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Abstract In this paper, we consider a generalization of the Gerstewitz’s function to
present several optimality conditions and existence theorems for a set optimization
problem without convexity assumptions. A characterization of set solutions for a set-
valued optimization problem is given via minimax inequalities.
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1 Introduction

It is well-known that the minimax theory is very important in several areas and has
many applications as, for instance, in methods, techniques and algorithm implemen-
tations. On the other hand, there is an increasing interest in the research about the
set-valued optimization problems whose solutions are given by sets.

This paper is motivated by [6,13]. We present some optimality conditions and
minimax properties for a set-valued optimization problem which general form is the
following one:

(P)

{
Minimize F(x)
subject to x ∈ C

where E is a normed vector space ordered by a convex cone K , X is a nonempty
set, C ⊂ X and F : X ⇒ E is a set-valued map.
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There are several solutions associated to (P) (see [9] for more details). If we con-
sider the vector criterion of solution the above problem is called vector set-valued
optimization problem while if we study set solutions then the problem (P) is called set
optimization problem. We are interested in set solutions but we also study optimality
conditions for vector optimization.

The aim of this paper is to apply the generalization of the Gerstewitz’s function
introduced in [5,6] to give optimality conditions for a set optimization problem. In
addition, by following the vector results given in [13], we showminimax properties for
a nonconvex vector set-valued optimization problem. In Sect. 2 we give the notations
and the generalizations of the Gerstewitz’s function which are considered through the
paper. Section 3 is devoted to optimality conditions. We give two existence theorems
of weakly l-minimal and l-minimal sets for families of K -compact sets respectively.
Motivated by [13], in Sect. 4, we present several minimax properties via the family
of functionals that define the order cone. We consider general classes of set-valued
maps without convexity assumptions and characterize solutions of set type. Finally,
we present some conclusions and possible future research.

2 Notations and preliminaries results

Throughout this work, we will assume that E is a normed vector space partially
ordered by a convex cone and closed K ⊂ E such that K ∩ (−K ) = {0}. We
denote by E∗ the dual space of E and by K ∗ the negative polar cone of K , that
is, K ∗ = { f ∈ E∗ : f (k) ≤ 0 ∀k ∈ K }. We also assume that K is solid, that is, its
topological interior is nonempty.

If y, z ∈ E we denote by y ≤ z (resp. y < z) iff z − y ∈ K (resp. z − y ∈ int K ).
Given x, y ∈ E , we denote [x, y] = {z ∈ E : x ≤ z ≤ y}.

Let A ⊂ E a nonempty set.We denote the topological interior by int(A), the frontier
by ∂(A) and the convex hull of A by co A. Min A = {x ∈ A : (x − K ) ∩ A = {x}}
denotes the minimal elements of A andWMin A = {y ∈ A : (y− int K )∩ A = ∅} the
weakly minimal elements of A. Replacing K by −K we obtain the maximal elements
Max A and the weakly maximal elements WMax A respectively. Given x ∈ E we
denote by Ax = A ∩ (x − K ) the section of A at x .
It is said that A is K -proper if A+K 	= E ; K -convex if A+K is a convex set; K -closed
if A+K is a closed set; K -bounded if for some t > 0 one has A ⊂ tB+K (whereB is
the open unit ball in E); K -compact if any cover of A of the form {Uk + K : Uk-open}
admits a finite subcover. Every K -compact set is K -closed and K -bounded (see [14]).

We denote by ℘0(E) (resp. ℘0K (E)) the family of nonempty subsets (resp. K -
proper subsets) of E .

To present the set criterion of solution for a set optimization problem, it is necessary
to consider set relations.We focus on the following one, called lower set relation.Given
A, B ∈ ℘0(E), A ≤l B iff B ⊂ A + K . This set relation was presented by the first
time in the framework of vector spaces in [11]. It is clear that

A ≤l B ⇐⇒ A + K ≤l B + K . (1)
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We also define A �l B iff B ⊂ A + int K . Denote A ∼l B iff A ≤l B and B ≤l A.
A sequence {An} ⊂ ℘0(E) is l-decreasing if An+1 ≤l An for all n. For a family of

sets S ⊂ ℘0(E) and A ∈ ℘0(E) we denote by Sl
A = {X ∈ S| X ≤l A} the l-section

of S at A.

Definition 1 Given S ⊂ ℘0(E). It is said that A ∈ S is

– an l-minimal set of S, A ∈ l − MinS, if B ∈ S and B ≤l A imply that A ≤l B.
– a weakly l-minimal set of S, A ∈ l − WMinS, if B ∈ S and B �l A imply

A �l B.

It is easy to check that l − MinS ⊂ l − WMin S.
We denote by F : X ⇒ E a set-valued map where X is a nonempty set. We say

that its domain is C ⊂ X , dom F = C , if F(x) 	= ∅ for every x ∈ C and F(x) = ∅
elsewhere. We denote by F(A) = ⋃

x∈A F(x) the image of the set A ⊂ C under F
and by F = {F(x) : x ∈ C} the family of the image sets of F on C .

Whenever “N” denotes some property of sets in E , it is said that F is “N”-valued
if F(x) has the property “N” for every x ∈ C .

Definition 2 It is said that x̄ ∈ C is:

– an l-minimal (resp. weakly l-minimal) solution of (P), x̄ ∈ l − Min F (resp.
x̄ ∈ l − WMin F), if F(x̄) ∈ l − MinF (resp. F(x̄) ∈ l − WMinF).

– a minimal (resp. weakly minimal) solution of (P), x̄ ∈ Min F (resp. x̄ ∈ WMin F)
if F(x̄) ∩ Min F(C) 	= ∅ (resp. F(x̄) ∩ WMin F(C) 	= ∅).
Note that if F is a vector valued map the notion of l-minimal (resp. weakly l-

minimal) solution of (P) is equivalent to minimal (weakly minimal) solution of (P).

Example 1 Consider E = R
2, K = R

2+ and C = [0, 1]. Let F be defined as follows:
F(0) = [(−1,−1), (1, 1)] and F(λ) = {(x, y) : x2 + y2 ≤ λ2} for λ ∈ (0, 1]. It is
easy to check that F is a convex-valued, K -closed-valued, K -bounded-valued map,
l − Min F = {0} and l − WMin F = {0, 1}.

In the sequel we consider that F is K -proper valued since if there exists x̄ ∈ C
such that F(x̄) + K = E , we have that x̄ is a strong solution since F(x̄) ≤l F(x) for
all x ∈ C and the problem (P) would be trivial.

Fixed A ∈ ℘0(E) and e ∈ int(K ) the generalized Gerstewitz’s function is denoted
by ξe,A : E −→ R ∪ {−∞} and defined by

ξe,A(x) = inf{t ∈ R : x ∈ te − K + A} for each x ∈ E .

Analogously, if e ∈ − int K we define φe,A : E −→ R ∪ {−∞} by

φe,A(x) = inf{t ∈ R : x ∈ te + K + A} for each x ∈ E .

In [1–4,13] the authors consider the above functions for A a singleton, A = {a}.
Taking e′ = −e we obtain

ξe′,a(y) = φe,y(a). (2)
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It is well-known that such functions have many useful properties of separation and
monotonicity which play a central role in the proofs of the main results of the above
papers.

Note thatφe,A(·) is finite if and only if A is K -proper andφe,A(y) = infa∈A φe,a(y).
In addition, if A is K -closed, then

φe,A(y) = min
a∈A

φe,a(y). (3)

(see [5,6]). From now on, we consider A ∈ ℘0K (E), that is, φe,A(·) : E → R is a real
function.

We remark that φe,A(·) is a continuous, decreasing (i.e., y ≤ z ⇒ φe,A(z) ≤
φe,A(y)) and strict decreasing (i.e., y < z ⇒ φe,A(z) < φe,A(y)) function. In general,
φe,A(·) is not convex, as the following example shows:

Example 2 Consider E = R
2 ordered by the Pareto cone, K = R

2+. If e = (−1,−1),
A = {(x, y) : y = −x2 − 4x − 3, x ∈ [−1, 0]}, y = (−1, 0), y′ = (0,−3) it easy to
check that φe,A(y) = φe,A(y′) = 0 and φe,A( 12 y + 1

2 y
′) > 0.

The function φe,A(·) is convex if A is K -convex (see [5]).

Definition 3 Fixed e ∈ − int K and A ∈ ℘0K (E). The function

Ge(A, ·) : ℘0K (E) −→ R ∪ {∞}

is defined by setting

Ge(A, B) = sup
b∈B

{φe,A(b)} for B ∈ ℘0K (E). (4)

Nowwe illustrate that the above generalization ofφe,A(·) could be calculated easily.

Example 3 Consider E = R
2 ordered by the Pareto cone, K = R

2+. If e = (−1,−1),
A = [(0,−1), (2,−1)] and S = {[(λ, 0), (λ, 1)] : λ ∈ [0,∞)} we have

Ge(A, [(λ, 0), (λ, 1)]) =
{ −1 if λ ∈ [1,∞)

−λ if λ ∈ [0, 1) .

3 Optimality conditions

In the sequel, we denote e ∈ − int K . We study several types of efficient solutions by
using the functions defined in the previous section.

The following characterization of the weakly minimal elements extends [4, Corol-
lary 3.1(a)] and [14, Theorem 2.15] (for quasiconvex functions).

Proposition 1 Let A ∈ ℘0(E) and ā ∈ A. Then ā ∈ WMin A if and only if

max
a∈A

φe,A(a) = φe,A(ā) = 0.
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Proof From [6, Proposition 2.20] and [6, Lemma 2.17] we conclude. ��
Fixed y ∈ E it is possible to obtain a sufficient condition for weakly minimality

via a certain level set of φe,A(y).

Proposition 2 [6]Let y ∈ Y , A ∈ ℘0K (E) andφe,A(y) = t0 ∈ R. Consider At0(y) =
{a ∈ A : φe,a(y) ≤ t0}. Then

At0(y) ⊂ WMin A.

In general, At0(y) = {a ∈ A : y ∈ t0e + a + K } 	= WMin A even when A is
compact, as we deduce the following example.

Example 4 Consider E = R
2 and K = R

2+. For y = (−1, 2), e = (−1,−1) and
A = co({(0, 1), (0, 3), (1, 0), (2, 1)}) is easy to check that

φe,A(y) = 1

A1(y) = [(0, 1), (0, 3)]
WMin A = [(0, 1), (0, 3)] ∪ [(0, 1), (1, 0)].

Therefore, WMin A 	= A1(y).

Proposition 3 Let B ∈ ℘0K (E), λ, μ ∈ R verify μ = max{φe,A(b) : b ∈ B} and
λ = min{φe,A(b) : b ∈ B}. Then
(i) φ−1

e,A(μ) ∩ B ⊂ WMin B.

(ii) φ−1
e,A(λ) ∩ B ⊂ WMax B.

Proof Let see (i), (ii) follows analogously.
Let b ∈ B be such that μ = φe,A(b). Suppose that there exists b′ ∈ B such that

b′ ∈ b − int K . Since φe,A(·) is strict decreasing, we have μ = φe,A(b) < φe,A(b′)
which is a contradiction with μ. ��

In the following example we show that the previous result could be false if we
replace Min B by WMin B. In addition, in general, WMin B � φ−1

e,A(μ) ∩ B and

WMax B � φ−1
e,A(λ) ∩ B.

Example 5 Consider E = R
2 and K = R

2+ the Pareto cone. Let e = (−1,−1),
A = co({(0, 0), (0, 1), (1, 0), (1, 1)}), B = co({(−1, 0), (−2, 0), (−2, 1), (−1, 1)}).
We can easily prove that

Min B = {(−2, 0)}
WMin B = [(−2, 0), (−2, 1)] ∪ [(−2, 0), (−1, 0)]
Max B = {(−1, 1)}

WMax B = [(−2, 1), (−1, 1)] ∪ [(−1, 0), (−1, 1)]

However, max φe,A(B) = 2, min φe,A(B) = 1 but φ−1
e,A(2) ∩ B = {(−2, η) : η ∈

[0, 1]} � Min B, φ−1
e,A(1) ∩ B = {(−1, η) : η ∈ [0, 1]} � Max B. In addi-

tion, (−1, 0) ∈ WMin B, (−2, 1) ∈ WMax B but φe,A((−1, 0)) = 1 < 2 and
φe,A((−2, 1)) = 2 > 1.
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There exist families of sets which allow to locate all minimal elements of a set.

Corollary 1 Let B ⊂ E and S ∈ ℘0(E). The following conditions hold:

(i) If A ≤l B for all A ∈ S, then ⋃
A∈S(φ−1

e,A(0) ∩ B) ⊂ WMin B.

(ii) If B ∩ ∂(B + K ) ⊂ ⋃
A∈S∂(A + K ), then WMin B ⊂ ⋃

A∈S(φ−1
e,A(0) ∩ B).

Proof (i) Let b′ ∈ ⋃
A∈S(φ−1

e,A(0) ∩ B), then b′ ∈ B and there exists A′ ∈ S with
φe,A′(b′) = 0. Since B ⊂ A′ + K , by [6, Lemma 2.17(ii)], we deduce φe,A′(b) ≤ 0
for all b ∈ B. Thus,

max{φe,A′(B)} = φe,A′(b′) = 0

and, by Proposition 3(i), we have b ∈ WMin B.

(ii) Let b ∈ WMin B, then b ∈ B ∩ ∂(B + K ). By condition (ii), there exists
A′ ∈ S such that b ∈ ∂(A′ + K ) and according to [6, Lemma 2.17(iv)], we obtain
φe,A′(b) = 0. ��

In terms of optimality conditions for a family of sets we obtain the following results.

Proposition 4 Let A ∈ S be a K -closed set. If maxB∈S Ge(A, B) = 0 then l −
MinS = {B ∈ S : A ∼l B}.
Proof Suppose that Ge(A, B) ≤ 0 for all B ∈ S. Then A ≤ B for all B ∈ S by [6,
Theorem 3.10(iii)] and we conclude. ��
Proposition 5 Suppose thatS is a family of K -closed and K-bounded sets. Let A ∈ S.
The following statements are equivalent,

(i) A ∈ l − MinS
(ii) if B ∈ S verifies that Ge(B, A) ≤ 0 then Ge(A, B) ≤ 0
(iii) Ge(B, A) > 0 for all B ∈ S such that B �

l A.

Proof It follows from the definition of l-minimal set and [6, Theorem3.10]. ��
Now, we show that fixed A ∈ ℘0K (E), it is possible to assert the existence of weak

l-minimal of S since l − WMinSl
A ⊂ l − WMinS by [7, Proposition3.2].

Proposition 6 Let S be a family of K -compact sets and A ∈ ℘0K (E). Suppose that
Sl
A 	= ∅ and every chain verifying

0 ≤ Ge(A, B1) < · · · < Ge(A, Bn) < Ge(A, Bn+1) < · · ·

with Bi ∈ Sl
A has amaximal element in {Ge(A, B) : B ∈ Sl

A}. Then l−WMin Sl
A 	= ∅.

Proof Suppose that l − WMinSl
A = ∅, then there exists a sequence {Bn} ⊂ Sl

A such
that

· · · �l Bn �l · · · �l B2 �l B1 ≤l A.
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Since the operator Ge(A, ·) is monotonic ([6, Theorem 3.9(i)]) we obtain an strict
increasing chain

Ge(A, A) = 0 ≤ Ge(A, B1) < Ge(A, B2) < · · · < Ge(A, Bn) < · · ·

with Bi ∈ Sl
A. By hypothesis, there exists B ∈ Sl

A such that

Ge(A, Bi ) ≤ Ge(A, B) for all i.

To end the proof, it is sufficient to prove that B ∈ l − WMin Sl
A. On the contrary,

there exist B ′ ∈ S such that B ′ �l B. Therefore, B ′ ∈ Sl
A and, again, by [6, Theorem

3.9(i)], Ge(A, B) < Ge(A, B ′), which contradicts the maximality of Ge(A, B). ��
Theorem 1 Let S, A ⊂ ℘0K (E) be such that Ge(A,

⋃
B∈S B) = m < ∞. Suppose

that X = {B ∈ S : Ge(A, B) = m} is nonempty and each l-decreasing sequence in
X has a unique lower bounded in S, then l − Min S 	= ∅.

Proof Let B ∈ X . Suppose that l −MinSl
B = ∅. Then we can obtain an l-decreasing

{Bn} ⊂ Sl
B such that Bn �

l Bn+1 for each n. On the other hand, since Bn ≤l B,⋃
B∈S B ≤l Bn and Ge(A, ·) is decreasing with respect to ≤l we have

Ge(A, Bn) = m for all n.

Thus, by hypothesis, there exists B0 ∈ S such that B0 ≤l Bn for all n and, in addition,
B0 ∈ l − Min S since B0 is unique one. ��

The following example illustrates that the condition on X is necessary in the above
result.

Example 6 Consider E = R
2, K = R

2+ and S = {Bλ : λ ∈ R
+} where Bλ =

{(x, y) ∈ R
2 : 0 < x ≤ λ, y ≥ 1

x }. Then it is easy to check that for e = (−1,−1)
and A = {(0, 0)}, we deduce that {Bn : n ∈ N} is an l-decreasing sequence such that
Ge(A, Bn) = Ge(A,

⋃
λ Bλ) = 0 for all n but l − MinS = ∅.

Theorem 2 Let A ∈ ℘0,K (E) be a K -closed set. Suppose that there exists x0 ∈ C
such that F(x0) is K -compact and Ge(A, F(C)) = Ge(A, F(x0)) = m < ∞. Then
x0 ∈ WMin F ⊂ l − WMin F.

Proof Let us see x0 ∈ WMin F . Since F(x0) is K -compact, by [6, Proposition 3.4],
there exists y0 ∈ F(x0) such that

Ge(A, F(x0)) = max
y∈F(x0)

φe,A(y) = φe,A(y0) = m

and, by Proposition 3, we have y0 ∈ WMin F(x0). Since φe,A(·) is strict decreasing
we deduce y0 ∈ WMin F(C). Hence, x0 is a weakly minimal solution.

We conclude, applying [6, Theorem 2.10]. ��
Theorem 3 Suppose that F is K -closed valued. Let x0 ∈ C be such that:
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(i)
⋃

F(x)∈F l
F(x0)

F(x) is K -compact

(ii) for each l-decreasing sequence {F(xn)} ⊂ F with G(F(x0), F(xn)) = m ∈ R

for all n there exists x̄ ∈ C such that Ge(F(x̄), F(x0)) + m ≤ 0.

Then l − Min F 	= ∅.
Proof By (i) and taking into account properties given in [6], there exist m ∈ R and
x ′ ∈ C such that F(x ′) ≤l F(x0) and for all x ∈ C with F(x) ≤l F(x0)

m = G(F(x0), F(x ′)) ≥ G(F(x0), F(x)).

In particular, m ≥ 0 since G(F(x0), F(x0)) = 0. Suppose that x ′ /∈ l −Min F . Thus,
there exists x1 ∈ C with F(x1) ≤l F(x ′) and F(x ′) �

l F(x1). Again, if x1 is not an
l-minimal of (P) we can obtain an l-decreasing sequence {F(xn)} ⊂ F l

F(x0)
such that

· · · ≥ G(F(x0), F(xn)) ≥ · · · ≥ G(F(x0), F(x1)) ≥ G(F(x0), F(x ′)) = m.

Thus, we obtain an l-decreasing sequence {F(xn)} ⊂ F l
F(x0)

such that m =
G(F(x0), F(xn)) for all n. By (ii), there exists x̄ ∈ C such that

Ge(F(x̄), F(x0)) + m ≤ 0

orGe(F(x̄), F(x0)+me) ≤ 0, sinceGe(F(x̄), F(x0))+m = Ge(F(x̄), F(x0)+me)
by [6]. Hence,

F(x0) + me ⊂ F(x̄) + K (5)

If there exists x ′′ ∈ C such that F(x̄) ⊂ F(x ′′) + K , then F(x ′′) ⊂ F(x0) +me + K
(byG(F(x0), F(x ′′)) ≤ m). From (5), we obtain F(x ′′) ⊂ F(x̄)+K andwe conclude
x̄ ∈ l − Min F . ��

4 Minimax conditions for problem (P)

In this section, we are interested in the situation where K is defined by functionals of
the negative polar cone K ∗.

Li et al. [13] present necessary and sufficient optimality conditions of minimax type
for vector solutions of problem (P).We show that our generalization of theGerstewitz’s
function allows us to obtain analogous results of minimax type for set solutions.

We study set solutions of a general nonconvex set-valued optimization problem and
give a characterization of the l-minimal solutions of (P) via minimax inequalities and
a necessary condition for the existence for a constrained problem.

In the sequel, we denote � ⊂ E∗\{0} such that K = {y ∈ E : f (y) ≤ 0 ∀ f ∈ �}.
Assume that int K 	= ∅ and e ∈ int K . From (2) and [1, Proposition 2.3] we obtain

φe,a(y) = sup
f ∈�

f (y) − f (a)

f (e)
. (6)

Consequently, φe,A(·) and Ge(·, ·) can be rewritten as follows:
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Proposition 7 Let A ∈ ℘0(E) and e ∈ − int K. Then for y ∈ E,

φe,A(y) = inf
a∈A

sup
f ∈�

f (y) − f (a)

f (e)

and for B ∈ ℘0(E),

Ge(A, B) = sup
b∈B

inf
a∈A

sup
f ∈�

f (b) − f (a)

f (e)
.

Note that, according to [6], if A and B are K -compact we can replace the first
“supremum” by “maximum” and the “infimum” by “minimum” in the above expres-
sions.

From now on, we assume K = {y ∈ E : f (y) ≤ 0, f (e) = 1 for all f ∈ �}.
It is always possible since if �′ = { f

f (e) : f ∈ �} then K = {y ∈ E : f ′(y) ≤
0 for all f ′ ∈ �′}.

We are now going to establish a characterization of minimax type for the l-minimal
solutions of problem (P).

Theorem 4 Let F be K -closed valued. Then x0 is an l-minimal solution of (P) if and
only if

sup
y0∈F(x0)

min
y∈F(x)

sup
f ∈�

{ f (y0) − f (y)}} > 0 for x ∈ C with F(x) �
l F(x0) (7)

and

sup
y0∈F(x0)

min
y∈F(x)

sup
f ∈�

{ f (y0) − f (y)}} = 0 for x ∈ C with F(x) ∼l F(x0). (8)

Proof Suppose that x0 is an l-minimal solution of (P) and F(x) �
l F(x0). Thus,

F(x) �
l F(x0) and, by [6, Theorem 3.10(iii)], Ge(F(x), F(x0)) > 0 or equivalently,

by Proposition 7 and (3),

sup
y0∈F(x0)

min
y∈F(x)

sup
f ∈�

{ f (y0) − f (y)} > 0.

On the other hand, suppose that x ∈ C and F(x) ∼l F(x0). Applying [6, Theorem
3.10(iii)] now yields Ge(F(x), F(x0)) = 0 or equivalently,

sup
y0∈F(x0)

min
y∈F(x)

sup
f ∈�

{ f (y0) − f (y)} = 0.

Reciprocally. Suppose that (7) and (8) hold.
Let us prove that x0 is an l-minimal solution of (P). On the contrary, there exists

x ∈ C such that F(x) ≤l F(x0) and F(x0) �
l F(x). Again by [6, Theorem 3.10(iii)]
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and Proposition 7,

sup
y0∈F(x0)

min
y∈F(x)

sup
f ∈�

{ f (y0) − f (y)} ≤ 0

which is a contradiction since F(x) �
l F(x0). ��

As a consequence, we obtain the following characterization of vector solutions.

Corollary 2 Suppose that F is a single-valued map. Then x0 ∈ C is a minimal
solution of (P) if and only if F(x0) is the unique solution of problem

min
F(x)∈F(C)

sup
f ∈�

{ f (F(x0)) − f (F(x))}.

In the following example we show that the above results allow us to simplify the
problem (P) to a Pareto problem (that is, via the Pareto cone).

Example 7 Consider E = R
2, K such that K ∗ is generated by { f1 = (−2, 1), f2 =

(1,−3)}, e = (−1,−1) and F = (F1, F2) : R → R
2. According to Theorem 4 and

(7) we obtain

max{ 1
f1(e)

f1(F(x0) − F(x)), 1
f2(e)

f2(F(x0) − F(x))} =
max{−2F1(x0) + F2(x0) + 2F1(x) − F2(x),

1
2 (F1(x0) − 3F2(x0) − F1(x) + 3F2(x))} > 0

for F(x0) 	= F(x) and x ∈ C . Thus, (x0, F(x0)) is a solution of problem (P) if and
only if x0 is a Pareto solution of problem

min(H1(x), H2(x))

where H1(x) = 2F1(x) − F2(x) and H2(x) = − 1
2 F1(x) + 3

2 F2(x).

In the sequel, we study a constrained problem. Consider (P) such that

C = {x ∈ X : G(x) ∩ (−D) 	= ∅}

being G a set-valued map from X to a topological vector space Z ordered by a solid
convex cone D ⊂ Z .

Theorem 5 Let F be K -closed valued, 	 ⊂ Z∗\{0} and D = {y ∈ Z : g(y) ≤
0 for all g ∈ 	}. If x0 is an l-minimal solution of problem (P), then the following
minimax inequality holds for any x ∈ C such that F(x) �

l F(x0)

sup
f ∈�, g∈	, y0∈F(x0), z∈G(x)

{ f (y0) − f (y) + g(z)} > 0 for any y ∈ F(x).
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Proof Suppose that x ∈ C and F(x) �
l F(x0). Then, by definition of l-minimal

solution, we have F(x) �
l F(x0), that is, Ge(F(x), F(x0)) > 0 or equivalently,

Ge(F(x), F(x0)) = sup
y0∈F(x0)

φe,F(x)(y0) > 0.

Thus, there exists y′ ∈ F(x0) such that φe,F(x)(y′) > 0 and, by Proposition 7,

φe,F(x)(y
′) = inf

y∈F(x)
sup
f ∈�

{ f (y′) − f (y)} > 0.

Whence
sup
f ∈�

{ f (y′) − f (y)} > 0 for all y ∈ F(x).

Since the above condition is for some y′ ∈ F(x0) we obtain

sup
y0∈F(x0)

sup
f ∈�

{ f (y0) − f (y)} > 0 for all y ∈ F(x). (9)

On the other hand, if x ∈ C there exists z′ ∈ G(x) ∩ (−D). Thus, g(z′) ≥ 0 for all
g ∈ 	 and from (9),

sup
y0∈F(x0)

sup
f ∈�

{ f (y0) − f (y)} + sup
z∈G(x)

sup
g∈	

{g(z)} > 0 for all y ∈ F(x)

and we conclude. ��
Corollary 3 Suppose that F is single-valued. If x0 ∈ C is a minimal solution of the
constrained problem (P) then for any x ∈ C the following inequality holds

inf
x∈C sup

f ∈�, g∈	, z∈G(x)
{ f (F(x0)) − f (F(x)) + g(z)} ≥ 0.

Note that Theorem 3.2 and Corollary 3.1 in [13] are a sufficient condition and
a characterization for a vector set-valued optimization problem respectively. On the
other hand, in terms of vector problems with feasible set given by a set-valued map
(G) we obtain in the above Corollary a necessary condition not like Corollaries 3.2,
3.3 and 3.4 in [13].

See [16] for others minimax theorems in the sense of set optimization.

4.1 Particular case: Polyhedral cone

The expression (6) for the functional φe,a(·) can be more simplified if we consider E
ordered by a polyhedral cone.
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In the sequel we consider E = R
n and K a closed polyhedral cone such that K ∗ is

generated by {h1, . . . , hm}. It is easy to check that if e ∈ − int K and a, x ∈ E then:

φe,a(x) = max
i

{ 〈hi , x〉 − 〈hi , a〉
〈hi , e〉

}
.

being 〈·, ·〉 the euclidean scalar product. In particular, if K = R
n+, that is, for i ∈

{1, . . . , n}, hi = (0, . . . ,

i︷︸︸︷
−1 , . . . , 0). If e = (−1, . . . ,−1), a = (a1, . . . , an), x =

(x1, . . . , xn),
φe,a(x) = max

i
{xi − ai } for each y ∈ E .

Let A be a K -bounded set. Given an element h ∈ K ∗ we define

h 
 A = sup{〈h, a〉 : a ∈ A}.

Such a operation is well-defined since A is a K -bounded set, h 
 A < ∞. Indeed, by
[14, Proposition 3.4], h(A) is h(K )-bounded. Since h ∈ K ∗, h(K ) is {0} or R

− and
therefore h(A) ⊆ R is a bounded set (h(K ) = {0}) or upper bounded set (h(K ) = R

−).

Proposition 8 If A ⊆ R
n is K -bounded and K-closed, then A has support points for

each h ∈ K ∗.

Proof Since h 
 A = sup{〈h, a〉 : a ∈ A} < ∞ and h ∈ K ∗, we have h 
 A =
h 
 (A + K ). From the continuity of h, if A + K is closed, the set h(A + K ) =
{h(a + k) : a + k ∈ A + K } is a closed set in R. Thus, there exist a ∈ A such that
〈h, a〉 = h 
 A. ��
Proposition 9 Let A, B ⊂ R

n be K -compact sets and e ∈ − int K and 〈hi , e〉 = 1
for all i ∈ {1, . . . ,m}. Then

Ge(A, B) ≥ max
i

{hi 
 B − hi 
 A}. (10)

Proof Suppose that Ge(A, B) = r ∈ R, according to [6, Proposition 3.2],

B ⊂ A + re + K .

Therefore, for each b ∈ B there exist a ∈ A and k ∈ K such that b = a + re+ k. For
i ∈ {1, . . . ,m} we obtain 〈hi , b〉 = 〈hi , a〉 + 〈hi , re〉 + 〈hi , k〉 ≤ 〈hi , a〉 + r. Thus,
〈hi , b〉 ≤ hi 
 A + r and hi 
 B ≤ hi 
 A + r for each i ∈ {1, . . . ,m}. Consequently,

max
i

{hi 
 B − hi 
 A} ≤ r.

��
In the following example, we illustrate that the inequality (10) could be strict.
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Example 8 Let R
2 be ordered by the Pareto cone, K = R

2+. Consider h1 = (−1, 0),
h2 = (0,−1) and e = (−1,−1). If A = [(4, 5), (5, 4)] and B = {[( 12 , 0), (0, 5)]}
then,

h1 
 A = −4 and h2 
 A = −4
h1 
 B = 0 and h2 
 B = 0
max
i

{hi 
 B − hi 
 A} = 4.

However Ge(A, B) 	= 4 since (1, 0) ∈ B but (1, 0) /∈ A + 4e + K .

Remark 1 We emphasize that whenever A is a singleton it is clear that the equality
(10) holds but it could be false if B is a singleton. Indeed, if B = {(0, 0)} in Example
8 we have Ge(A, (0, 0)) 	= max

i
{hi 
 (0, 0) − hi 
 A}.

5 Conclusions

By using a generalization of the Gerstewitz’s function, Ge(·, ·), we have obtained
several optimality conditions andminimax results in the frameworkof set optimization.
We show that such a function can be rewritten in a simpler form when the order cone
K is defined by a functionals set. Thus, the expression Ge(A, B) could be easier to
compute.

As future research we propose to study a generalized parametric system with set-
valued map and establish equilibrium problems on nets by following [15] or [12] and
[1] respectively.

Likewise, it would be interesting to give algorithms to find set solutions by applying
different variants of the Gerstewitz’s function as Jahn cited in [8]. A preliminary paper
in this direction cold be Köbis et al. [10].
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2. Chen, C.R., Li, M.H.: Hölder continuity of solutions to parametric vector equilibrium problems with
nonlinear scalarization. Numer. Funct. Anal. Optim. 35, 685–707 (2014)

3. Flores-Bazán, F., Hernández, E.: A unified vector optimization problem: complete scalarizations and
applications. Optimization 60, 1399–1419 (2011)

4. Gerth, C., Weidner, P.: Nonconvex separation theorems and some applications in vector optimization.
J. Optim. Theory Appl. 67, 297–320 (1990)

5. Hernández, E.: Problemas de optimización en análisis de multifunciones. PhD. (2005)
6. Hernández, E., Rodríguez-Marín, L.: Nonconvex scalarization in set optimization with set-valued

maps. J. Math. Anal. Appl. 325, 1–18 (2007)
7. Hernández, E., Rodríguez-Marín, L.: Existence theorems for set optimization problems. Nonlinear

Anal. 67, 1726–1736 (2007)
8. Jahn, J.: Vectorization in set optimization. J. Optim. Theory Appl. 167, 783–795 (2015)
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