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Abstract In this paper, we consider the robust facility leasing problem (RFLE),
which is a variant of the well-known facility leasing problem. In this problem, we
are given a facility location set, a client location set of cardinality n, time periods
{1, 2, . . . , T } and a nonnegative integer q < n. At each time period t , a subset of
clients Dt arrives. There are K lease types for all facilities. Leasing a facility i of a
type k at any time period s incurs a leasing cost f ki such that facility i is opened at
time period s with a lease length lk . Each client in Dt can only be assigned to a facility
whose open interval contains t . Assigning a client j to a facility i incurs a serving cost
ci j . We want to lease some facilities to serve at least n − q clients such that the total
cost including leasing and serving cost is minimized. Using the standard primal–dual
technique, we present a 6-approximation algorithm for the RFLE. We further offer a

B Dongmei Zhang
zhangdongmei@sdjzu.edu.cn

Lu Han
hanlu_freshman@emails.bjut.edu.cn

Dachuan Xu
xudc@bjut.edu.cn

Min Li
liminemily@sdnu.edu.cn

1 Department of Information and Operations Research, College of Applied Sciences, Beijing
University of Technology, 100 Pingleyuan, Chaoyang District, Beijing 100124,
People’s Republic of China

2 School of Mathematics and Statistics, Shandong Normal University, Jinan 250014,
People’s Republic of China

3 School of Computer Science and Technology, Shandong Jianzhu University, Jinan 250101,
People’s Republic of China

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s11590-018-1238-x&domain=pdf


626 L. Han et al.

refined 3-approximation algorithm by modifying the phase of constructing an integer
primal feasible solution with a careful recognition on the leasing facilities.

Keywords Facility leasing problem · Robust · Approximation algorithm · Primal–
dual

1 Introduction

The facility location problem is a classic problem of operations research and computer
science. It has wide applications [12,16,19,21]. The most important variant of the
facility location problem is the uncapacitated facility location problem (UFLP). In the
UFLP, we are given a facility set and a client set. Opening a facility will incur an
opening cost, and assigning a client to a facility will incur a serving cost. We want to
open some facilities to serve all the clients such that the total opening cost as well as
serving cost is minimized.

Since the UFLP is an NP-hard problem, various approximation algorithms for the
UFLP have been proposed over the years [2–4,6,8–10,13,15,18,20]. Among all the
existing algorithms, Shmoys et al. [18] give the first constant 3.16-approximation
algorithm, which is based on LP rounding method. Li [13] proposes the currently best
1.488-approximation algorithm, which is based on randomized rounding and dual
fitting. The inapproximability lower bound for the UFLP is known as 1.463 [8].

A limitation for the UFLP is that some distant clients (i.e., outliers) may have a
powerful influence on the problem. In order to overcome the limitation, Charikar et
al. [5] give two important variants for the UFLP, namely the robust facility location
problem (RFLP) and the facility location problem with penalties (FLPWP). In both
variants, a small subset of clients can be rejected to serve. In the RFLP, a nonnegative
integer q < n is also given, where n is the number of all the clients. We aim to open
some facilities to serve at least n − q clients such that the sum of opening cost and
serving cost is minimized. For the RFLP, Charikar et al. [5] give a 3-approximation
algorithm by using the technique of primal–dual. In the FLPWP, each client also has
a penalty cost. A client can either be served by a facility or be penalized. We aim to
open some facilities to serve some of the clients and pay penalty cost for the rest of
clients, such that the sum of opening cost, serving cost and penalty cost is minimized.
For the FLPWP, Charikar et al. [5] present the first 3-approximation algorithm, and
Li et al. [14] give the currently best approximation ratio of 1.5148.

Another variant of the UFLP is the facility leasing problem (FLE). In the FLE,
we are given a facility locations set, a client locations set, time periods from 1 to T .
At each time period, a subset of clients will arrive. There are K lease types for all
facilities. We can lease a facility at any time. Leasing a facility i of a type k at any
time period s will incur a leasing cost f ki such that facility i is opened at time period
s with a lease length lk . Each client can only be assigned to a facility whose open
interval contains the arrival time of the client. Assigning a client j to a facility i will
incur a serving cost ci j . We want to lease a set of facilities to serve all the clients such
that the total leasing cost as well as serving cost is minimized. Anthony and Gupta [1]
first introduced the FLE and give an O(K )-approximation algorithm for this problem,
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where K is the number of the lease types. Inspired by the primal–dual algorithm for
the UFLP, which is proposed by Jain and Vazirani [10], Nagarajan and Williamson
[17] give a currently best 3-approximation algorithm for the FLE. The only result for
the FLE with outlier is given by de Lima et al. [7]. They propose the facility leasing
problem with penalties (FLEWP), and give a primal–dual 3-approximation algorithm.

In this work, we propose the robust facility leasing problem (RFLE), which is
a new variant for the FLE with outlier. Denote n as the number of all the clients.
Comparing with the FLE, we are further given a nonnegative integer q(< n) as the
outlier number in the RFLE. We aim to open a set of facilities to serve at least n − q
clients such that the total cost including leasing and serving cost is minimized. Inspired
by the works of Nagarajan and Williamson [17] on the FLE and Charikar et al. [5] on
the FLPWP, we obtain a preliminary primal–dual 6-approximation algorithm for the
RFLE. Furthermore, we modify the phase of constructing an integer primal feasible
solution with a careful recognition on the leasing facilities. This refined algorithm
leads to an improved approximation ratio 3.

The remainder structure of our paper is as follows. In Sect. 2, we describe the RFLE
and give the integer program, the linear program relaxation and the dual program.
Section 3 presents a basic primal–dual 6-approximation algorithm along with the
analysis. Section 4 offers an improved 3-approximation algorithm which is based on
the first algorithm. In Sect. 5, some discussions are given.

2 Preliminaries

In the RFLE, we are given a facility location set F , a client location set D of cardinality
n, time periods {1, 2, . . . , T } and a nonnegative integer q < n. At each time period
t ∈ {1, 2, . . . , T }, a subset of clients Dt ⊆ D will arrive. These subsets is a partition of
D. For simplicity, we denote a client by a binary ( j, t), where j ∈ D is the location of
the client and t ∈ {1, 2, . . . , T } is the arrival time of the client. LetD denote the set of
client binaries ( j, t). There are K lease types for all facilities. Let L be the set of lease
types, where |L| = K . For any lease type k ∈ L, a lease length lk is also given.Without
loss of generality, we assume that lk is an integer for any k ∈ L. We can start leasing
a facility at any time period. Leasing a facility i ∈ F for a type k ∈ L at a time period
s ∈ {1, 2, . . . , T } incurs a leasing cost f ki such that facility i is opened during time
interval [s, s + lk). For any time period s and lease type k, denote I ks as time interval
[s, s + lk). For simplicity, we denote a facility by a triple (i, k, s), where i ∈ F is the
location of the facility, k ∈ L is the lease type for the facility, and s ∈ {1, 2, . . . , T } is
the start time of leasing the facility. LetF denote the set of facility triples (i, k, s). For
any client ( j, t) ∈ D, it can only be assigned to some facility (i, k, s) ∈ F whose open
interval contains t . That means, a client ( j, t) can be assigned to a facility (i, k, s)
if t ∈ I ks . Assigning a client ( j, t) to a facility (i, k, s) incurs a serving cost ci j . We
assume that the serving costs are non-negative, symmetric, and satisfy the triangle
inequality. Our goal is to lease a set of facilities S ⊆ F to serve at least n − q clients
such that the total cost including the leasing and serving cost is minimized. Note that
if we set q = 0 for the RFLE, it simplifies to the FLE.
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We introduce the following three types of binary variables ({yiks}, {xiks, j t }, {z jt })
to describe the integer program of the RFLE.

– For any facility (i, k, s) ∈ F , variable yiks indicates whether facility i ∈ F is
leased for type k ∈ L at time period s ∈ {1, 2, . . . , T }.

– For any facility (i, k, s) ∈ F , client ( j, t) ∈ D, the variable xiks, j t indicates
whether client ( j, t) is served by facility (i, k, s).

– For any client ( j, t) ∈ D, the variable z jt indicates whether client ( j, t) is rejected
to serve.

The RFLE can be formulated as the following integer program:

min
∑

(i,k,s)∈F
f ki yiks +

∑

(i,k,s)∈F :t∈I ks

∑

( j,t)∈D
ci j xiks, j t

s. t.
∑

(i,k,s)∈F :t∈I ks
xiks, j t + z jt ≥ 1, ∀( j, t) ∈ D,

xiks, j t ≤ yiks, ∀(i, k, s) ∈ F , ( j, t) ∈ D,
∑

( j,t)∈D
z jt ≤ q,

xiks, j t , yiks, z jt ∈ {0, 1}, ∀(i, k, s) ∈ F , ( j, t) ∈ D. (1)

The objective function is composed of leasing cost and serving cost. The first con-
straints guarantee that a client ( j, t) ∈ D is either served by a facility (i, k, s) ∈ F
whose open interval contains t or rejected to serve. The second constraints guarantee
that if a client ( j, t) ∈ D is assigned to a facility (i, k, s) ∈ F , then facility (i, k, s)
must be leased. The third constraint guarantees that at most q clients can be rejected
to serve (i.e., at least n − q clients must be served).

By relaxing all the variables, we obtain the following linear program relaxation.

min
∑

(i,k,s)∈F
f ki yiks +

∑

(i,k,s)∈F :t∈I ks

∑

( j,t)∈D
ci j xiks, j t

s. t.
∑

(i,k,s)∈F :t∈I ks
xiks, j t + z jt ≥ 1, ∀( j, t) ∈ D,

xiks, j t ≤ yiks, ∀(i, k, s) ∈ F , ( j, t) ∈ D,
∑

( j,t)∈D
z jt ≤ q,

xiks, j t , yiks, z jt ≥ 0, ∀(i, k, s) ∈ F , ( j, t) ∈ D. (2)

We remark that the above linear program relaxation has an unbounded integrality gap
(cf. [5]).

Using the duality theory, we obtain the dual program of the RFLE.

max
∑

( j,t)∈D
α j t − qγ
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s. t.
∑

( j,t)∈D
βiks, j t ≤ f ki , ∀(i, k, s) ∈ F ,

α j t − βiks, j t ≤ ci j , ∀(i, k, s) ∈ F , ( j, t) ∈ D, t ∈ I ks ,

α j t ≤ γ, ∀( j, t) ∈ D,

α j t , βiks, j t , γ ≥ 0, ∀(i, k, s) ∈ F , ( j, t) ∈ D. (3)

In program (3), the dual variableα j t can be viewed as the budget of client ( j, t), and the
dual variableβiks, j t can be viewed as the contribution of client ( j, t) to facility (i, k, s).

3 A preliminary primal–dual 6-approximation algorithm

In Sect. 3.1, we present a preliminary primal–dual approximation algorithm.We show
that the algorithm is implementable in Sect. 3.2. We present the approximation ratio
analysis in Sect. 3.3.

3.1 Our main algorithm

Let IN denote an original instance of the RFLE. Recall that the linear program relax-
ation (2) has an unbounded integrality gap. Therefore, we cannot use it to design an
LP-based algorithm of the RFLE. In order to obtain a linear program relaxation with a
bounded integrality gap, we construct a modified instance IN ′ of the original instance
IN as follows. We guess a facility (i ′, k′, s′) ∈ F with the most expensive leasing
cost f k

′
i ′ in the optimal solution of IN . We obtain IN ′ by setting the leasing cost of

(i ′, k′, s′) to 0 and setting the leasing cost of any facility whose leasing cost is greater
than f k

′
i ′ to ∞. Note that for any facility (i ′, k′, s′′) with s′′ 	= s′, its leasing cost is

still f k
′

i ′ .
Now we are ready to give our preliminary algorithm which consists of two phases.

In Phase 1, we construct a dual feasible solution of the instance IN ′. In Phase 2, we
obtain an integer primal feasible solution of the original instance IN .

Algorithm 1

Phase 1. Constructing a dual feasible solution of IN ′.
Step 1.0. (Initialization.) Set T := ∅, D̃ := ∅, O := D. For any ( j, t) ∈ D,

set α j t := 0. For any (i, k, s) ∈ F , ( j, t) ∈ D such that t ∈ I ks , set
βiks, j t := max{α j t − ci j , 0}. For any (i, k, s) ∈ F , ( j, t) ∈ D such that
t /∈ I ks , set βiks, j t := 0. Set γ := 0.

Step 1.1. Increase the dual variables α j t associated with the clients ( j, t) ∈ O and
the dual variable γ uniformly until one of the following events happens.

Event 1. There exist a facility (i, k, s) ∈ T and a client ( j, t) ∈ O, such that
α j t = ci j and t ∈ I ks .

Event 2. There exist a facility (i, k, s) ∈ F\T such that the facility constraint
becomes tight, namely,

∑
( j,t)∈D βiks, j t = f ki .

If Event 1 happens, stop increasing α j t of the client ( j, t). Update D̃ :=
D̃ ∪ {( j, t)} and O := O\{( j, t)}. We call facility (i, k, s) the connecting
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witness of ( j, t). If Event 2 happens, we say that facility (i, k, s) is paid
for and it is temporarily opened. Stop increasing α j t for any ( j, t) ∈ O
such that βiks, j t > 0. Define N(i,k,s) = {( j, t) ∈ O : βiks, j t > 0}. We call
facility (i, k, s) the connecting witness of any client ( j, t) ∈ N(i,k,s). Update
T = T ∪ {(i, k, s)}, D̃ := D̃ ∪ N(i,k,s) and O := O\N(i,k,s). If multiple
events happen simultaneously, we break ties arbitrarily.

Step 1.2. If |O| > q, go to Step 1.1. Otherwise, stop increasing γ and stop Phase 1.
Phase 2 Constructing an integer primal feasible solution of IN .
Step 2.1. Let facility (i f , k f , s f ) denote the last temporarily opened facility. If

|O| = q, go to Step 2.2. Otherwise, facility (i f , k f , s f ) must be paid at
the terminal time of Phase 1. Arbitrary select q − |O| clients in N(i f ,k f ,s f ).

Let O f be these clients. Update D̃ := D̃\O f and O := O ∪ O f .
Step 2.2. We construct a graph G as follows. Every facility in T is a vertex in G.

For any facility (i, k, s) ∈ F and any client ( j, t) ∈ D, if βiks, j t > 0,
we say that client ( j, t) contributes to facility (i, k, s). There is an edge
between two vertices in G if there exists a client that contributes to both the
corresponding facilities in T .

Step 2.3. Order the facilities in T according to non-increasing lease lengths. Then,
find a maximal independent set of the vertices in G by greedily selecting the
vertices in this order. Let I ⊆ T denote the corresponding facility set of the
maximal independent set.

Step 2.4. For any facility (i, k, s) ∈ F , we say that facilities (i, k, s), (i, k, max{s −
lk, 0}) and (i, k, s + lk) correspond to facility (i, k, s) and use F(i,k,s) to
denote them, i.e., F(i,k,s) := {(i, k, s), (i, k,max{s − lk, 0}), (i , k, s + lk)}.
For any facility (i, k, s) ∈ I, we lease the facilities in F(i,k,s). Let I ′ denote
all the facilities that are leased in this step.

Step 2.5. For any client ( j, t) ∈ D̃, connect it to its closest facility (i, k, s) ∈ I ′ such
that t ∈ I ks .

At the end of Phase 1, the produced dual solution is feasible for instance IN ′, since
our dual ascending process does not violate any constraint of the dual program (3). At
the end of Phase 2, I ′ is the open facility set, D̃ is the served client set, and O is the
rejected client set of cardinality q.

3.2 The analysis of the feasibility

An essential issue for Algorithm 1 is that we are not sure whether Step 2.5 can be
successfully performed. In this subsection, we will give an answer for this.

According to the construction process of the facility set I ′, we have the following
lemma.

Lemma 1 For any client ( j, t) ∈ D̃, there must exist some facility (ī, k̄, s̄) ∈ I ′ such
that t ∈ I k̄s̄ .

Proof For any client ( j, t) ∈ D̃, its connecting witness (i, k, s) has the following two
properties:
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Fig. 1 Illustration of the claim

(1) Facility (i, k, s) is temporarily opened in Phase 1 (i.e., (i, k, s) ∈ T ).
(2) Facility (i, k, s) is opened at the arrival time of client ( j, t) (i.e., t ∈ I ks ).

Note that the facility set T can be partitioned into sets T ∩ I and T \I. We split
our analysis of this lemma into two cases, a simple one when the connecting witness
(i, k, s) ∈ T ∩ I and a slightly more complicated one when (i, k, s) ∈ T \I.
– Case 1 The connecting witness (i, k, s) ∈ T ∩ I. If facility (i, k, s) ∈ T ∩ I,
according to the construction process of the facility set I ′, we have that (i, k, s) ∈
I ′. The proof is completed under this case, since (i, k, s) is a facility in I ′ such
that t ∈ I ks .

– Case 2 The connecting witness (i, k, s) ∈ T \I. In this case, there must exist
a client ( j̃, t̃) ∈ D̃ that contributes to both facility (i, k, s) and some facility
(ĩ, k̃, s̃) ∈ I such that lk̃ ≥ lk . Recall that

F
(ĩ,k̃,s̃) = {(ĩ, k̃, s̃), (ĩ, k̃,max{s̃ − lk̃, 0}), (ĩ, k̃, s̃ + lk̃)}.

We have the following claim.
Claim If the connecting witness (i, k, s) of client ( j, t) belongs to T \I, then
there must exist a facility in F

(ĩ,k̃,s̃)(⊆ I ′), whose open interval contains t .
For the sake of intuition, we illustrate the claim in Fig. 1. If the claim is true, it is
obvious that our proof is completed under this case. Proof of Claim. Since client

( j̃, t̃) contributes to both (i, k, s) and (ĩ, k̃, s̃), we obtain that t̃ ∈ I ks and t̃ ∈ I k̃s̃ .

Thus, I ks ∩ I k̃s̃ 	= ∅. Combing with t ∈ I ks and lk̃ ≥ lk , we have

t ∈ I ks = [s, s + lk) ⊆ [max{s̃ − lk̃, 0}, s̃ + 2lk̃) = I k̃s̃ ∪ I k̃max{s̃−lk̃ ,0} ∪ I k̃s̃+lk̃
.

This completes the proof of this claim.

�
Lemma 1 guarantees that Step 2.5 of Phase 2 in Algorithm 1 can be proceeded

successfully. Thus, we can obtain an integer primal feasible solution of instance IN
from Algorithm 1.
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3.3 The analysis of the approximation ratio

In this subsection, we analyze the approximation ratio of Algorithm 1. Let OPT
denote the optimal solution cost of the original instance IN . We separate OPT into
the most expensive leasing cost f k

′
i ′ and the rest cost of it. Let OPT ′ denote the rest

cost. We have OPT = f k
′

i ′ + OPT ′.
For any client ( j, t) ∈ D̃, if there exists some facility (i, k, s) ∈ I such that

βiks, j t > 0, we call it a directly connected client and say that ( j, t) is directly con-
nected to facility (i, k, s). Note that a client in D̃ can be directly connected to at most
one facility in I. Denote D̃1 as the set of directly connected clients. For any client
( j, t) ∈ D̃, if there is no facility (i, k, s) ∈ I such that βiks, j t > 0, we call it an indi-
rectly connected client. Denote D̃2 as the set of indirectly connected clients. If a client
( j, t) ∈ D̃1 and it is directly connected to facility (i, k, s) ∈ I, let α

f
j t = α j t − ci j

and αs
j t = ci j . If a client ( j, t) ∈ D̃2, let α

f
j t = 0 and αs

j t = α j t . Note that we have

α j t = α
f
j t + αs

j t for any client ( j, t) ∈ D̃.

Let C denote the serving cost of the clients in D̃. The following lemma provides
an upper bound of C .

Lemma 2

C ≤ 3
∑

( j,t)∈D̃
αs
j t .

Proof Algorithm 1 shows that the serving cost C is associated with the client set
D̃. Note that D̃ can be partitioned into sets D̃1 and D̃2. We can connect any client
( j, t) ∈ D̃ to some facility in I ′ according to the following two cases.

– Case 1 Client ( j, t) ∈ D̃1. In this case, there exists a facility (i, k, s) ∈ I for client
( j, t) such that βiks, j t > 0. Note that facility (i, k, s) must belong to I ′. We can
connect client ( j, t) to (i, k, s). The serving cost of ( j, t) is ci j = αs

j t .

– Case 2 Client ( j, t) ∈ D̃2. In this case, we will show that client ( j, t) can be
assigned to either its connecting witness or some facility that is related to its con-
necting witness. Assume that facility (i, k, s) is the connecting witness of client
( j, t). Thus, we have ci j = α j t . If (i, k, s) ∈ T ∩ I = I, it must belong to
I ′. We can connect client ( j, t) to (i, k, s) and it will incur a serving cost of
ci j = α j t = αs

j t . If (i, k, s) ∈ T \I, there must exist a client ( j̃, t̃) ∈ D̃ that con-

tributes to both facility (i, k, s) and some facility (ĩ, k̃, s̃) ∈ I such that lk̃ ≥ lk .
As we claimed in the proof of Lemma 1, client ( j, t) can be connected to one of
the three facilities that are leased corresponding to (ĩ, k̃, s̃) (i.e., facilities (ĩ, k̃, s̃),
(ĩ, k̃,max{s̃−lk̃, 0}) and (ĩ, k̃, s̃+lk̃)). The serving cost of ( j, t) is cĩ j . Since client

( j̃, t̃) contributes to both facility (i, k, s) and facility (ĩ, k̃, s̃), we have ci j̃ ≤ α j̃ t̃
and cĩ j̃ ≤ α j̃ t̃ . Let γ(i,k,s) and γ

(ĩ,k̃,s̃) be the value of γ when we temporarily open

facility (i, k, s) and (ĩ, k̃, s̃), respectively. We have that

α j̃ t̃ ≤ min{γ(i,k,s), γ(ĩ,k̃,s̃)} ≤ γ(i,k,s) ≤ α j t .
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Fig. 2 Illustration of the serving
cost of client ( j, t) ∈ D̃2

Since the serving costs satisfy the triangle inequality (Fig. 2), we have

cĩ j ≤ ci j + ci j̃ + cĩ j̃ ≤ α j t + 2α j̃ t̃ ≤ 3α j t = 3αs
j t .

Combining the results of Cases 1 and 2, we complete the proof of this lemma. �
Let Ĩ denote the facility set of I\{(i ′, k′, s′), (i f , k f , s f )}, where (i ′, k′, s′) is the

guessed facility with most expensive leasing cost and (i f , k f , s f ) is the last temporar-
ily opened facility. Let Ī be all the finally leased facilities which correspond to Ĩ, i.e.,

Ī :=
⋃

(i,k,s)∈Ĩ
F(i,k,s).

Denote F as the leasing cost of Ī. The following lemma provides an upper bound of F .

Lemma 3

F ≤ 3
∑

( j,t)∈D̃
α

f
j t .

Proof It is clear that only the clients belong to D̃1 can contribute to the facilities in
Ĩ. For any facility (i, k, s) ∈ Ĩ, let N con

(i,k,s) be all the clients that contribute to (i, k, s)

(i.e., N con
(i,k,s) := {( j, t) ∈ D̃1 : βiks, j t > 0}). We have

∑

( j,t)∈N con
(i,k,s)

α
f
j t =

∑

( j,t)∈N con
(i,k,s)

(α j t − ci j ) =
∑

( j,t)∈N con
(i,k,s)

βiks, j t = f ki .

Note that any client ( j, t) ∈ D̃1 contributes to at most one facility in Ĩ. It means that
we have N con

(i1,k1,s1)
∩N con

(i2,k2,s2)
= ∅ for any (i1, k1, s1), (i2, k2, s2) ∈ Ĩ. Then we have

∑

(i,k,s)∈Ĩ
f ki =

∑

(i,k,s)∈Ĩ

∑

( j,t)∈N con
(i,k,s)

α
f
j t ≤

∑

( j,t)∈D̃1

α
f
j t ≤

∑

( j,t)∈D̃
α

f
j t .

Thus

F =
∑

(i,k,s)∈Ī
f ki = 3

∑

(i,k,s)∈Ĩ
f ki ≤ 3

∑

( j,t)∈D̃
α

f
j t .

�
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Now we are ready to give the main result of Algorithm 1.

Theorem 4 Algorithm 1 is a 6-approximation algorithm for the RFLE.

Proof Combining Lemmas 2 and 3 together, we get

C + F ≤ 3
∑

( j,t)∈D̃

(
αs
j t + α

f
j t

)
= 3

∑

( j,t)∈D̃
α j t .

Note that we have α j t = γ for any client ( j, t) ∈ Õ, that |Õ| = q, and that the
optimal solution of instance IN is feasible for the modified instance IN ′ with a cost
of OPT ′ = OPT − f k

′
i ′ . We have

C + F ≤ 3
∑

( j,t)∈D̃
α j t

= 3

⎛

⎝
∑

( j,t)∈D
α j t −

∑

( j,t)∈Õ
α j t

⎞

⎠

= 3

⎛

⎝
∑

( j,t)∈D
α j t − qγ

⎞

⎠

≤ 3OPT ′.

Since the solution of Algorithm 1 may lease the kinds of facilities that are correspond-
ing to facility (i ′, k′, s′) or (i f , k f , s f ) or both (i.e., maybe we have (i ′, k′, s′) ∈ I or
(i f , k f , s f ) ∈ I or both), the total cost of our solution is at most

C + F + 3 f k
′

i ′ + 3 f
k f
i f

≤ 3OPT ′ + 6 f k
′

i ′ ≤ 6OPT .

This completes the proof of this theorem. �

4 A refined primal–dual 3-approximation algorithm

In this section, we propose a primal–dual 3-approximation algorithm for the RFLE by
modifying Phase 2 of Algorithm 1 with a careful recognition on the leasing facilities.

Recall the definitions of (i ′, k′, s′) and (i f , k f , s f ) in Algorithm 1. Let F ′ denote
all the facilities that are corresponding to facility (i ′, k′, s′) or facility (i f , k f , s f ), i.e.,

F ′ := F(i ′,k′,s′) ∪ F(i f ,k f ,s f ).

One shortcoming of Algorithm 1 is that we may lease all the facilities in F ′. Since
there are six facilities in F ′, the leasing cost of F ′ is upper bounded by 6 f k′

i ′ . In order
to obtain a tighter upper bound, we carefully re-construct the maximal independent
set which allows us to open only two facilities in F ′. This refined construction results
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in the modification of Steps 2.2–2.4 of Algorithm 1. Using the same pre-process in
Sect. 3, we construct the associated modified instance IN ′ for any given instance IN .
We present our refined primal–dual algorithm as follows.

Algorithm 2

Phase 1. Constructing a dual feasible solution of IN ′ (cf. Phase 1 in Algorithm 1).
Phase 2. Constructing a integer primal feasible solution of IN .
Step 2.1. Same as Step 2.1. in Algorithm 1.
Step 2.2. We construct a graph G as follows. Let T ′ denote the facility set of

T \{(i ′, k′, s′), (i f , k f , s f )}. Every facility in T ′ is a vertex in G. For any
facility (i, k, s) ∈ F and any client ( j, t) ∈ D, if βiks, j t > 0, we say that
client ( j, t) contributes to facility (i, k, s). There is an edge between two ver-
tices in G if there exists a client that contributes to both the corresponding
facilities in T ′.

Step 2.3. Order the facilities in T ′ according to non-increasing lease lengths. Then,
find a maximal independent set of the vertices in G by greedily selecting the
vertices in this order. Let I ⊆ T ′ denote the corresponding facilities of the
maximal independent set.

Step 2.4. For any facility (i, k, s) ∈ F , we say that facilities (i, k, s), (i, k, max{s −
lk, 0}) and (i, k, s + lk) correspond to facility (i, k, s) and use F(i,k,s) to
denote them, i.e., F(i,k,s) := {(i, k, s), (i, k,max{s − lk, 0}), (i , k, s + lk)}.
For any facility (i, k, s) ∈ I, we lease the facilities in F(i,k,s). We also lease
facility (i ′, k′, s′) and facility (i f , k f , s f ). Let I ′ denote all the facilities
that are leased in this step.

Step 2.5. Same as Step 2.5. in Algorithm 1.

Now we give the performance analysis of Algorithm 2 as follows.

Theorem 5 Algorithm 2 is a 3-approximation algorithm for the RFLE.

Proof Note that Algorithm 2 is the same as Algorithm 1 before Step 2.2. Obviously,
we have Lemmas 1–3 for Algorithm 2. Therefore, we obtain

C + F ≤ 3OPT ′.

Since facility (i ′, k′, s′) and facility (i f , k f , s f ) are leased in the produced solution of
Algorithm 2, the total cost of the solution is at most

C + F + f k
′

i ′ + f
k f
i f

≤ 3OPT ′ + 2 f k
′

i ′ ≤ 3OPT .

This completes the proof of this theorem. �

5 Discussions

In this paper, we study a new variant of the FLE, namely, the RFLE. By using the
primal–dual technique, we propose two approximation algorithms for the RFLE. The
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first one has an approximation ratio of 6. We further improve the ratio to 3 by making
some modifications of the first algorithm.

In the FLE, the number of time periods T and each subset of clients Dt ⊆ D that
arrives at time period t ∈ {1, 2, . . . , T } are given as input. In the online version of
the FLE (OFLE), this information is unknown. The results for the OFLE are given in
[11,17]. In the future, we are interested in investigating the OFLE with outlier which
includes two variants, the robust OFLE and the OFLE with penalties.
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