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Abstract In the recent paper ofGiorgi et al. (JOptimTheoryAppl 171:70–89, 2016),
the authors introduced the so-called approximate Karush–Kuhn–Tucker (AKKT)
condition for smoothmultiobjective optimization problems and obtained someAKKT-
type necessary optimality conditions and sufficient optimality conditions for weak
efficient solutions of such a problem. In this note, we extend these optimality condi-
tions to locally Lipschitz multiobjective optimization problems using Mordukhovich
subdifferentials. Furthermore, we prove that, under some suitable additional condi-
tions, an AKKT condition is also a KKT one.
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1 Introduction

Karush–Kuhn–Tucker (KKT) optimality conditions are one of the most important
results in optimization theory. However, KKT optimality conditions do not need to be
fulfilled at local minimum points unless some constraint qualifications are satisfied;
see, for example [4, p. 97], [5, Sect. 3.1] and [12, p. 78]. InAndreani et al. [2] introduced
the so-called complementary approximate Karush–Kuhn–Tucker (CAKKT) condition
for scalar optimization problems with smooth data. Then, the authors proved that
this condition is necessary for a point to be a local minimizer without any constraint
qualification.Moreover, they also showed that the augmented Lagrangianmethodwith
lower-level constraints introduced in [1] generates sequences converging to CAKKT
points under certain conditions. Optimality conditions of CAKKT-type have been
recognized to be useful in designing algorithms for finding approximate solutions of
optimization problems; see, for example [3,5,8,10,11].

Recently, Giorgi et al. [9] extended the results in [2] to multiobjective problems
with continuously differentiable data. The authors proposed the so-called approximate
Karush–Kuhn–Tucker (AKKT) condition for multiobjective optimization problems.
Then, they proved that the AKKT condition holds for local weak efficient solutions
without any additional requirement. Under the convexity of the related functions, an
AKKT-type sufficient condition for global weak efficient solutions is also established.

An interesting question arises: How does one obtain AKKT-type optimality con-
ditions for weak efficient solutions of locally Lipschitz multiobjective optimization
problems? This paper is aimed at solving the problem. We hope that our results will
be useful in finding approximate efficient solutions of nonsmooth multiobjective opti-
mization problems.

The paper is organized as follows. In Sect. 2, we recall some basic definitions and
preliminaries from variational analysis, which are widely used in the sequel. Section 3
is devoted to presenting the main results.

2 Preliminaries

We use the following notation and terminology. Fix n ∈ N := {1, 2, . . .}. The space
R
n is equipped with the usual scalar product and Euclidean norm. The topological

closure and the topological interior of a subset S of Rn are denoted, respectively, by
cl S and int S. The closed unit ball of Rn is denoted by B

n .

Definition 2.1 (See [13]) Given x̄ ∈ cl S. The set

N (x̄; S) :=
{
z∗ ∈ R

n : ∃xk S−→ x̄, εk → 0+, z∗k → z∗, z∗k ∈ N̂εk (x
k; S),∀k ∈ N

}
,

is called theMordukhovich/limiting normal cone of S at x̄ , where

N̂ε(x; S) :=
⎧⎨
⎩z∗ ∈ R

n : lim sup
u

S→x

〈z∗, u − x〉
‖ u − x ‖ � ε

⎫⎬
⎭
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is the set of ε-normals of S at x and u
S−→ x means that u → x and u ∈ S.

Let ϕ : Rn → R be an extended-real-valued function. The epigraph and domain of
ϕ are denoted, respectively, by

epi ϕ := {(x, α) ∈ R
n × R : α � ϕ(x)},

dom ϕ := {x ∈ R
n : |ϕ(x)| < +∞}.

Definition 2.2 (See [13]) Let x̄ ∈ dom ϕ. The set

∂ϕ(x̄) := {x∗ ∈ R
n : (x∗,−1) ∈ N ((x̄, ϕ(x̄)); epi ϕ)},

is called the Mordukhovich/limiting subdifferential of ϕ at x̄ . If x̄ /∈ dom ϕ, then we
put ∂ϕ(x̄) = ∅.

Recall that ϕ : Rn → R
m is strictly differentiable at x̄ iff there is a linear continuous

operator ∇ϕ(x̄) : Rn → R
m , called the Fréchet derivative of ϕ at x̄ , such that

lim
x→x̄
u→x̄

ϕ(x) − ϕ(u) − ∇ϕ(x̄)(x − u)

‖x − u‖ = 0.

As is well-known, any function ϕ that is continuously differentiable in a neighbor-
hood of x̄ is strictly differentiable at x̄ . We now summarize some properties of the
Mordukhovich subdifferential that will be used in the next section.

Proposition 2.1 (See [14, Proposition 6.17(d)]) Let ϕ : Rn → R be lower semicon-
tinuous around x̄. Then, for all λ � 0, one has ∂(λϕ)(x̄) = λ∂ϕ(x̄).

Proposition 2.2 (See [13, Corollary1.81]) If ϕ : Rn → R is Lipschitz continuous
around x̄ with modulus L > 0, then ∂ϕ(x̄) is a nonempty compact set in R

n and
contained in LBn.

Proposition 2.3 (See [13, Theorem3.36]) Let ϕl : Rn → R, l = 1, . . . , p, p � 2,
be lower semicontinuous around x̄ and let all but one of these functions be locally
Lipschitz around x̄. Then we have the following inclusion

∂(ϕ1 + · · · + ϕp)(x̄) ⊂ ∂ϕ1(x̄) + · · · + ∂ϕp(x̄).

Proposition 2.4 (See [13, Theorem3.46]) Let ϕl : Rn → R, l = 1, . . . , p, be locally
Lipschitz around x̄. Then the function φ(·) := max{ϕl(·) : l = 1, . . . , p} is also
locally Lipschitz around x̄ and one has

∂φ(x̄) ⊂
⋃ {

∂

( p∑
l=1

λlϕl

)
(x̄) : (λ1, . . . , λp) ∈ �(x̄)

}
,

where �(x̄) := {(λ1, . . . , λp) : λl � 0,
∑p

l=1 λl = 1, λl [ϕl(x̄) − φ(x̄)] = 0}.
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Proposition 2.5 (See [13, Theorem3.41]) Let g : Rn → R
m be locally Lipschitz

around x̄ and ϕ : Rm → R be locally Lipschitz around g(x̄). Then one has

∂(ϕ ◦ g)(x̄) ⊂
⋃

y∈∂ϕ(g(x̄))

∂〈y, g〉(x̄).

In particular, if m = 1 and ϕ is strictly differentiable at g(x̄), then

∂(ϕ ◦ g)(x̄) ⊂ ∂(∇ϕ(g(x̄))g)(x̄).

Proposition 2.6 (See [13, Proposition1.114]) Let ϕ : Rn → R be finite at x̄ . If ϕ has
a local minimum at x̄ , then 0 ∈ ∂ϕ(x̄).

Proposition 2.7 (See [6, Proposition5.2.28]) Let ϕ : Rn → R be a lower semicon-
tinuous function. Then the set-valued mapping ∂ϕ : Rn ⇒ R

n is closed.

3 Main results

Let L := {1, . . . , p}, I := {1, . . . ,m} and J := {1, . . . , r} be index sets. Sup-
pose that f = ( f1, . . . , f p) : Rn → R

p, g = (g1, . . . , gm) : Rn → R
m , and

h = (h1, . . . , hr ) : Rn → R
r are vector-valued functions with locally Lipschitz com-

ponents defined on R
n . Let Rp

+ be the nonnegative orthant of Rp. For a, b ∈ R
p, by

a � b, we mean a−b ∈ −R
p
+; by a ≤ b, we mean a−b ∈ −R

p
+ \ {0}; and by a < b,

we mean a − b ∈ −intRp
+.

We focus on the following constrained multiobjective optimization problem:

min
R

p
+ f (x) subject to x ∈ F , (MOP)

where F is the feasible set given by F := {x ∈ R
n : g(x) � 0, h(x) = 0}.

Definition 3.1 Let x̄ ∈ F . We say that:

(i) x̄ is a (global) weak efficient solution of (MOP) iff there is no x ∈ F satisfying
f (x) < f (x̄).

(ii) x̄ is a local weak efficient solution of (MOP) iff there exists a neighborhoodU of
x̄ such that x̄ is a weak efficient solution on U ∩ F .

We now introduce the concept of approximate Karush–Kuhn–Tucker condition for
(MOP) inspired by the work of Giorgi et al. [9].

Definition 3.2 We say that the approximate Karush–Kuhn–Tucker condition (AKKT)
is satisfied for (MOP) at a feasible point x̄ iff there exist sequences {xk} ⊂ R

n and
{(λk, μk, τ k)} ⊂ R

p
+ × R

m+ × R
r such that

(A0) xk → x̄ ,
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(A1) m(xk; λk, μk, τ k) → 0 as k → ∞, where

m(xk; λk, μk, τ k) := inf

⎧⎨
⎩

∥∥∥∥∥∥

p∑
l=1

λkl ξl +
m∑
i=1

μk
i ηi +

r∑
j=1

τ kj γ j

∥∥∥∥∥∥
: ξl ∈ ∂ fl(x

k),

ηi ∈ ∂gi (x
k), γ j ∈ [∂h j (x

k) ∪ ∂(−h j )(x
k)]

⎫⎬
⎭ ,

(A2)
∑p

l=1 λkl = 1,
(A3) gi (x̄) < 0 ⇒ μk

i = 0 for sufficiently large k and i ∈ I.

We are now ready to state and prove our main results.

Theorem 3.1 If x̄ ∈ F is a local weak efficient solution of (MOP), then there exist
sequences {xk} and {(λk, μk, τ k)} satisfying the AKKT condition at x̄ . Furthermore,
we can choose these sequences such that the following conditions hold:

(E1) μk
i = bk max(gi (xk), 0) � 0, ∀i ∈ I, and τ kj = ckh j (xk) � 0, ∀ j ∈ J , where

bk, ck > 0, ∀k ∈ N,

(E2) fl(xk) − fl(x̄) + 1
2

[∑m
i=1 μk

i gi (x
k) + ∑r

j=1 τ kj h j (xk)
]

� 0, ∀k ∈ N, l ∈ L.

Proof Since x̄ is a local weak efficient solution of (MOP), fl , gi and h j are locally
Lipschitz functions, we can choose δ > 0 such that these functions are Lipschitz on
B(x̄, δ) := {x ∈ R

n : ‖x − x̄‖ � δ} and x̄ is a global weak efficient solution of f on
F ∩ B(x̄, δ). It is easily seen that x̄ is also a global minimum solution of the function
φ(·) := max{ fl(·) − fl(x̄) : l ∈ L} on F ∩ B(x̄, δ).

For each k ∈ N, we consider the following problem

min{ϕk(x) : x ∈ B(x̄, δ)}, (Pk)

where

ϕk(x) := φ(x) + k

2

⎡
⎣

m∑
i=1

(max(gi (x), 0))
2 +

r∑
j=1

(h j (x))
2

⎤
⎦ + 1

2
‖x − x̄‖2.

Clearly,ϕk is continuous on the compact set B(x̄, δ). Thus, by theWeierstrass theorem,
the problem (Pk) admits an optimal solution, say xk . This and the fact that ϕk(x̄) = 0
imply that

φ(xk) + k

2

⎡
⎣

m∑
i=1

(max(gi (x
k), 0))2 +

r∑
j=1

(h j (x
k))2

⎤
⎦ + 1

2
‖xk − x̄‖2 � 0, (1)
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or, equivalently,

⎡
⎣

m∑
i=1

(max(gi (x
k), 0))2 +

r∑
j=1

(h j (x
k))2

⎤
⎦ � −1

k

[
2φ(xk) + ‖xk − x̄‖2

]
. (2)

By the continuity of φ and ‖xk − x̄‖ � δ, the right-hand-side of (2) tends to zero
when k tends to infinity. Hence,

max(gi (x
k), 0) → 0,∀i ∈ I, h j (x

k) → 0, ∀ j ∈ J , ask → ∞.

This and the continuity of the functions max(gi (·), 0) and h j imply that every accu-
mulation point of {xk} must belongs to F . Since {xk} ⊂ B(x̄, δ), the sequence has at
least an accumulation point, say x̃ ∈ F . By (1), one has

φ(xk) + 1

2
‖xk − x̄‖2 � 0, ∀k ∈ N.

Passing the last inequality to the limit as k → ∞, we get

φ(x̃) + 1

2
‖x̃ − x̄‖2 � 0.

This and φ(x̃) � 0 imply that x̃ = x̄ . This means that the sequence {xk} has a unique
accumulation point x̄ , thus converges. Consequently, xk belongs to the interior of
B(x̄, δ) for k large enough. Thanks to Proposition 2.6, we have

0 ∈ ∂ϕk(x
k). (3)

By Propositions 2.1–2.5, one has

∂ϕk(x
k) ⊂ ∂φ(xk) + k

2

m∑
i=1

∂(max(gi (·), 0))2(xk) + k

2

r∑
j=1

∂(h j )
2(xk) + (xk − x̄),

where

∂φ(xk) ⊂
⋃ {

∂

( p∑
l=1

λl( fl(·) − fl(x̄))

)
(xk) : (λ1, . . . , λp) ∈ �(xk)

}

⊂
⋃ { p∑

i=1

λl∂ fl(x
k) : (λ1, . . . , λp) ∈ �(xk)

}
,

with

�(xk) =
{

(λ1, . . . , λp) : λl � 0,
p∑

l=1

λl = 1, λl [( fl(xk) − fl(x̄)) − φ(xk)] = 0

}
,
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and

∂(max(gi (·), 0))2(xk) ⊂ ∂(2max(gi (x
k), 0)max(gi (·), 0))(xk)

= 2max(gi (x
k), 0) ∂(max(gi (·), 0))(xk)

= 2max(gi (x
k), 0) ∂gi (x

k),

∂(h j )
2(xk) ⊂ ∂(2h j (x

k)h j )(x
k)

⊂ 2|h j (x
k)|

[
∂h j (x

k) ∪ ∂(−h j )(x
k)

]
.

Hence, (3) implies that

0 ∈
⋃{ p∑

i=1

λl∂ fl(x
k) : (λ1, . . . , λp) ∈ �(xk)

}
+ k

m∑
i=1

max(gi (x
k), 0)∂gi (x

k)

+ k
r∑
j=1

|h j (x
k)|

[
∂h j (x

k) ∪ ∂(−h j )(x
k)

]
+ (xk − x̄).

This means that there exist (λk1, . . . , λ
k
p) ∈ �(xk), ξ kl ∈ ∂ fl(xk), ηki ∈ ∂gi (xk) and

γ k
j ∈ [∂h j (xk) ∪ ∂(−h j )(xk)] such that

p∑
i=1

λkl ξ
k
l + k

m∑
i=1

max(gi (x
k), 0)ηki + k

r∑
j=1

|h j (x
k)|γ k

j + (xk − x̄) = 0.

Hence,

∥∥∥∥∥∥

p∑
i=1

λkl ξ
k
l + k

m∑
i=1

max(gi (x
k), 0)ηki + k

r∑
j=1

|h j (x
k)|γ k

j

∥∥∥∥∥∥
= ‖xk − x̄‖.

Setting λk = (λk1, . . . , λ
k
p), μ

k = (μk
1, . . . , μ

k
m), τ k = (τ k1 , . . . , τ kr ), where

μk
i := kmax(gi (x

k), 0) � 0, ∀i ∈ I, τ kj := k|h j (x
k)| � 0, ∀ j ∈ J .

For each k ∈ N, we have

0 � m(xk; λk, μk, τ k) �

∥∥∥∥∥∥

p∑
i=1

λkl ξ
k
l +

m∑
i=1

μk
i η

k
i +

r∑
j=1

τ kj γ
k
j

∥∥∥∥∥∥
= ‖xk − x̄‖.

This and limk→∞ xk = x̄ imply that limk→∞ m(xk; λk, μk, τ k) = 0. Thus, x̄ satisfies
conditions (A0)–(A2). If g j (x̄) < 0, then g j (xk) < 0 for k large enough. Conse-
quently, μk

i = 0 for k large enough and we therefore get condition (A3).
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170 N.V. Tuyen et al.

For each j ∈ J , by passing to a subsequence if necessary, we may assume that
h j (xk) � 0 for all k ∈ N, or h j (xk) < 0 for all k ∈ N. For the last case, by replacing
h j by h̄ j := −h j , one has

{
x ∈ R

n : gi (x) � 0, i ∈ I, hk(x) = 0, k ∈ J , k �= j, h̄ j (x) = 0
} = F ,

∂h j (x
k) ∪ ∂(− h j )(x

k) = ∂ h̄ j (x
k) ∪ ∂(− h̄ j )(x

k),

and h̄ j (xk) � 0 for all k ∈ N. Hence we may assume that h j (xk) � 0 for all k ∈ N

and j ∈ J . This means that τ kj = kh j (xk) � 0 for all k ∈ N and j ∈ J and we
therefore get condition (E1). Moreover, we see that

μk
i gi (x

k) = k(max(gi (x
k), 0))2 and τ kj h j (x

k) = k(h j (x
k))2.

Thus, (1) can be rewrite as

φ(xk) + 1

2

⎡
⎣

m∑
i=1

μk
i gi (x

k) +
r∑
j=1

τ kj h j (x
k)

⎤
⎦ + 1

2
‖xk − x̄‖2 � 0

and condition (E2) follows. The proof is complete. ��
Remark 3.1 If h j , j ∈ J , are continuously differentiable functions, then

∂(h j )
2(xk) = 2h j (x

k)∇h j (x
k) and

∂h j (x
k) ∪ ∂(− h j )(x

k) =
{
∇h j (x

k),− ∇h j (x
k)

}
.

In this case, we can choose γ k
j = ∇h j (xk) for all j ∈ J and k ∈ N. Thus, the

conclusions of Theorem 3.1 still hold if condition (A1) is replaced by the following
condition:

(A1)′ m′(xk; λk, μk, τ k) → 0 as k → ∞, where

m′(xk; λk, μk, τ k) := inf

⎧⎨
⎩

∥∥∥∥∥∥

p∑
l=1

λkl ξl +
m∑
i=1

μk
i ηi +

r∑
j=1

τ kj ∇h j (x
k)

∥∥∥∥∥∥

: ξl ∈ ∂ fl(x
k), ηi ∈ ∂gi (x

k)

⎫⎬
⎭ .

Conditions (A0), (A1)′, (A2), (A3) are called by the AKKT′ condition. In case the
problem (MOP) has no equality constraints, then conditions (A1) and (A1)′ coincide.
In general, condition (A1)′ is stronger than condition (A1) because

m(xk; λk, μk, τ k) � m′(xk; λk, μk, τ k).
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Thus if x̄ satisfies the AKKT′ condition with respect to sequences {xk} and
{(λk, μk, τ k)}, then so does the AKKT one.

Definition 3.3 (See [9, Remark 3.2]) Let x̄ be a feasible point of (MOP).We say that:

(i) x̄ satisfies the sign condition (SGN) with respect to sequences {xk} ⊂ R
n and

{(λk, μk, τ k)} ⊂ R
p
+ × R

m+ × R
r iff, for every k ∈ N, one has

μk
i gi (x

k) � 0, i ∈ I, and τ kj h j (x
k) � 0, j ∈ J .

(ii) x̄ satisfies the sum converging to zero condition (SCZ) with respect to sequences
{xk} ⊂ R

n and {(λk, μk, τ k)} ⊂ R
p
+ × R

m+ × R
r iff

m∑
i=1

μk
i gi (x

k) +
r∑
j=1

τ kj h j (x
k) → 0 as k → ∞.

Remark 3.2 Clearly, if condition (E1) holds at x̄ , then so does condition SGN. More-
over, thanks to [9, Remark 3.2], conditions (A0), SGN and (E2) imply condition SCZ.
The converse does not hold in general; see [9, Remark 3.4].

The following result gives sufficient optimality conditions for (global) weak effi-
cient solutions of convex problems.

Theorem 3.2 Assume that fl (l = 1, . . . , p) and gi (i = 1, . . . ,m) are convex and
h j ( j = 1, . . . , r) are affine. If x̄ satisfies conditions AK KT ′ and SCZ with respect to
sequences {xk} ⊂ R

n and {(λk, μk, τ k)} ⊂ R
p
+ ×R

m+ ×R
r , then x̄ is a weak efficient

solution of (MOP).

Proof On the contrary, suppose that x̄ is not a weak efficient solution of (MOP). Then,
there exists x̂ ∈ F such that

fl(x̂) < fl(x̄) for all l ∈ L. (4)

By condition (A2), without any loss of generality, we may assume that λk → λ with
λ ≥ 0 and

∑p
l=1 λl = 1. For k large enough, the sets ∂ fl(xk) and ∂gi (xk) are compact.

Hence, there exist ξ kl ∈ ∂ fl(xk) and ηki ∈ ∂gi (xk) such that

m′(xk; λk, μk, τ k) =
∥∥∥∥∥∥

p∑
l=1

λkl ξ
k
l +

m∑
i=1

μk
i η

k
i +

r∑
j=1

τ kj ∇h j (x
k)

∥∥∥∥∥∥
.

As fl and gi are convex and h j are affine, for each k ∈ N, we have

fl(x̂) � fl(x
k) + 〈ξ kl , x̂ − xk〉, ∀l ∈ L, (5)

gi (x̂) � gi (x
k) + 〈ηki , x̂ − xk〉, ∀i ∈ I, (6)

h j (x̂) = h j (x
k) + 〈∇h j (x

k), x̂ − xk〉, ∀ j ∈ J . (7)
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172 N.V. Tuyen et al.

Multiplying (5) by λkl , (6) by μk
i , (7) by τ kj and adding up, we obtain

p∑
l=1

λkl fl(x̂) �
p∑

l=1

λkl fl(x̂) +
m∑
i=1

μk
i gi (x̂) +

r∑
j=1

τ kj h j (x̂)

�
p∑

l=1

λkl fl(x
k) +

m∑
i=1

μk
i gi (x

k) +
r∑
j=1

τ kj h j (x
k) + σk, (8)

where σk := (
∑p

l=1 λkl ξ
k
l +∑m

i=1 μk
i η

k
i +∑r

j=1 τ kj ∇h j (xk))(x̂ − xk). Since xk → x̄

and m′(xk; λk, μk, τ k) → 0 as k → ∞, and

‖σk‖ �

∥∥∥∥∥∥

p∑
l=1

λkl ξ
k
l +

m∑
i=1

μk
i η

k
i +

r∑
j=1

τ kj ∇h j (x
k)

∥∥∥∥∥∥
‖x̂ − xk‖

= m′(xk; λk, μk, τ k)‖x̂ − xk‖,

we have lim
k→∞ σk = 0. By condition SCZ, taking the limit in (8), we obtain

p∑
l=1

λl fl(x̂) �
p∑

l=1

λl fl(x̄). (9)

Moreover, since λ ≥ 0 and (4), we have
∑p

l=1 λl fl(x̂) <
∑p

l=1 λl fl(x̄), contrary to
(9). The proof is complete. ��

Clearly, if f , g and h are continuously differentiable, then Theorems 3.1 and 3.2
reduce to [9, Theorems3.1, 3.2], respectively.

We now show that, under the additional that the quasi-normality constraint quali-
fication and condition (E1) hold at a given feasible solution x̄ , an AKKT condition is
also a KKT one.

Definition 3.4 We say that x̄ ∈ F satisfies the KKT optimality condition iff there
exists a multiplier (λ, μ, τ) in Rp

+ × R
m+ × R

r such that

(i) λ ≥ 0,
(ii) 0 ∈ ∑p

l=1 λl∂ fl(x̄) + ∑m
i=1 μi∂gi (x̄) + ∑r

j=1 τ j [∂h j (x̄) ∪ ∂(−h j )(x̄)],
(iii) μi gi (x̄) = 0, i ∈ I.

Definition 3.5 We say that x̄ ∈ F satisfies the quasi-normality constraint qualifica-
tion (QNCQ) if there is not any multiplier (μ, τ) ∈ R

m+ × R
r satisfying

(i) (μ, τ) �= 0,
(ii) 0 ∈ ∑m

i=1 μi∂gi (x̄) + ∑r
j=1 τ j [∂h j (x̄) ∪ ∂(−h j )(x̄)],

(iii) in every neighborhood of x̄ there is a point x ∈ R
n such that gi (x) > 0 for all i

having μi > 0, and τ j h j (x) > 0 for all j having τ j �= 0.
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Theorem 3.3 Let x̄ ∈ F be such that conditions AKKT and (E1) are satisfied with
respect to sequences {xk} and {(λk, μk, τ k)}. If the QNCQ holds at x̄ , then so does
the KKT optimality condition.

Proof For each k ∈ N, put δk = ‖(λk, μk, τ k)‖. By condition (A2), we have

δk �
( p∑

l=1

(λkl )
2
) 1

2

� 1√
p

> 0. (10)

Since ‖ 1
δk

(λk, μk, τ k)‖ = 1 for all k ∈ N, we may assume that the sequence

{ 1
δk

(λk, μk, τ k)} converges to (λ, μ, τ) ∈ (R
p
+ ×R

m+ ×R
r )\{0} as k tends to infinity.

By condition (A0) and Proposition 2.2, for k large enough, the sets ∂ fl(xk), ∂gi (xk)
and [∂h j (xk)∪∂(−h j )(xk)] are compact. Thus, there exist ξ kl ∈ ∂ fl(xk), ηki ∈ ∂gi (xk)
and γ k

j ∈ [∂h j (xk) ∪ ∂(−h j )(xk)] such that

m(xk; λk, μk, τ k) =
∥∥∥∥∥∥

p∑
l=1

λkl ξ
k
l +

m∑
i=1

μk
i η

k
i +

r∑
j=1

τ kj γ
k
j

∥∥∥∥∥∥
(11)

for k large enough. Since fl , gi and h j are locally Lipschitz around x̄ , without any
loss of generality, we may assume that these functions are locally Lipschitz around x̄
with the same modulus L . Again by condition (A0) and Proposition 2.2, for k large
enough, one has (ξ kl , ηki , γ

k
j ) ∈ LBn × LBn × LBn . By replacing {(ξ kl , ηki , γ

k
j )} by

a subsequence if necessary, we may assume that this sequence converges to some
(ξl , ηi , γ j ) ∈ R

n × R
n × R

n . By Proposition 2.7, we have

(ξl , ηi , γ j ) ∈ ∂ fl(x̄) × ∂gi (x̄) × [∂h j (x̄) ∪ ∂(−h j )(x̄)].

From conditions (A1) and (10), dividing the both sides of (11) by δk and taking the
limits, we have

p∑
l=1

λlξl +
m∑
i=1

μiηi +
r∑
j=1

τ jγ j = 0.

Thanks to condition (A3), one has μi gi (x̄) = 0 for all i ∈ I. We claim that λ �= 0.
Indeed, if otherwise, one has (μ, τ) �= 0 and

m∑
i=1

μiηi +
r∑
j=1

τ jγ j = 0.

By condition (10) and μk
i → μi as k → ∞, we see that if μi > 0, then μk

i > 0
for k large enough. Hence, due to condition (E1), we obtain gi (xk) > 0 for all k
large enough. Similarly, if τ j �= 0, then τ j h j (xk) > 0 for k large enough. Thus, the
multiplier (μ, τ) satisfies conditions (i)–(iii) in Definition 3.5, contrary to the fact that
x̄ satisfies the QNCQ. The proof is complete. ��
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We finish this section with the following remarks.

Remark 3.3 (i) It is well known that if x̄ is a weak efficient solution of (MOP) and
satisfies the QNCQ, then the KKT condition holds at this point; see [7, Theorem
3.3]. This fact may not hold if x̄ is not a weak efficient solution.

(ii) If condition (E1) does not hold, then the AKKT condition and the QNCQ do not
guarantee the correctness of KKT optimality conditions even for smooth scalar
optimization problems; see [4, Example 4] for more details.

(iii) Analysis similar to that in the proof of Theorem 3.3 shows that Theorems 4.1–
4.5 in [9] can be extended to multiobjective optimization problems with locally
Lipschitz data. We leave the details to the reader.
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