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Abstract We consider the double row layout problem, which is how to allocate a
given number of machines at locations on either side of a corridor so that the total cost
to transport materials among these machines is minimized. We propose modifications
to a mixed-integer programming model in the literature, obtaining a tighter model.
Further, we describe variants of the new model that are even tighter. Computational
results show that the new model and its variants perform considerably better than the
one in the literature, leading to both fewer enumeration tree nodes and smaller solution
times.

Keywords Facility layout · Integer programming · Combinatorial optimization

1 Introduction

The facility layout problem involves positioning facilities in a certain area in order to
optimize an objective function. Usually the objective is to minimize the total cost of
transporting materials among facilities (departments, machines, etc). Facility layout
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problems often occur in practice, for example, in the design of automated manufac-
turing systems. An automated manufacturing system consists of a set of machines
and an automated material handling device that transports materials among machines.
A designer should plan a physical configuration of the machines that minimizes the
material handling cost. An automated guided vehicle (AGV) is commonly utilized as
the material handling device. For greater efficiency, the AGV is set to move along a
straight line. In that context, the designer can implement a single row layout, i.e. a
layout in which all machines are arranged on the same side of a straight line corri-
dor; Alternatively, a double row layout may be implemented, i.e. a layout in which
machines may lie on both sides of a corridor (see [13]). These types of layouts give
rise, respectively, to the single row facility layout problem (SRFLP) (e.g. [1,2,8,17]);
and the double-row layout problem (DRLP) (e.g. [6,11]).

The DRLP is how to arrange a given number of machines on either side of the
corridor so that the total cost to transportmaterials among thesemachines isminimized.
Chung and Tanchoco [11] described a practical application of the DRLP in an LCD
manufacturing line.

The DRLP is an NP-Hard combinatorial optimization problem (e.g. [6]), and there-
fore, as the number of machines to be arranged increases, the computational cost to
solve the problem increases considerably. In recent years, several authors in the litera-
ture have applied integer programming to different facility layout problems to exactly
solve medium sized problems (e.g. [3,7,9,10,12,14–16]). Specifically for the DRLP,
a mixed-integer programming (MIP) model was presented by Chung and Tanchoco
[11]. Amaral [6] proposed a different MIP model for the DRLP, which proved to be
more efficient than the model of Chung and Tanchoco [11]. In this paper, we propose
modifications to the MIP model of Amaral [6], obtaining a tighter model. The new
model leads to significant reduction in computer time and in the number of branch-
and-bound nodes needed to solve problems.

2 The model of Amaral [6]

The mixed-integer programming (MIP) model of Amaral [6] considers the following
definitions.

2.1 Parameters

n Number of machines
N = {1, . . . , n} Set of machines
R ={upper row, lower row} Set of rows that define a corridor
ci j Amount of flow between machines i e j (1 ≤ i < j ≤ n)
�i Length of machine i
L = ∑n

i=1 �i
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Fig. 1 A double row layout.
The distance di j between two
machines i and j is the
horizontal distance between
their centers

It is assumed that the corridor lies along the x axis in the range [0, L], the width of
the corridor is neglectable and the distance between two machines is taken between
their centers (see Fig. 1).

2.2 Variables

xi Abscissa of the center of machine i (1 ≤ i ≤ n)
di j Distance between machines i e j (1 ≤ i < j ≤ n)
αi j Binary variable that equals 1 if machine i is on the left of machine j , both on the same

row; and 0 otherwise (1 ≤ i, j ≤ n, i �= j)

Amaral [6] proposes the following MIP formulation for the double row layout
problem:

M0: min
∑

(i, j);i< j

ci j di j (1)

di j ≥ xi − x j , i < j (2)

di j ≥ x j − xi , i < j (3)

di j − αi j (�i + � j )/2 − α j i (�i + � j )/2 ≥ 0, i < j (4)

xi + (�i + � j )/2 ≤ x j + L(1 − αi j ), i �= j (5)

xp ≤ xq , (p, q) = argmin
i< j

ci j (6)

− αi j − α j i + αik + αki + α jk + αk j ≤ 1, i < j, k �= i, k �= j (7)

− αi j + α j i + αik − αki − α jk + αk j ≤ 1, i < j, k < j, k �= i (8)

αi j + α j i + αik + αki + α jk + αk j ≥ 1, i < j < k (9)

αi j ∈ {0, 1}, i �= j (10)

xi ∈ [�i/2, L − �i/2], 1 ≤ i ≤ n (11)

The objective function (1) minimizes the total flow among machines; Constraints
(2) and (3) provide the distance between each pair of machines; (4) ensures that if
machines i and j are allocated at the same row, then the distance between their centers
is at least (�i + � j )/2; (5) prohibits overlap between machines; (6) avoids symmetry;
(7)–(10) characterize the incidence vectors ( αi j ) of a DRLP solution.
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3 The new model

Based on the model of Amaral [6], we propose to modify Constraint (4) in order to
consider the machines allocated between machines i e j . For i < j , k �= i , k �= j , we
define the binary variable eki j such that eki j = 1 if machine k is between machines
i and j , all at the same row; and 0 otherwise. These types of variables have been
used before in [4]. Note that if there is a set Si j ⊂ N of machines allocated between
machines i and j , all of them at the same row, then we can narrow the right hand side
of constraint (4) to

∑
k∈Si j �k . Further, di j > (�i + � j )/2, when Si, j �= � so that

restriction (5) can also be reformulated by replacing (�i + � j )/2, the lower bound for
|xi − x j |, by the tighter bound di j . Thus, we obtain the following model:

M: min
∑

(i, j);i< j

ci j di j

(2), (3), (6)–(11)
∑

k;k �=i, j

�keki j ≤ di j − αi j (�i +� j )/2−α j i (�i +� j )/2, i < j (12)

xi + di j ≤ x j + 2(L − �i/2 − � j/2)(1 − αi j ), i < j (13)

xi + d ji ≤ x j + 2(L − �i/2 − � j/2)(1 − αi j ), i > j (14)

eki j ≥ αik + αk j − 1, i < j, k �= i, k �= j (15)

eki j ≥ α jk + αki − 1, i < j, k �= i, k �= j (16)

eki j ∈ {0, 1}, i < j, k �= i, k �= j (17)

Note that Constraint (12) is the reformulation of Constraint (4). It is easy to see that
di j−2(L−�i/2−� j/2) ≤ x j−xi is always valid, implying validity of constraints (13)
and (14), which represent the reformulation of constraint (5). The constraints (15)–
(17) together with the objective impose that the variables eki j assume only values
according to their definition. In Model M0 there are n

2 (2n2 − n − 1) + 1 constraints,
n
2 (n−1)+n continuous variables and n(n−1) binary variables. In the proposedModel
(M), there are n(n2 − 3n + 2) additional restrictions, and n

2 (n2 − 3n + 2) additional
binary variables. However, the reformulation (12), (13) and (14) of the constraints (4)
and (5) contribute to the gain of performance in relation to Model M0.

3.1 Valid inequalities

As inter-machine distance is a semi-metric, the following inequalities are valid:

di j ≤ dik + d jk, dik ≤ di j + d jk, d jk ≤ di j + dik (18)

The variable eki j is zero if machines k, i , and j are not all on the same side of the
corridor. The following inequalities are, therefore, valid:

eki j ≤ αik + αki , eki j ≤ αi j + α j i , eki j ≤ α jk + αk j (19)
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Table 1 Comparison of times (s) required to solve problems using Models M0T, M0, M, MT, MC, MTC

Reference Instance Time (s)

M0T M0 [6] M MT MC MTC

Simmons [17] S9 5.75 2.80 1.94 2.42 1.81 2.47

S9H 52.98 36.80 28.81 19.41 19.81 35.62

S10 16.48 14.72 17.25 17.41 11.14 17.21

S11 150.44 96.94 72.76 76.49 72.22 66.27

Amaral [5] 12a 237.20 207.30 152.78 131.99 125.04 133.13

12b 632.97 283.66 178.49 182.07 123.58 143.58

13a 2,532.69 1,562.53 694.26 988.08 648.57 617.03

13b 2,037.00 984.78 449.23 377.06 440.93 355.50

This paper 14a 35,816.78 22,389.72 7,115.91 3,929.42 6,404.35 4,286.17

14b 26,830.52 9,151.56 7,768.00 7,936.44 7,355.03 9,299.20

Amaral [1] P15 130,932.25 89,923.20 53,131.25 15,585.71 24,651.60 32,177.24

4 Computational experiments

All tests were performed using CPLEX 12.7.1.0 on an Intel Core i7-3770 CPU 3.40
GHzwith 8 GB of RAMwith theWindows 8 operating system. The problem instances
tested include instances (S9, S9H, S10, S11) introduced by Simmons [17], instances
(12a, 12b, 13a, 13b) of Amaral [5] and the instance P15 of Amaral [1]. Besides, there
are two new instances (14a, 14b), which are available from the authors. For all of the
instances tested here, we assume that clearances have already been included in the
lengths of the machines.

In order to analyze the effects of inequalities (18) and (19), we tested Model M and
its following variants:

• MC: Model M with the inequalities (18) used as cuts, inserted on demand;
• MT: Model M with the inequalities (18) inserted as constraints;
• MTC: Model MT with the inequalities (19) used as cuts.

These are compared against models:

• M0: the model, which was given in [6];
• M0T: Model M0 with the inequalities (18) inserted as constraints.

Computational results are presented in Tables 1 and 2. For each problem instance,
the first two columns of Table 1 specify the problem instance. The next six columns
show a comparison of each model (M0T, M0, M, MC, MT, MTC) in terms of time
required to solve the problems. Table 2 displays for each model (M0T, M0, M, MC,
MT, MTC), the number of enumeration tree nodes consumed to solve each instance
to optimality. All tests ended with optimality gap equal to zero.

From Table 1 it can be seen that for every instance the solution process with Model
M is often much faster than withModel M0.Moreover, each of the models MT,MC or
MTC provides some performance improvement over Model M and hence, over Model
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Table 2 Comparison of number of nodes required to solve problems using Models M0T, M0, M, MT, MC,
MTC

Reference Instance Number of nodes

M0T M0 [6] M MT MC MTC

Simmons [17] S9 20,733 18,631 6,251 4,083 4,919 4,059

S9H 391,004 430,581 143,394 44,710 72,030 91,369

S10 37,200 94,010 27,194 11,481 13,699 11,940

S11 395,103 589,937 124,742 50,686 87,484 40,860

Amaral [5] 12a 463,950 839,329 131,937 43,234 72,793 41,988

12b 595,913 1,095,778 149,957 69,734 67,043 46,149

13a 4,268,227 5,322,187 541,996 199,717 247,128 112,350

13b 2,372,332 3,443,922 245,466 77,708 175,468 71,176

This paper 14a 23,233,242 33,372,367 3,637,525 584,340 1,373,130 517,542

14b 18,360,617 19,022,364 3,777,966 1,446,657 1,542,187 1,386,147

Amaral [1] P15 56,973,552 86,151,296 13,349,760 933,887 3,085,948 3,056,060

M0. Among the six models shown in the table, the smallest processing time for each
instance was obtained either with MTC, MT or MC.

The solution times for Models MC and MT indicate that for the larger instances
it may be better to insert the triangular inequalities (18) as constraints in Model M.
Note that MT was specially fast for the largest instance (P15). However, the inclusion
of Inequalities (18) in M0 does not help with speed up the solution process, as M0T
is the slowest model for every instance, but S10.

Regarding the use of cuts (19) in MT or MTC, it has been observed that MT was
particularly fast for solving Instance P15. However, for the instances with n < 15,
there is a similar time performance between MTC and MT.

From Table 2 it is seen that for all instances the number of nodes consumed with
the models M, MC, MT or MTC is smaller than with M0, which indicates that the
proposed models are tighter than M0. Particularly, with MT or MTC, the number of
nodes has been drastically reduced in relation to M0, for all instances. Therefore, with
the presented models we can obtain optimal solutions for larger instances (with 14
and 15 departments) more efficiently than before.

5 Conclusions

In this article, we considered the double row layout problem (DRLP), which has
large applicability, particularly in the design of manufacturing systems. We proposed
modifications to the mixed-integer programming formulation of the DRLP given by
Amaral [6] (denoted here as M0), thus obtaining a model M, which is more efficient
than M0. Moreover, we described three variants of the model M, which were called:
MC, MT and MTC. These variants are tighter than M, and hence tighter than M0.
Computational tests with the proposed model M and its variants have shown that they
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perform considerably better thanM0 leading to both smaller solution times and smaller
number of nodes.

We believe that improvements on the proposed formulation are possible. In future
works, valid inequalities other than those used here can be applied to the proposed
model leading to a further performance gain.
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