 ∈ {1, 2, . . . , p} and for all l = 1, 2, . . . , p. Then also αk
j∗ |S∗

l ∩ (E \
E)| ≤ α

k1
j∗ |S∗

l ∩ (E \ E)| and

αk
j∗ |S∗

l ∩ (E \ E)| ≤ λk2c
k2
l for k = 1, 2, . . . , p and l = 1, 2, . . . , r∗. (3.7)

By setting k = 1, k = 2, . . . , k = k1, . . . , k = k2, . . . k = p in inequality
(3.7) and defining ck2max and ck1min as in (3.2), we obtain the following inequalities for
l = 1, 2 . . . , r∗.

α1
j∗ |S∗

l ∩ (E \ E)| ≤ λk2c
k2
l

c1l
c1l ≤ λk2

⌈
ck2l
c1l

⌉
c1l ≤ λk2

⌈
ck2max

c1min

⌉
c1l

...
...

...
...

α
k1
j∗ |S∗

l ∩ (E \ E)| ≤ λk2c
k2
l

ck1l
ck1l ≤ λk2

⌈
ck1l
ck1l

⌉
ck1l ≤ λk2

⌈
ck2max

ck1min

⌉
ck1l

...
...

α
k2
j∗ |S∗

l ∩ (E \ E)| ≤ λk2c
k2
l

...
...

...
...

α
p
j∗ |S∗

l ∩ (E \ E)| ≤ λk2c
k2
l

c pl
cpl ≤ λk2

⌈
ck2l
c pl

⌉
cpl ≤ λk2

⌈
ck2max

cpmin

⌉
cpl .

123



A tolerance function for the multiobjective set covering… 13

We define δk2 = max
k=1,2,...,p, k �=k2

{
λk2

⌈
c
k2
max
ckmin

⌉}
. Then we get

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

α1
j∗ |S∗

l ∩ (E \ E)|
...

α
k1
j∗ |S∗

l ∩ (E \ E)|
...

α
k2
j∗ |S∗

l ∩ (E \ E)|
...

α
p
j∗ |S∗

l ∩ (E \ E)|

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

�

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

λk2

⌈
c
k2
max
c1min

⌉
c1l

...

λk2

⌈
c
k2
max

c
k1
min

⌉
ck1l

...

λk2c
k2
l

...

λk2

⌈
c
k2
max
cpmin

⌉
cpl

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

� δk2

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

c1l
...

ck1l
...

ck2l
...

cpl

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

for l = 1, 2, . . . , r∗.

(3.8)
Since there are p choices for k2 in inequality (3.8), we have δk2 for k2 = 1, 2, . . . , p.
For k2 = 1, inequality (3.8) can be written as:

|S∗
l ∩ (E \ E)|(α1

j∗ , . . . , α
p
j∗
)T � δ1

(
λ1c

1
l , . . . , λpc

p
l

)T for all l = 1, 2, . . . , r∗,
(3.9)

where δ1 = max
k=1,2,...,p, k �=1

{
λ1

⌈
c1max
ckmin

⌉}
. For k2 = 2, inequality (3.8) can be written

as:

|S∗
l ∩ (E \ E)|(α1

j∗ , . . . , α
p
j∗
)T � δ2

(
λ1c

1
l , . . . , λpc

p
l

)T for all l = 1, 2, . . . , r∗,
(3.10)

where δ2 = max
k=1,2,...,p, k �=2

{
λ2

⌈
c2max
ckmin

⌉}
. By continuing this process for k2 = p,

inequality (3.8) becomes

|S∗
l ∩ (E \ E)|(α1

j∗ , . . . , α
p
j∗
)T � δp

(
λ1c

1
l , . . . , λpc

p
l

)T for all l = 1, 2, . . . , r∗,
(3.11)

where δp = max
k=1,2,...,p, k �=p

{
λp

⌈
cpmax
ckmin

⌉}
. Let δ= max

k2=1,2,...,p

⎧⎪⎨
⎪⎩ max

k=1,2,...,p,
k �=k2

{
λk2

⌈
c
k2
max
ckmin

⌉}⎫⎪⎬
⎪⎭

= max
k1,k2=1,2,...,p,

k1 �=k2

{
λk2

⌈
c
k2
max

c
k1
min

⌉}
. Then inequality (3.11) becomes

|S∗
l ∩ (E \ E)|(α1

j∗ , . . . , α
p
j∗
)T � δ

(
λ1c

1
l , . . . , λpc

p
l

)T for all l = 1, 2, . . . , r∗,
(3.12)

123



14 L. Weerasena, M. M. Wiecek

Summing over all sets in the weak Pareto cover, inequality (3.12) gives the following:

r∗∑
l=1

|S∗
l ∩(E \E)|(α1

j∗ , . . . , α
p
j∗
)T � δ

(
z1(x

∗), . . . , z p(x∗)
)T for all l = 1, 2, . . . , r∗

(3.13)

where
(
z1(x∗), . . . , z p(x∗)

)T =
⎛
⎝ r∗∑

l=1

c1l , . . . ,
r∗∑
l=1

cpl

⎞
⎠

T

.

Using inequality (3.3), inequality (3.13) can be written as follows:

|(E \ E)|(α1
j∗ , . . . , α

p
j∗
)T � δ

(
z1(x

∗), . . . , z p(x∗)
)T

, (3.14)

where δ = max
k1,k2=1,2,...,p,

k1 �=k2

{
λk2

⌈
c
k2
max

c
k1
min

⌉}
. In the iteration in which the item ek is covered,

the number of uncovered items is (m − k + 1). That is, |(E \ E)| = m − k + 1. Thus,
inequality (3.14) becomes:

(
α1
j∗ , . . . , α

p
j∗
)T � δ

m − k + 1

(
z1(x

∗), . . . , z p(x∗)
)T for all l = 1, 2, . . . , r∗.

(3.15)
Since p(ek) = α j∗ , from inequality (3.15) we conclude

p(ek) � δ

m − k + 1
z(x∗).

��
Corollary 1 implies that the cost of the cover associated with the solution yield by
Algorithm 1 is equal to the cost of covering all items.

Corollary 1 If x̄ is yield by Algorithm 1 for λ ∈ Rp
> then x̄ is a feasible solution of

problem (2.2) for λ ∈ Rp
> and

[λ1z1(x̄), . . . , λpz p(x̄)]T =
m∑

k=1

p(ek).

Proof Clearly x̄ is a feasible solution of (2.2) for λ ∈ Rp
> since Algorithm 1 returns

a feasible cover and x̄ is the solution associated with this cover. In the algorithm, the
cost of each set selected in each iteration is distributed among the items covered in that
iteration. Therefore, the cost of covering all items, at the termination of Algorithm 1,

is equal to
∑m

k=1
p(ek). On the other hand, the cost of the selected cover is given by

the objective vector of (2.2) for λ ∈ Rp
>, [λ1z1(x̄), . . . , λpz p(x̄)]T . By definition, a

cover covers all items and thus, we have, [λ1z1(x̄), . . . , λpz p(x̄)]T =
∑m

k=1
p(ek).

��

123



A tolerance function for the multiobjective set covering… 15

Based on the findings above we present Theorem 1 which is the main result of this
work.We prove that Algorithm 1 yields a solution x̄ such that z(x̄) � (1+ε(λ))z(x∗),
where x∗ is an optimal solution of problem (2.2) for λ ∈ Rp

> and ε(λ) is the tolerance
associated with the parameter λ and problem data.

Theorem 1 Let x̄ ∈ X be a feasible solution of problem (2.2) for λ ∈ Rp
> yield by

Algorithm 1 and x∗ be an optimal solution of problem (2.2) for λ ∈ Rp
>. Then

z(x̄) � (1 + logm)δ

λmin
z(x∗),

where δ = max
k1,k2=1,2,...,p,

k1 �=k2

{
λk2

⌈
c
k2
max

c
k1
min

⌉}
and λmin = min{λ1, . . . , λp}.

Proof Using Lemma 1, and summing over all items we get,

m∑
k=1

p(ek) �
m∑

k=1

δ

m − k − 1
z(x∗) = (1 + 1/2 + · · · + 1/m)δz(x∗),

where δ = max
k1,k2=1,2,...,p,

k1 �=k2

{
λk2

⌈
c
k2
max

c
k1
min

⌉}
. As (1+ 1/2+ · · · + 1/m) ≈ logm, we have

(1 + 1/2 + · · · + 1/m) ≤ (1 + logm) and obtain

m∑
k=1

p(ek) � (1 + logm)δz(x∗) (3.16)

and using Corollary 1

[λ1z1(x̄), λ2z2(x̄), . . . , λpz p(x̄)]T � (1 + logm)δz(x∗). (3.17)

Let λmin = min{λ1, . . . , λp}, then inequality (3.17) gives the following:

λminz(x̄) � [λ1z1(x̄), λ2z2(x̄), . . . , λpz p(x̄)]T � (1 + logm)δz(x∗)

where δ = max
k1,k2=1,2,...,p,

k1 �=k2

{
λk2

⌈
c
k2
max

c
k1
min

⌉}
. This completes the proof. ��

Theorem 1 implies that Algorithm 1 produces a solution within a factor
(1 + logm)δ

λmin
of an optimal solution of problem (2.2) for λ ∈ Rp

>. Given this fac-

tor, the tolerance of computing an optimal solution of (2.2) for λ ∈ Rp
> is

ε(λ) = (1 + logm)δ

λmin
− 1 where δ = max

k1,k2=1,2,...,p,
k1 �=k2

{
λk2

⌈
ck2max

ck1min

⌉}
. (3.18)

123



16 L. Weerasena, M. M. Wiecek

Note that ε(λ) > 0 since (1+ logm) > 1 and δ/λmin > 1. It is also easy to show that
the associated vector-valued function t (y) = (1 + ε(λ))y satisfies Definition 3 and
hence is indeed a tolerance function.

Additionally, considering the relationship between an optimal solution of problem
(2.2) for λ ∈ Rp

> and the weak efficient solutions of the MOSCP, we obtain the
following corollary.

Corollary 2 For every x ∈ XwE of the MOSCP, there exist a weight vector λ ∈ Rp
>

and a solution x̄ ∈ X yield by Algorithm 1 satisfying the following condition:

z(x̄) � t (z(x)) = (1 + ε(λ))z(x), (3.19)

where

(1 + ε(λ)) = (1 + logm)δ

λmin
, δ = max

k1,k2=1,2,...,p,
k1 �=k2

{
λk2

⌈
ck2max

ck1min

⌉}
,

and λmin min{λ1, . . . , λp}. (3.20)

Proof Let x ∈ XwE . Then, by Proposition 1, there exists λ ∈ Rp
> such that x is an

optimal solution of (2.2) for λ ∈ Rp
>. We show that there exists a solution x̄ ∈ X

such that (3.19) and (3.20) hold. Suppose that Algorithm 1 is executed for λ and
returns a cover associated with the solution x̄ . Then by Theorem 1, we have z(x̄) �
(1 + logm)δ

λmin
z(x), and (3.19) and (3.20) hold. ��

Since Algorithm 1, by construction, is run for a fixed λ ∈ Rp
>, we prove that its

running time is polynomial.

Theorem 2 Algorithm 1 is a polynomial-time algorithm.

Proof In the generic algorithm the loop in the main step iterates for O(m) time, where
|E | = m. In Procedure 1, the maximum component of each cost effectiveness vector
α j for j = 1, 2, . . . , n can be found in O(log p) time using a priority heap, where
p is the number of objectives [20]. Then we get the minimum of these maximum
components in constant time since we update the minimum value as we calculate each
maximum. Therefore the total running time of Algorithm 1 is O(n log p) and thus
Algorithm 1 is a polynomial-time algorithm. ��

To assess the actual quality of (1 + ε(λ))-approximation of the weak Pareto point
produced by Algorithm 1, it is desirable to compare the point computed by this algo-
rithm with the corresponding true Pareto point. To accomplish this, we gauge the
quality of the approximation with a measure that is defined to resemble the meaning
of the theoretical factor given in Theorem 1.

Let Algorithm 1 run for λ ∈ Rp
> and return a feasible solution x̄ to the MOSCP. Let

x∗ be a weakly efficient solution of the MOSCP resulting from solving problem (2.2)
with the weight λ. Based on Theorem 1, the theoretical factor (1+ ε(λ)) of Algorithm
1 satisfies

zq(x̄)

zq(x∗)
≤ (1 + ε(λ)) = (1 + logm)δ

λmin
(3.21)

123



A tolerance function for the multiobjective set covering… 17

for q = 1, 2, . . . , p, and so it also satisfies

max
q=1,2,...,p

{
zq(x̄)

zq(x∗)

}
≤ (1 + ε(λ)) = (1 + logm)δ

λmin
. (3.22)

We calculate the experimental factor of Algorithm 1, reflecting the actual quality of
error of the approximation, as follows:

(1 + εc(λ)) = max
q=1,2,...,p

{
zq(x̄)

zq(x∗)

}
, (3.23)

where εc(λ) denotes the experimental tolerance of computing an optimal solution to
problem (2.2) forλ ∈ Rp

>. Both factors are reported and the effectiveness ofAlgorithm
1 is practically evaluated in the next section.

4 Computational experiments

In this section we present the computational results we obtained with Algorithm 1.
We analyzed the performance of the algorithm using 44 benchmark BOSCP instances
that are available in the library invOptLib [11]. The algorithm was implemented using
MATLABR2017b interface and experimentswere conducted using a computerwith an
I-7 processor and 8GBRAM.The exactweak Pareto points z(x∗) of the instanceswere
computed by solving problem (2.2) exactly using the MATLAB intlinprog function.

Consider the instance 2scp11A that has m = 10 items and n = 100 sets. For
λ = [0.98, 0.02], the weak Pareto outcome and the outcome yield by Algorithm
1 are z(x∗) = [89, 531]T and z(x̄) = [108, 600]T , respectively. Applying (3.21)
and noting that c1max = 100, c1min = 2, c2max = 100, c2min = 3, we obtain (1 +
ε(λ)) = (1+log 10)∗max{0.98∗�100/3�,0.02∗�100/2�}

0.02 = 3332. Applying (3.23), we obtain
(1 + εc(λ)) = max{z1(x̄)/z1(x∗), z2(x̄)/z2(x∗)}T = 1.21. It is clear that due to the
involvement of the weight vectors in the theoretical factor, that factor is very large
while the experimental factor is significantly smaller. The vector-valued tolerance
function associated with the experimental factor can be given by t (y) = 1.21y.

In a similar way, we solved the same instance for 99 weight vectors λ ∈ R2
> from a

set� = {[0.01, 0.99], [0.02, 0.98], . . . , [0.99, 0.01]}with a 0.01 increment in which,
without loss of generality, each vectorwas normalized so that

∑
q=1,2 λq = 1.For each

λ ∈ �, we ran Algorithm 1 and also solved the weighted-max-ordering problem (2.2).
For all 99 cases, the experimental factors are contained in the interval (1.00, 1.44)
and so the experimental tolerance εc(λ) is in the interval (0, 0.44). The vector-valued
tolerance function associated with the experimental factor for the set of weight vectors
in � can be given by t (y) = 1.44y.

The computational experiment, which we performed for the instance 2scp11A and
described above, we also conducted on 41 other test instances. For the 2scp201C and
2scp201D instances we were not able to solve 99 weighted-max-ordering problems
(2.2) in a reasonable time. Therefore for these two problems we solved (2.2) for only

123



18 L. Weerasena, M. M. Wiecek

five weight vectors from the set �′ = {[0.01, 0.99], [0.21, 0.79], [0.41, 0.59], [0.61,
0.39], [0.81, 0.19]} with a 0.2 increment, which took more than 6 h.

The computational results for all 44 instances are given in Table 1, inwhich columns
1 and 5 list the instance name, columns 2 and 6 list the number of items m and
the number of sets n in the instance, and columns 3 and 7 show the ranges of the
experimental factor εc(λ) values for each test instance obtained for all λ ∈ �. Finally,
columns 4 and 8 give the run (CPU) times in seconds of Algorithm 1. Because the
experimental factors were calculated and the CPU time was recorded for the instances
2scp201Cand2scp201D forλ ∈ �′, these problems are denoted inTable 1 respectively
by 2scp201C∗ and 2scp201D∗.

According to Table 1, the maximum experimental tolerance εc(λ) is less than 1
for all test instances except for 2scp61C and 2scp81C, for which εc(λ) lies in the
interval (0.11, 1.03) and (0.10, 1.87), respectively. The theoretical factors associated
with this experiment achieve magnitudes bigger than 100 since λmin = 0.01 and
δ(log(m) + 1) > 1.

Based on Table 1, we observe the following: (i) for all test instances, the experi-
mental factors not only agree with but are far better than the theoretical factors; (ii) the
computational factors do not increase with the size of the instance and stay less than
1 for almost all test problems; (iii) the large magnitude of the theoretical tolerance
results from the use of λmin which, in the algorithm, serves as a tool to reach different
weak Pareto points; (iv) the CPU times are very reasonable and smaller than 10.5 s
for all test instances including 2scp201A and 2scp201B.

We also note that the magnitude of theoretical factor goes down for the MOSCPs
with specially selected cost coefficients. Consider coefficients cqj ∈ (k,�k) such that

0 < �k ≤ k for q = 1, 2, . . . , p and j ∈ J . We get max
k1,k2=1,2,...,p,

k1 �=k2

⌈
c
k2
max

c
k1
min

⌉
= 2, and

the value of δ given in Theorem 1 is then always less than 2 for any λ ∈ Rp
> such that∑p

q=1 λq = 1. In Table 2, we give the theoretical factor (1+ε(λ))we calculated using
(3.21) for differentm and λmin values for the case δ < 2, that is, for the MOSCPs with
cost coefficients that are at most doubled.

The experiments and observations lead us to conclude that the derived theoretical
factor ε(λ) in (3.21) is very conservative and its practical value is very low.On the other
hand, the proposed Algorithm 1, which obeys the rationale for this factor, produces
approximate weak Pareto points of the BOSCP with a much smaller experimental
factor εc(λ) in (3.23).

5 Discussion

Wehavedeveloped an algorithm for approximating aweakPareto point for theMOSCP
and derived the associated tolerance function that depends on the problem data and
the weight vector used for computing the point. The approximate point is computed
in polynomial time.

Based on Corollary 2, we can make the following theoretical observation. If Algo-
rithm 1 was run for all λ ∈ RP

>, for every weak Pareto point of the MOSCP there

123



A tolerance function for the multiobjective set covering… 19

Table 1 Characteristics of 44 test instances and the computational tolerance (error)

Instance (m, n) εc(λ) CPU sec Instance (m, n) εc(λ) CPU sec

2scp11A (10,100) [0.00, 0.44) 0.26 2scp62A (60,600) (0.08, 0.55) 2.16

2scp11B [0.00, 0.34) 0.43 2scp62B (0.06, 0.52) 2.14

2scp11C [0.00, 0.73) 0.11 2scp62C (0.03, 0.17) 1.36

2scp11D [0.00, 0.93) 0.17 2scp62D [0.00, 0.50) 1.85

2scp41A (40,200) (0.08, 0.36) 1.43 2scp81A (80,800) (0.03, 0.32) 7.65

2scp41B (0.04, 0.28) 1.33 2scp81B (0.07, 0.37) 7.76

2scp41C (0.08, 0.45) 1.02 2scp81C (0.10, 1.87) 6.38

2scp41D (0.12, 0.32) 0.92 2scp81D (0.10, 0.64) 5.75

2scp42A (40,200) (0.07, 0.43) 2.30 2scp82A (80,800) (0.06, 0.58) 3.59

2scp42B (0.04, 0.23) 2.47 2scp82B (0.05, 0.51) 3.24

2scp42C (0.08, 0.41) 1.76 2scp82C [0.00, 0.50) 2.17

2scp42D (0.02, 0.21) 1.44 2scp82D (0.08, 0.47) 2.34

2scp43A (40,200) (0.08, 0.59) 0.70 2scp101A (100,1000) (0.04, 0.41) 4.64

2scp43B (0.01, 0.34) 0.77 2scp101B (0.02, 0.39) 4.92

2scp43C (0.05, 0.56) 0.65 2scp101C (0.06, 0.35) 3.57

2scp43D (0.07, 0.43) 0.71 2scp101D (0.06, 0.38) 3.20

2scp61A (60,600) (0.11, 0.53) 5.94 2scp102A (100,1000) [0.00, 0.72) 3.08

2scp61B (0.08, 0.45) 4.39 2scp102B [0.00, 0.53) 3.35

2scp61C (0.11, 1.03) 3.85 2scp102C [0.00, 0.79) 2.45

2scp61D (0.08, 0.54) 3.53 2scp102D (0.07, 0.83) 2.18

2scp201A (200,1000) (0.07, 0.47) 10.43 2scp201C∗ (200,1000) (0.07, 0.47) 0.41

2scp201B (0.07, 0.47) 10.31 2scp201D∗ (0.12, 0.47) 0.43

Table 2 Theoretical factor
calculated for the MOSCPs with
special cost coefficients

m λmin (1 + ε(λ))

10 0.1 40

0.01 400

100 0.1 60

0.01 600

1000 0.1 80

0.01 800

would be an approximate solution in the set of solutions returned by Algorithm 1
satisfying condition (3.19). This observation immediately takes us further. First, the
approximation relies on the existence of the weight vectors however, it has not been
addressed how these vectors can be found. Second, given the tolerance function, we
can define a t-representation of the Pareto set for theMOSCP, following Vanderpooten
et al. [25].

123



20 L. Weerasena, M. M. Wiecek

Definition 5 Let Y be a set in Rp and t be a tolerance function. A subset R in Y is
called a t-representation of z(XE ) if for every y ∈ z(XE ) there exists r ∈ R such that
r � t (y).

In view of Definition 5, and assuming construction of appropriate weight vectors
can be successfully integrated with Algorithm 1, the new algorithm would return a
representation of the weak Pareto set of the MOSCP with an associated tolerance
function. According to Vanderpooten et al. [25], this representation would be referred
to as a cover of the weak Pareto set of the MOSCP. (We emphasize that their use of the
word “cover” is different from the specific meaning of “cover” in the MOSCP, which
we defined in Sect. 2.) Due to this far reaching potential consequences, an obvious
and important avenue of a future study is to investigate how suitable weight vectors
can be constructed.

Based on a computational experiment conducted on a collection of BOSCPs of
various sizes, we observed that the derived theoretical tolerance has only theoretical
value. However, we defined a closely related experimental tolerance providing evi-
dence that the developed algorithm is effective because for almost all test instances it
computes approximate weak Pareto outcomes with an error smaller than 1.

References

1. Ahuja, R.K., Ergun, Ö., Orlin, J.B., Punnen, A.P.: A survey of very large-scale neighborhood search
techniques. Discrete Appl. Math. 123(1), 75–102 (2002)

2. Angel, E., Bampis, E., Gourvés, L.: Approximating the Pareto curve with local search for the bicriteria
TSP (1, 2) problem. Theor. Comput. Sci. 310(1–3), 135–146 (2004)

3. Caprara, A., Fischetti, M., Toth, P.: A heuristic method for the set covering problem. Oper. Res. 47(5),
730–743 (1999)

4. Chvatal, V.: A greedy heuristic for the set-covering problem. Math. Oper. Res. 4(3), 233–235 (1979)
5. Daskin, M.S., Stern, E.H.: A hierarchical objective set covering model for emergency medical service

vehicle deployment. Transp. Sci. 15(2), 137–152 (1981)
6. Ehrgott, M.: Approximation algorithms for combinatorial multicriteria optimization problems. Int.

Trans. Oper. Res. 7(1), 5–31 (2000)
7. Ehrgott, M.: Multicriteria Optimization. Springer, Berlin (2006)
8. Ehrgott, M., Gandibleux, X.: A survey and annotated bibliography of multiobjective combinatorial

optimization. OR Spectr. 22(4), 425–460 (2000)
9. Erlebach, T., Kellerer, H., Pferschy, U.: Approximating multiobjective Knapsack problems. Manag.

Sci. 48(12), 1603–1612 (2002)
10. Florios, K., Mavrotas, G.: Generation of the exact Pareto set in multi-objective traveling salesman and

set covering problems. Appl. Math. Comput. 237, 1–19 (2014)
11. https://github.com/vOptSolver/vOptLib/tree/master/SCP. Accessed 30 Apr 2018
12. Jaszkiewicz, A.: Do multiple-objective metaheuristics deliver on their promises? A computational

experiment on the set-covering problem. IEEE Trans. Evolut. Comput. 7(2), 133–143 (2003)
13. Jaszkiewicz, A.: A comparative study of multiple-objective metaheuristics on the bi-objective set

covering problem and the Pareto memetic algorithm. Ann. Oper. Res. 131(1), 135–158 (2004)
14. Karp, R.M.: Reducibility among combinatorial problems. In: Miller, R.E., Thatcher, J.W., Bohlinger,

J.D. (eds.) Complexity of Computer Computations, pp. 85–103. Springer, Berlin (1972)
15. Liu, Y.-H.: A heuristic algorithm for the multi-criteria set-covering problems. Appl. Math. Lett. 6(5),

21–23 (1993)
16. Lust, T., Teghem, J., Tuyttens, D.: Very large-scale neighborhood search for solving multiobjective

combinatorial optimization problems. In: Takahashi, R.H.C., Deb, K., Wanner, E.F., Greco, S. (eds.)
EMO, pp. 254–268. Springer, Berlin (2011)

123

https://github.com/vOptSolver/vOptLib/tree/master/SCP


A tolerance function for the multiobjective set covering… 21

17. Lust, T., Tuyttens, D.: Variable and large neighborhood search to solve the multiobjective set covering
problem. J. Heurist. 20(2), 165–188 (2014)

18. McDonnell, M.D., Possingham, H.P., Ball, I.R., Cousins, E.A.: Mathematical methods for spatially
cohesive reserve design. Environ. Model. Assess. 7(2), 107–114 (2002)

19. Musliu, N.: Local search algorithm for unicost set covering problem. In: Dapoigny, R., Ali, M. (eds.)
IEA/AIE, pp. 302–311. Springer, Berlin (2006)

20. Orlin, J.B., Ahuja, R.K., Magnanti, T.L.: Network flows: theory, algorithms, and applications. Prentice
Hall, New Jersey (1993)

21. Papadimitriou, C.H., Yannakakis, M.: On the approximability of trade-offs and optimal access of web
sources. In: Foundations of Computer Science, 2000. Proceedings. 41st Annual Symposium on, pp.
86–92. IEEE (2000)

22. Prins, C., Prodhon, C., Calvo, R.W.: Two-phase method and Lagrangian relaxation to solve the bi-
objective set covering problem. Ann. Oper. Res. 147(1), 23–41 (2006)

23. Saxena, R.R., Arora, S.R.: Linearization approach to multi-objective quadratic set covering problem.
Optimization 43(2), 145–156 (1998)

24. Ulungu, E.L., Teghem, J.: Multi-objective combinatorial optimization problems: a survey. J. Multi-
Criteria Decis. Anal. 3(2), 83–104 (1994)

25. Vanderpooten, D., Weerasena, L., Wiecek, M.M.: Covers and approximations in multiobjective opti-
mization. J. Glob. Optim. 67(3), 601–619 (2017)

26. Vazirani, V.V.: Approximation Algorithms. Springer, Berlin (2013)
27. Weerasena, L., Shier, D., Tonkyn, D.: A hierarchical approach to designing compact ecological reserve

systems. Environ. Model. Assess. 19(5), 437–449 (2014)
28. Weerasena, L., Wiecek, M.M., Soylu, B.: An algorithm for approximating the Pareto set of the multi-

objective set covering problem. Ann. Oper. Res. 248(1–2), 493–514 (2017)

123


	A tolerance function for the multiobjective set covering problem
	Abstract
	1 Introduction
	2 Problem formulation
	2.1 Preliminaries and basic definitions
	2.2 Finding efficient solutions of the MOSCP
	2.2.1 Exact method
	2.2.2 Approximation


	3 Approximating a Pareto point of the MOSCP
	3.1 Vector cost effectiveness
	3.2 Algorithm

	4 Computational experiments
	5 Discussion
	References




