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Abstract We investigate the global exponential stability of equilibrium solutions of
a projected dynamical system for variational inequalities. Under strong pseudomono-
tonicity and Lipschitz continuity assumptions, we prove that the dynamical system has
a unique equilibrium solution.Moreover, this solution is globally exponentially stable.
Some examples are given to analyze the effectiveness of the theoretical results. The
numerical results confirm that the trajectory of the dynamical system globally expo-
nentially converges to the unique solution of the considered variational inequality. The
results established in this paper improve and extend some recent works.
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1 Introduction

The aim of this paper is to analyze the global exponential stability of the equilibrium
points of a dynamical system described by variational inequalities. Such a system has
numerous applications, in particular in the fields of mathematical programming, net-
work economics, transportation research, and game theory [13,18]. Furthermore, this
system can also be seen as a mathematical model allowing to study important concepts
as systems of nonlinear equations, necessary optimality conditions for optimization
problems, complementarity problems, obstacle problems, network equilibrium prob-
lems (see, e. g., [2,12]).

Many numerical methods have been proposed for solving variational inequality
problems. Themost well-knownmethods are the projectionmethods, the gap-function
methods and the bundle methods [2,13,20]. In particular, the projection-type methods
have been widely used. They are simple and efficient when the projection can be easily
computed. This is the case for solving engineering applications such as signal pro-
cessing, system identification and robot motion control [14,27]. Often projection-type
methods are combined with continuous dynamical systems based on circuit imple-
mentation [4,21].

In recent years, dynamical systems have been widely investigated for solving lin-
ear and nonlinear variational inequalities with a particular attention to optimization
problems [1,5,7,8,15,16,19,22,23,26]. Theglobal convergence and theglobal asymp-
totic stability of the trajectories generated by the dynamical systems can be obtained
by imposing a monotonicity assumption on the corresponding operator [22,23]. The
global exponential stability of the trajectories, which is important for proving the
convergence of a dynamical system, can also be deduced but under a strong mono-
tonicity condition on the operator [1,19,24,25]. Finally, let us mention that the global
exponential stability implies the global asymptotic stability but not the converse.

Recently, Hu and Wang [6,7] studied the convergence of the projected dynamical
system proposed in [1,19,22,25] for solving pseudomonotone variational inequalities
with the consequence that they can extend the class of concerned convex optimization
problems to the class of pseudoconvex optimization problems. They also prove the
global convergence and the global asymptotic stability of the dynamical system under
the assumption that the corresponding operator is pseudomonotone and Lipschitz
continuous. However, to obtain the global exponential stability, Hu and Wang have
to impose some restrictive conditions between the modulus of strong pseudomono-
tonicity and the modulus of Lipschitz continuity of the corresponding operator. These
conditions are never satisfied for the class of strongly monotone and Lipschitz contin-
uous variational inequalities (see Remark 2 below). Therefore, the global exponential
stability obtained by Hu and Wang can be hardly used for extending the results pro-
posed in [1,19,22,25].

This paper provides two new contributions. The first one is the existence and
uniqueness of the equilibrium point of the proposed dynamical system when the cor-
responding operator is strongly pseudomonotone and continuous. In that case, the
existence assumption supposed to be satisfied in [6,7] is no more necessary. In the
second contribution, we establish the global exponential stability of the dynamical
system without imposing any condition between the modulus of strong pseudomono-
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tonicity and the modulus of Lipschitz continuity of the corresponding operator.
Therefore, the results obtained in this paper improve and extend the results proposed
in [1,6,7,19,22,25] .

The remainder of the paper is organized as follows: in Sect. 2, we recall some
preliminaries useful for establishing our main results. In Sect. 3, we first state the
existence and uniqueness of the equilibrium point of the proposed dynamical system
and then prove the global exponential convergence of the trajectory generated by this
dynamical system.Some illustrative examples andnumerical simulations are described
in Sect. 4. Section 5 gives the conclusion of the paper.

2 Preliminaries

Let Ω be a nonempty closed convex subset of the Euclidean space IRn and let F :
Ω → IRn be a continuous operator. The problem of finding x∗ ∈ Ω such that

(F(x∗))T (x − x∗) ≥ 0 ∀x ∈ Ω,

is called a variational inequality problem. We denote this problem by VI(F,Ω) and
its solution set by Sol(F,Ω).

Very often one considers problem VI(F,Ω) with some additional properties
imposed on the operator F such as Lipschitz continuity, monotonicity, strong mono-
tonicity, pseudomonotonicity, and strong pseudomonotonicity. Let us recall here some
well-known definitions (see, e.g., [9]).

Definition 1 The operator F is said to be

(a) strongly monotone with modulus γ on Ω if there exists γ > 0 such that

(F(x) − F(y))T (x − y) ≥ γ ‖x − y‖2 ∀x, y ∈ Ω;

(b) monotone on Ω if

(F(x) − F(y))T (x − y) ≥ 0 ∀x, y ∈ Ω;

(c) strongly pseudomonotone with modulus γ on Ω if there exists γ > 0 such that

(F(x))T (y − x) ≥ 0 �⇒ (F(y))T (y − x) ≥ γ ‖x − y‖2

for all x, y ∈ Ω;
(d) pseudomonotone on Ω if

(F(x))T (y − x) ≥ 0 �⇒ (F(y))T (y − x) ≥ 0

for all x, y ∈ Ω .

Remark 1 The implications (a) �⇒ (b), (a) �⇒ (c), (c) �⇒ (d) and (b) �⇒ (d) are
evident.
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Definition 2 The operator F is said to be Lipschitz continuous with modulus L on Ω

if there exists a constant L > 0 such that

‖F(x) − F(y)‖ ≤ L ‖x − y‖ ∀x, y ∈ Ω.

Remark 2 When the operator F is strongly monotone with modulus γ and Lipschitz
continuous with modulus L , it follows from the Cauchy–Schwarz inequality that

γ ‖x − y‖2 ≤ (F(x) − F(y))T (x − y)

≤ ‖F(x) − F(y)‖ ‖x − y‖
≤ L‖x − y‖2,

which implies γ ≤ L .

Next we recall the definition of the projection operator. Let Ω be a nonempty closed
convex subset of IRn . Then, for each x ∈ IRn , there exists a unique point in Ω , (see,
e.g.,[12]), denoted by PΩ(x), such that

‖x − PΩ(x)‖ ≤ ‖x − y‖ ∀y ∈ Ω,

where ‖ · ‖ denotes the l2-norm of IRn . Some well-known properties of the metric
projection PΩ : IRn → Ω are given in the following lemma.

Lemma 1 Assume that the set Ω is a nonempty closed convex subset of IRn. Then

(a) PΩ(·) is a nonexpansive operator, i.e., for all x, y ∈ IRn, it holds

‖PΩ(x) − PΩ(y)‖ ≤ ‖x − y‖;

(b) For any x ∈ IRn and y ∈ Ω , it holds

(x − PΩ(x))T (y − PΩ(x)) ≤ 0.

Proof See [12]. ��
Remark 3 The operator PΩ(·) is Lipschitz continuous with Lipschitz modulus L = 1.

For solving problem VI(F,Ω), we consider the following projected dynamical
system

dx

dt
= λ {−x + PΩ(x − αF(x))}, (1)

where λ > 0 and α > 0 are two scaling factors.
The dynamical system (1) was developed in [1,19,22] for solving monotone vari-

ational inequalities. In particular, it was proved that x∗ is a solution of problem
VI(F,Ω) if and only if it is an equilibrium point of the dynamical system, i.e., if
PΩ(x∗ − αF(x∗)) = x∗.

The asymptotic stability of this dynamical system holds under conditions as the
operator F is monotone and Lipschitz continuous with modulus L and α < 1/L [22].
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When the monotonicity of F is replaced by the strong monotonicity, the dynamical
system has global exponential stability provided that α < 2γ /L2 [1,19]. The stable
properties of this dynamical systemhave been recently extended byHu andWang [6] to
the class of pseudomonotone variational inequalitieswith some additional assumptions
on F . When the operator F is strongly pseudomonotone with modulus γ > 0 and
Lipschitz continuous with modulus L > 0, it has been proved that this dynamical
system is globally exponentially stable provided that it has an equilibriumpoint and that
γ > 2L . However, it follows from Remark 2 that the last inequality is never satisfied
for the class of strongly monotone and Lipschitz continuous variational inequalities.

Remark 4 The explicit discretization of dynamical system (1) with respect to the time
variable t , with step size hn > 0 and initial point x0 ∈ IRn , yields the following
iterative scheme:

xn+1 − xn
hn

= λ {−xn + PΩ(xn − αF(xn))}.

For hn = 1, this becomes

xn+1 = (1 − λ) xn + λPΩ(xn − αF(xn)),

which is the relaxed projection method for solving variational inequalities with relax-
ation parameter λ. It is known, at least in the situation λ = 1, that the iterative
sequence generated by this algorithm converges linearly to a solution when F is
strongly (pseudo)-monotone and Lipschitz continuous [2,10].

3 Global exponential stability

It is known that x∗ is a solution of problem VI(F,Ω) if and only if it is an equilibrium
point of the dynamical system (1), see for example, [3,22]. Moreover, it follows from
Theorem 2.1 in [11] that if the operator F is continuous and strongly pseudomonotone,
then problem VI(F,Ω) has a unique solution. The existence of solutions for strongly
pseudomonotone continuous variational inequalities has also been recently established
in the more general setting of equilibrium problems [17]. Therefore, as a consequence,
we have:

Theorem 1 Suppose that the operator F is continuous and strongly pseudomono-
tone with modulus γ > 0 on a nonempty closed convex set Ω . Then the variational
inequality VI(F,Ω) has a unique solution which is the unique equilibrium point of
the dynamical system (1).

We are now in a position to establish the global exponential stability of the dynamical
system (1) without the restrictive assumption γ > 2L imposed in [6]. In that purpose,
we first recall the stability concepts of an equilibrium point of the general dynamical
system

dx

dt
= f (x), x ∈ IRn (2)

where f is a continuous function from IRn to IRn .
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Definition 3 [19]

(a) A point x∗ is an equilibrium point for (2) if f (x∗) = 0;
(b) An equilibrium point x∗ of (2) is stable if, for any ε > 0, there exists δ > 0

such that, for every x0 ∈ B(x∗, δ), the solution x(t) of the dynamical system with
x(0) = x0 exists and is contained in B(x∗, ε) for all t > 0, where B(x∗, r) denotes
the open ball with center x∗ and radius r ;

(c) A stable equilibrium point x∗ of (2) is asymptotically stable if there exists δ > 0
such that, for every solution x(t) with x(0) ∈ B(x∗, δ), one has

lim
t→+∞ x(t) = x∗;

(d) An equilibrium point x∗ of (2) is exponentially stable if there exist δ > 0 and
constantsμ > 0 and η > 0 such that, for every solution x(t)with x(0) ∈ B(x∗, δ),
one has

‖x(t) − x∗‖ ≤ μ ‖x(0) − x∗‖ e−ηt ∀t ≥ 0. (3)

Furthermore, x∗ is globally exponentially stable if (3) holds true for all solutions
x(t) of (2).

Theorem 2 Assume that the operator F is strongly pseudomonotone with modulus
γ > 0 and Lipschitz continuous with modulus L > 0. Then the unique equilibrium
solution of dynamical system (1) is globally exponentially stable when α < 2γ /L2.

Proof Under the assumptionsmade, it follows fromTheorem1 that problemVI(F,Ω)
has a unique solution denoted x∗. Setting y = PΩ(x − αF(x)) and replacing x by
x − αF(x) in Lemma 1(b) we have

(x − αF(x) − y)T (z − y) ≤ 0 ∀z ∈ Ω.

Substituting z = x∗ ∈ Ω into the last inequality yields

(x − αF(x) − y)T (x∗ − y) ≤ 0,

or equivalently
(x − y)T (x∗ − y) ≤ α(F(x))T (x∗ − y). (4)

On the other hand, since y = PΩ(x − αF(x)) ∈ Ω and x∗ is the unique solution of
problem VI(F,Ω), it holds that

(F(x∗))T (y − x∗) ≥ 0.

Hence, by the strong pseudomonotonicity property of F we have

(F(y))T (y − x∗) ≥ γ ‖y − x∗‖2.
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Using the Cauchy–Schwarz inequality, the strong pseudomonotonicity and the Lips-
chitz continuity of F , we obtain

2α(F(x))T (x∗ − y) = −2α(F(y))T (y − x∗) + 2α(F(x) − F(y))T (x∗ − y)

≤ −2αγ ‖y − x∗‖2 + 2α‖F(x) − F(y)‖‖y − x∗‖
≤ −2αγ ‖y − x∗‖2 + 2αL‖x − y‖‖y − x∗‖
≤ −2αγ ‖y − x∗‖2 + ‖x − y‖2 + (αL)2‖y − x∗‖2. (5)

Combining (4) with (5) one has

2(x − y)T (x∗ − y) ≤ 2α(F(x))T (x∗ − y)

≤ −2αγ ‖y − x∗‖2 + ‖x − y‖2 + (αL)2‖y − x∗‖2. (6)

We note that 2aT b = ‖a‖2 + ‖b‖2 − ‖a − b‖2 for all a, b ∈ IRn .
Substituting a = x − y and b = x∗ − y into this inequality we obtain

2(x − y)T (x∗ − y) = ‖x − y‖2 + ‖x∗ − y‖2 − ‖(x − y) − (x∗ − y)‖2
= ‖y − x∗‖2 + ‖y − x‖2 − ‖x − x∗‖2. (7)

Then it follows from (6) and (7) that

‖y − x∗‖2 + ‖y − x‖2 − ‖x − x∗‖2
≤ −2αγ ‖y − x∗‖2 + ‖x − y‖2 + (αL)2‖y − x∗‖2

or equivalently
(1 + α(2γ − αL2))‖y − x∗‖2 ≤ ‖x − x∗‖2. (8)

Since α < 2γ /L2 it holds 1 + α(2γ − αL2) > 1. Thus, from (8), one has

‖y − x∗‖ ≤ 1
√
1 + α(2γ − αL2)

‖x − x∗‖. (9)

Consider the Lyapunov function

V (x(t)) = 1

2
‖x(t) − x∗‖2 ∀x(t) ∈ Ω.

From (1), time derivative of V can be expressed as

dV

dt
= (x − x∗)T

dx

dt

= λ
{
(x − x∗)T (y − x)

}

= λ
{
(x − x∗)T (y − x∗) − ‖x − x∗‖2

}
.
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Therefore, it follows from the Cauchy–Schwarz inequality and (9) that

dV

dt
≤ λ

{
‖x − x∗‖‖y − x∗‖ − ‖x − x∗‖2

}

≤ λ

[
1

√
1 + α(2γ − αL2)

− 1

]

‖x − x∗‖2

= −β‖x − x∗‖2,

where

β = λ

[

1 − 1
√
1 + α(2γ − αL2)

]

> 0. (10)

Therefore, for all t > 0, we have

‖x(t) − x∗‖ ≤ ‖x(0) − x∗‖ e−βt .

This means that the equilibrium solution x∗ of the dynamical system (1) is globally
exponentially stable. ��
Remark 5 According to Theorem 2, the unique equilibrium point x∗ is globally expo-
nentially stable if parameter α is small enough. Therefore, it is interesting to study the
value of α which maximizes the convergence rate of the trajectories. Considering β

in (10) as a function of α ∈ (
0, 2γ /L2

)
, we can see that the maximum convergence

rate of the trajectory x(t) is

β∗ = λ

[

1 − L
√
L2 + γ 2

]

,

which is attained at α = α∗ = γ /L2.

As a consequence of Theorem 2, we have the following corollary:

Corollary 1 [19] Assume that the operator F is strongly monotone with modulus
γ > 0 and Lipschitz continuous with modulus L > 0. Then the unique equilibrium
solution of dynamical system (1) is globally exponentially stable when α < 2γ /L2.

Remark 6 It should be mentioned that the result obtained in Theorem 2 extends the
global exponential stability proposed in [19] for the class of strongly monotone vari-
ational inequalities to a broader class of variational inequalities, namely the class of
strongly pseudomonotone variational inequalities.

4 Examples and numerical results

In this section, we give some examples to illustrate the effectiveness of the theoretical
results presented above.
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Example 1 Let Ω = [0, 1] and F : Ω → IRn defined for all x ∈ Ω by F(x) = 1
1+x .

First we prove that F is strongly pseudomonotone with modulus γ = 1
2 and Lipschitz

continuous with modulus L = 1 on Ω .
Indeed, suppose that, for x, y ∈ Ω , we have (F(x))T (y − x) ≥ 0, then y−x

1+x ≥ 0, or
equivalently y ≥ x . Since x, y ∈ Ω = [0, 1], it holds

(y − x)(1 + y) ≤ 2,

which implies

1

1 + y
≥ 1

2
(y − x).

Multiplying the last inequality by y − x ≥ 0, one has

1

1 + y
(y − x) ≥ 1

2
‖y − x‖2.

This means that

(F(y))T (y − x) ≥ 1

2
‖y − x‖2,

i.e., F is strongly pseudomonotone with modulus γ = 1
2 on Ω .

On the other hand

‖F(x) − F(y)‖ =
∥∥∥∥∥

1

1 + x
− 1

1 + y

∥∥∥∥∥

=
∥∥∥∥∥

y − x

(1 + x)(1 + y)

∥∥∥∥∥

≤ ‖x − y‖,

which means that F is Lipschitz continuous with modulus L = 1 on Ω .
It follows from Theorem 1 that the dynamical system (1) has a unique equilibrium

point. It is easy to see that x∗ = 0 is this point.
Note that F is neither monotone nor strongly monotone because

(F(x) − F(y))T (x − y) =
(

1

1 + x
− 1

1 + y

)

(x − y)

= − (x − y)2

(1 + x)(1 + y)
≤ 0.

According to Theorem 2, the trajectory of the dynamical system (1) always globally
exponentially converges to the unique solution x∗ = 0 when α < 1.
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The next example comes from [11].

Example 2 Let

Ω = {x ∈ IRn | ‖x‖ ≤ 5} and F(x) = (8 − ‖x‖) x for all x ∈ Ω.

The operator F is both Lipschitz continuous and strongly pseudomonotone on Ω .
Indeed, for any x, y ∈ Ω , we have

‖F(x) − F(y)‖ = ‖(8 − ‖x‖) x − (8 − ‖y‖) y‖
= ‖8(x − y) − ‖x‖(x − y) − (‖x‖ − ‖y‖) y‖
≤ 8‖x − y‖ + ‖x‖‖x − y‖ + |‖x‖ − ‖y‖| ‖y‖
≤ 8‖x − y‖ + 5 ‖x − y‖ + 5 ‖x − y‖
= 18 ‖x − y‖.

Hence F is Lipschitz continuous on Ω with modulus L = 18. Suppose that x, y ∈ Ω

are such that (F(x))T (y − x) ≥ 0, or equivalently

(8 − ‖x‖) xT (y − x) ≥ 0.

This implies that xT (y − x) ≥ 0 because ‖x‖ ≤ 5 < 8. Observe that

(F(y))T (y − x) = (8 − ‖y‖)(yT (y − x))

≥ (8 − ‖y‖)(yT (y − x) − xT (y − x))

= (8 − ‖y‖)‖x − y‖2.

Since ‖y‖ ≤ 5, it holds that 8 − ‖y‖ ≥ 3. This implies

(F(y))T (y − x) ≥ (8 − ‖y‖)‖x − y‖2 ≥ 3‖x − y‖2.

Therefore F is strongly pseudomonotone on Ω with modulus γ = 3.
Moreover, F is neither strongly monotone nor monotone on Ω . To see this, it

suffices to choose

x = (4, 0, . . . , 0), y = (5, 0, . . . , 0) ∈ Ω

and note that

(F(x) − F(y))T (x − y) = −1 < 0.

It is easy to check that x∗ = 0 is the unique solution of VI(F,Ω). According to
Theorem 2, the trajectory of dynamical system (1) always globally exponentially

converges to the unique solution x∗ = 0 when α <
2γ

L2.

The following example is due to Hu and Wang [6].
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Example 3 Consider a two dimensional variational inequality V I (F,Ω)with a spher-
ical constraint defined, for all x = (x1, x2), by

F(x) =
(
0.5x1x2 − 2x2 − 107,−4x1 + 0.1x22 − 107

)T
,

and

Ω = {x ∈ IR2 | (x1 − 2)2 + (x2 − 2)2 ≤ 1}.

This problem V I (F,Ω) has a unique solution x∗ = (2.7071, 2.7071)T . Furthermore,
F is not monotone and using a Monte Carlo approach, Hu and Wang [6] verified that
F is strongly pseudomonotone with modulus γ = 11 and Lipschitz continuous with
modulus L = 5. The numerical results have been displayed in [6] with some different
starting points. According to Theorem 2, the trajectory of dynamical system (1) always
globally exponentially converges to the unique solution x∗ = (2.7071, 2.7071)T when
α < 2γ /L2.

Remark 7 In Example 3, since γ > 2L , the theoretical results in [6] can be applied.
However, in the first two examples, condition γ > 2L is violated, therefore the global
exponential stability of these examples cannot be guaranteed by the results established
in [6].

Next, we give the numerical results for the above examples. The codes are written
in MATLAB and the experiments were performed in MATLAB version R2014b on a
desktop Intel Core i7with 8GBRAM.All the simulations confirm that the trajectory of
dynamical systems (1) always globally exponentially converges to the unique solution
x∗ of the problem. For instance, in Figs. 1, 2 and 3, some results for Example 2 are
displayed in various dimensional spaces with different initial points and parameters.
For Example 3, we obtain the unique solution x∗ = (2.7071, 2.7071)T in one step
even with different initial points and parameters.
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Fig. 1 The trajectory of dynamical system (1) in Example 2, when n = 3, λ = 1, α = 0.018. On the left,
x0 = (− 2, 1, 3)T , on the right x0 = (4,− 2, 1)T

123



1636 N. T. T. Ha et al.

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

3

time

St
at
es

x1
x2
x3
x4
x5

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45
−3

−2

−1

0

1

2

3

time

St
at
es

x1
x2
x3
x4
x5

Fig. 2 The trajectory of dynamical system (1) in Example 2, when n = 5, λ = 1, α = 0.015. On the left,
x0 = (1,− 1, 2, 3, − 2)T , on the right x0 = (− 3, 1,− 2, 3,− 1)T

Fig. 3 The trajectory of
dynamical system (1) in
Example 2, when
n = 10, λ = 1, α = γ /L2 and
x0 = (− 5, − 4,− 3,− 2,
− 1, 1, 2, 3, 4, 5)T
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5 Conclusion

In this paper, we have further analyzed the global stability of a dynamical system
for solving strongly pseudomonotone Lipschitz continuous variational inequalities
considered in [1,6,19,22]. The existence and uniqueness of the equilibrium points of
these dynamical systems are stated. The global exponential stability of the trajectory is
establishedwithout imposing restrictive conditions on the original data of the problem.
Someexamples are analyzed andnumerical tests are given to illustrate the effectiveness
of the theoretical results. It should be noticed that the results presented in this paper
are still valid in infinite dimensional Hilbert space. Studying the global stability of
this dynamical system without monotonicity assumption is an interesting subject for
future research.
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