
Optimization Letters (2019) 13:1663–1676
https://doi.org/10.1007/s11590-018-01384-8

ORIG INAL PAPER

Optimal online algorithms for MapReduce scheduling
on two uniformmachines

Yiwei Jiang1 · Ping Zhou2 · T. C. E. Cheng3 ·Min Ji1

Received: 20 July 2018 / Accepted: 29 December 2018 / Published online: 11 January 2019
© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Abstract
We study online scheduling on two uniform machines in the MapReduce system.
Each job consists of two sets of tasks, namely the map tasks and reduce tasks. A
job’s reduce tasks can only be processed after all its map tasks are finished. The
map tasks are fractional, i.e., they can be arbitrarily split and processed on different
machines in parallel. Our goal is to find a schedule that minimizes the makespan.
We consider two variants of the problem, namely the cases involving preemptive
reduce tasks and non-preemptive reduce tasks. We provide lower bounds for both
variants. For preemptive reduce tasks, we present an optimal online algorithm with a

competitive ratio of
√
s2+2s+5+1−s

2 , where s ≥ 1 is the ratio between the speeds of the
two machines. For non-preemptive reduce tasks, we show that the LS-like algorithm

is optimal and its competitive ratio is 2s+1
s+1 if s < 1+√

5
2 and s+1

s if s ≥ 1+√
5

2 .

Keywords Big data · MapReduce scheduling · Online algorithm · Competitive ratio

1 Introduction

In this paper we consider the problem of online scheduling on two uniform machines
in the MapReduce system [3], which is a programming model and the associated
implementation for processing large-scale data. It is a two-phase paradigm consisting
of the map phase and the reduce phase. Specifically, when a job is submitted for
processing by the system, the system partitions it into two types of tasks, namely
the map tasks and reduce tasks. The map tasks take the raw data as input and output

B Min Ji
jimkeen@163.com

1 School of Management and E-Business, Contemporary Business and Trade Research Center,
Zhejiang Gongshang University, Hangzhou 310018, China

2 College of Humanities, Zhejiang Business College, Hangzhou 310053, China

3 Department of Logistics and Maritime Studies, The Hong Kong Polytechnic University, Kowloon,
Hong Kong

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s11590-018-01384-8&domain=pdf
http://orcid.org/0000-0002-2258-599X

1664 Y. Jian et al.

the key-value pairs, while the reduce tasks take the pairs output by the map tasks and
compute the final results. All themap tasks and reduce tasks are processed on a number
of parallel processors.

Formally, we introduce the problem under study as follows. A sequence J of
independent jobs J1, J2, . . . , Jn arrive one by one that are to be scheduled irrevocably
onto two uniform machines σ1 and σ2. Machine σi has speed si ≥ 1. Without loss
of generality, we assume s = s1 ≥ s2 = 1. Each job J j has a set of map tasks
Mj = {m1

j ,m
2
j , . . . ,m

u j
j } and a set of reduce tasks R j = {r1j , r2j , . . . , r

v j
j }, i.e., the

job has u j map tasks and v j reduce tasks. The reduce tasks of J j can only be processed
after all the map tasks of J j are finished. We assume that the map tasks are fractional,
i.e., each map task can be arbitrarily split and parts of the same task can be processed
on different machines in parallel. Our goal is to minimize the makespan, i.e., the
maximum completion time of all the jobs. We consider two variants of the problem,
namely the cases involving preemptive reduce tasks and non-preemptive reduce tasks.
In the former case, each reduce task may be cut into a few pieces, which are assigned
to possibly different machines for processing in non-overlapping time slots, while in
the latter case, each reduce task must be processed on one machine in a continuous
time interval. Using the three-field notation for scheduling problems, we denote our
problem as Q2|M(frac)R(pmtn)|Cmax for the case involving preemptive reduce tasks
and Q2|M(frac)R|Cmax for the case involving non-preemptive reduce tasks.

The performance of an online algorithm A is measured by its competitive ratio,
which is defined as ρA = inf{ρ ≥ 1|CA(J) ≤ ρ · C∗(J),∀J }, where CA(J) (or
in short CA) denotes the objective value produced by A and C∗(J) (or in short C∗)
denotes the optimal value in the offline version. An online problem has a lower bound
if no online algorithm has a competitive ratio smaller than the lower bound. An online
algorithm is called optimal if its competitive ratio matches its largest lower bound.

For MapReduce scheduling on parallel machines to minimize the makespan, Zhu
et al. [13] considered offline scheduling on m identical machines where the map
tasks are fractional, i.e., Pm|M(frac), offline|Cmax. They presented an algorithm that
produces an optimal solution for preemptive reduce tasks and an algorithm with a
worst-case ratio of 3

2 − 1
2m for non-preemptive tasks. They also considered the problem

to minimize the total completion time, and gave an approximation algorithm and a
heuristic for the non-preemptive and preemptive cases, respectively. For the offline
version of the problem onm uniform machines, i.e., Qm|M(frac), offline|Cmax, Jiang
et al. [6] provided an approximation algorithm with a worst-case ratio of 2 for the
preemptive case and an approximation algorithm with a worst-case ratio of max{1 +
�
2 − 1

m ,�}, where � is the speed ratio between the fastest and slowest machines, for
the non-preemptive case.

For the online version of the problem in [13], Jiang et al. [7] considered preemptive
scheduling on two machines, i.e., P2|M(frac)R(pmtn), online|Cmax. They presented
an optimal online algorithm with a competitive ratio of

√
2. Luo et al. [8] considered

the online version under the assumption that a job’s reduce tasks are unknown until
its map tasks are finished. They provided online optimal algorithms with the same
competitive ratio of 2− 1

m for both the preemptive and non-preemptive cases. Huang
et al. [5] studied a special case of online over-list MapReduce model on two identical

123

Optimal online algorithms for MapReduce scheduling on two… 1665

machines where each job consists of only one map task and one reduce task. When
jobs are released over time, Chen et al. [2] presented an algorithm with a competitive
ratio 2 − 1

m for the non-preemptive case and an optimal algorithm for the preemp-
tive case involving two machines. Besides, some researchers studied different online
MapReduce schedulingmodelswith different objectives. Le et al. [9] considered online
MapReduce load balancing with skewed data input. They presented a 2-competitive
ratio algorithm and a sample-based enhancement that probabilistically achieves a 3/2-
competitive ratio with a bounded error. Zheng et al. [12] introduced the criterion of
efficiency ratio to measure the performance of online algorithms for the problem to
minimize the total completion time. Under the assumption that the length of each map
task is one unit, they provided an algorithm based on the shortest remaining processing
time (SRPT) and showed that it has a small efficiency ratio for the preemptive case.
Chang et al. [1] considered the MapReduce scheduling to minimize the weighted total
completion time and presented an online algorithm that achieves a 30% improvement
over FIFO via simulation. Moseley et al. [10] considered the problem to minimize the
total flowtime in the two-stage hybrid flow shop where the speed of each machine is
1+ε, 0 < ε ≤ 1. They presented an online 1+ε-speed O(1

ε2
)-competitive algorithm.

In this paper we consider online MapReduce scheduling on two uniform machines
inwhich themap tasks are fractional. Though Jiang et al. [6] presented online heuristics
for the problem and confirmed the advantage of the algorithms through simulation,
they did not provide the competitive ratios of the online algorithms. Our contribu-
tion is to provide two optimal online algorithms for the cases involving preemptive
and non-preemptive reduce tasks. For the variant Q2|M(frac)R(pmtn), online|Cmax,

we propose an optimal online algorithm with a competitive ratio of
√
s2+2s+5+1−s

2 ,

which is strictly greater than the competitive ratio (s+1)2

s2+s+1
for the classical preemptive

uniform-machine scheduling problem Q2|pmtn, online|Cmax [11], as shown in Fig. 1.

Note that
√
s2+2s+5+1−s

2 = √
2 when s = 1, so it is a general result for the problem in

[7]. For the variant Q2|M(frac)R, online|Cmax, we propose an optimal online algo-

rithm with a competitive ratio of 2s+1
s+1 if s < 1+√

5
2 and s+1

s if s ≥ 1+√
5

2 , which is
the same as that of the classical non-preemptive uniform-machine scheduling problem
Q2|online|Cmax [4].

We organize the rest of the paper as follows: in Sect. 2 we derive lower bounds for
the problem. In Sects. 3 and 4 we present optimal online algorithms for the preemptive
and non-preemptive variants, respectively. Finally, we conclude the paper in Sect. 5.

2 Lower bounds

For the sake of simplicity in the remainder of this paper, we use r ij to denote the length
of a task, and Mj (R j) to denote the total length of the tasks in Mj (R j). We assume

that r1j ≥ r2j ≥ · · · ≥ r
v j
j for every 1 ≤ j ≤ n. Let Pj = ∑ j

i=1(Mi + Ri) be the total

length of the first j jobs. Let CA
j and C∗

j denote the makespan produced by algorithm
A and the optimal makespan after scheduling the first j jobs.

123

1666 Y. Jian et al.

1 1.5 2 2.5 3 3.5 4 4.5 5
s

1

1.05

1.1

1.15

1.2

1.25

1.3

1.35

1.4

1.45

1.5

C
om

pe
tit

iv
e

ra
tio

MR Problem
Classical Problem

Fig. 1 Comparison between two competitive ratios

Lemma 2.1 For both variants Q2|M(frac)R(pmtn), online|Cmax and Q2|M(frac)R,

online|Cmax, we have

C∗
j ≥ max

{
Pj

1 + s
, max
1≤i≤ j

{
r1i
s

+ Mi

1 + s

}}

. (1)

We first derive a lower bound for the preemptive variant Q2|M(frac)R(pmtn),
online|Cmax.

Theorem 2.2 For the variant Q2|M(frac)R(pmtn), online|Cmax, the competitive ratio

of any online algorithm is at least
√
s2+2s+5+1−s

2 .

Proof Assume that there exists an algorithm A with a competitive ratio ρ. The first
job J1 = {M1,∅} arrives. Let li be the completion time of machine σi after job J1 has
been scheduled by algorithm A, i = 1, 2. It is clear that the current optimal makespan
is M1

s+1 = sl1+l2
s+1 . We consider two cases with respect to the values of l1 and l2.

Case 1 l1 ≥ l2. The makespan produced by A is l1, so

ρ ≥ l1
sl1+l2
s+1

.= ρ1. (2)

Then the second and last job J2 = {M2, R2} arrives, where M2 = l1 − l2 and R2
has only one task r12 = (sl1 + l2)s. It is easy to see that the makespan produced by
algorithm A is at least l1 + sl1 + l2 = (s + 1)l1 + l2. On the other hand, we find that
the optimal makespan is l1−l2

s+1 + sl1 + l2 by scheduling all the map tasks in M2 on the
two machines evenly, r12 on σ1, and all the map tasks in M1 on σ2. Thus, we have

123

Optimal online algorithms for MapReduce scheduling on two… 1667

ρ ≥ (s + 1)l1 + l2
l1−l2
s+1 + sl1 + l2

.= ρ2. (3)

If l2 = 0, we have ρ ≥ s+1
s >

√
s2+2s+5+1−s

2 by (2). So we assume l2 > 0 and let

q = l1
l2
. From (2) and (3), we have

ρ1 = q
1+sq
s+1

= (s + 1)q

sq + 1

and

ρ2 = 1 + (s + 1)q
q−1
s+1 + 1 + sq

= (s + 1)q + 1

(s2 + s + 1)q + s
.

It is easy to see that for q ≥ 1, ρ1 is increasing and ρ2 is decreasing. Since ρ ≥
max{ρ1, ρ2}, we establish the equation ρ1 = ρ2. Solving the equation, we obtain

q = s+1+√
s2+2s+5
2 , so ρ ≥

√
s2+2s+5+1−s

2 .

Case 2 l1 ≤ l2. The makespan produced by A is l2, so

ρ ≥ l2
sl1+l2
s+1

. (4)

Then the second and last job J2 = {M2, R2} arrives, where M2 = (l2 − l1)s and R2
has only one task r12 = (sl1 + l2)s. It is easy to see that the makespan produced by
algorithm A is at least l2 + sl1 + l2 = sl1 + 2l2. On the other hand, we find that the
optimal makespan is (l2−l1)s

s+1 + sl1 + l2. Thus,

ρ ≥ sl1 + 2l2
(l2−l1)s
s+1 + sl1 + l2

. (5)

Using similar arguments in Case 1, we obtain the desired result from (4) and (5).
�	

For the non-preemptive variant, note that Q2|online|Cmax is a special case of our
problem Q2|M(frac)R, online|Cmax, so a lower bound for Q2|online|Cmax [4] is also
a lower bound for of Q2|M(frac)R, online|Cmax.

Theorem 2.3 For the variant Q2|M(frac)R, online|Cmax, the competitive ratio of any
on-line algorithm is at least

⎧
⎨

⎩

2s+1
s+1 , if s < 1+√

5
2 ;

s+1
s , if s ≥ 1+√

5
2 .

123

1668 Y. Jian et al.

3 An optimal on-line algorithm for the preemptive variant

In this section we provide an online algorithm A1 with a competitive ratio α =√
s2+2s+5+1−s

2 > 1 for the preemptive variant Q2|M(frac)R(pmtn), online|Cmax. Let
lij denote the completion time of machine σi at the moment right after the jth job J j
has been scheduled, i = 1, 2.

Before presenting our algorithm A1, we introduce a useful lemma as follows:

Lemma 3.1 If l1j = α
1+s−αs l

2
j for some 1 ≤ j ≤ n, we have

C
A1
j

C∗
j

≤ α.

Proof Noting that α
1+s−αs > 1, we have CA1

j = l1j = α
1+s−αs l

2
j . By (1), we have

C∗
j ≥ Pj

1+s = sl1j+l2j
1+s = 1

1+s−αs l
2
j , so

C
A1
j

C∗
j

≤ α. �	

Themain idea of our algorithm A1 is inspired by Lemma 3.1. To achieve the desired
competitive ratio, algorithm A1 always tries to schedule the jobs so that the completion
times of the two machines keep the ratio α: 1 + s − αs. In other words, it only needs
to schedule the current job J j so that l1j = α

1+s Pj and l2j = 1+s−αs
1+s Pj . If the ratio

cannot be maintained, we conclude that the current job J j has a very large reduce task
r1j (the details are provided in the algorithm). In that case, the optimal makespan is

also determined by this job, i.e., C∗
j ≥ p(Mj)

1+s + r1j
s , and we show that

C
A1
j

C∗
j

≤ α still

holds.
In our algorithm, we introduce the procedure P(Mj , R j) to schedule job J j when

the current completion times of the two machines are the same, i.e., l1j−1 = l2j−1.
Procedure P(Mj , R j)

0. Denote �1 = α
1+s Pj − l1j−1 − Mj

1+s and �2 = 1+s−αs
1+s Pj − l1j−1 − Mj

1+s .

1. If s�1 > R j , schedule the portion (1 + s − αs)(Mj + R j − s(s+1)(α−1)
1+s−αs l1j−1)

(denoted by M1
j) of the map tasks in Mj on the two machines evenly, and the

leftover of the map tasks (denoted by M2
j) and all the reduce tasks on σ1 (see

Fig. 2a).
2. If r1j < s�1 ≤ R j , schedule all the map tasks on the two machines evenly. For

the reduce tasks:

2.1 If r1j ≤ �2, find k = min{q|∑q
i=1 r

i
j ≥ �2, 1 ≤ q ≤ v j } and partition rkj

into two parts rk1j and rk2j such that
∑k−1

i=1 r
i
j + rk1j = �2. Then schedule

r1j , . . . , r
k−1
j , rk1j on σ2 and rk2j , rk+1

j , . . . , r
v j
j on σ1. (see Fig. 2b, where

R1
j = {r2j , . . . , rk−1

j } and R1
j = {rk+1

j , . . . , r
v j
j }.)

2.2 If r1j > �2, partition r1j into two parts r11j and r12j such that r11j = �2. Then

schedule r11j on σ2 in the time interval [l1j−1 + Mj
1+s ,

1+s−αs
1+s Pj] and r12j on σ1

in the time interval [1+s−αs
1+s Pj ,

1+s−αs
1+s Pj + r

12
j
s], and the leftover on σ1 as

early as possible (see Fig. 2c, Where R1
j

⋃
R2
j = R j\{r1j } and R1

j = r11j).

123

Optimal online algorithms for MapReduce scheduling on two… 1669

(a) (b)

(c) (d)

Fig. 2 Assignment of job J j by procedure P

3. If s�1 ≤ r1j , schedule all the map tasks on the two machines evenly, the largest

reduce task r1j on σ1, and the leftover of the reduce tasks on σ2 (see Fig. 2d).

Algorithm A1

1. Let l10 = l20 = 0 and invoke procedure P(M1, R1) for the first job J1.
2. For every job J j , 2 ≤ j ≤ n, denote�1 = 1+s−αs

1+s Pj −l2j−1,�2 = α
1+s Pj −l2j−1,

�3 = 1+s−αs
1+s Pj − l1j−1, and �4 = α

1+s Pj − l1j−1. Clearly, �1 < �2 and �3 < �4.

If Mj ≤ l1j−1 − l2j−1, go to Step 3; otherwise, go to Step 4.

3. For Mj ≤ l1j−1 − l2j−1.

3.1 If Mj + R j ≤ �1, schedule all the map tasks and reduce tasks on σ2.
3.2 If Mj + r1j ≤ �1 < Mj + R j , schedule all the map tasks on σ2. For the

reduce tasks:
(a) If r1j ≤ �3, schedule r1j on σ2 in the time interval [l1j−1, l

1
j−1 + r1j], and

the leftover on σ2 in the time intervals [l2j−1 + Mj , l1j−1] and [l1j−1 +
r1j ,

1+s−αs
1+s Pj], and on σ1 in the time interval [l1j−1,

α
1+s Pj] (see Fig. 3).

(b) If r1j > �3, schedule r1j on σ2 in the time interval [1+s−αs
1+s Pj −

r1j ,
1+s−αs
1+s Pj], and the leftover on σ2 in the time intervals [l2j−1 +

Mj ,
1+s−αs
1+s Pj − r1j] and on σ1 in the time interval [l1j−1,

α
1+s Pj] (see

Fig. 4).
3.3 If Mj + r1j > �1, schedule all the map tasks on σ2. For the reduce tasks:

(a) If
r1j
s ≤ �3, partition r1j into twoparts r

11
j and r12j such that r11j + r

12
j
s = �3.

Then schedule r11j on σ2 in the time interval [l1j−1, l
1
j−1+r11j] and r12j on

σ1 in the time interval[l1j−1 + r11j , 1+s−αs
1+s Pj], and the leftover on σ2 in

123

1670 Y. Jian et al.

Fig. 3 Step 3.2(a)

Fig. 4 Step 3.2(b)

the time intervals [l2j−1 + Mj , l1j−1] and [l1j−1 + r11j , 1+s−αs
1+s Pj], and on

σ1 in the time intervals [l1j−1, l
1
j−1 + r11j] and [1+s−αs

1+s Pj ,
α

1+s Pj] (see
Fig. 6a).

(b) If �3 <
r1j
s ≤ �4, schedule r1j on σ1 in the time interval [l1j−1, l

1
j−1+ r1j

s],
and the leftover on σ2 in the time interval [l2j−1 + Mj ,

1+s−αs
1+s Pj] and

on σ1 in the time interval [l1j−1 + r1j
s , α

1+s Pj] (see Fig. 6b).
(c) If

r1j
s > �4, partition r1j into two parts r

11
j and r12j such that l1j−1 + r

12
j
s =

α
1+s Pj .

(1) If l2j−1 + Mj + r11j ≤ l1j−1, schedule r
11
j on σ2 in the time interval

[l1j−1 − r11j , l1j−1] and r12j on σ1 in the time interval [l1j−1,
α

1+s Pj],
and the leftover on σ2 in the time interval [l2j−1 + Mj , l1j−1 − r11j]
and [l1j−1,

1+s−αs
1+s Pj] [see Fig. 6(c1)].

(2) If l2j−1 + Mj + r11j > l1j−1, partition r1j into two parts r
1′
1
j and

r
1′
2
j such that l2j−1 + Mj + r

1′
1
j = l1j−1. Then schedule r

1′
1
j on σ2

in the time interval [l1j−1 − r11j , l1j−1], r
1′
2
j on σ1 in the time interval

[l1j−1, l
1
j−1+ r

1′2
j
s], and the leftover on σ2 at time l1j−1 [see Fig. 6(c2)].

4. For Mj > l1j−1 − l2j−1

4.1 If Mj + R j ≤ �2, schedule the portion M1
j = �1 of Mj on σ2, and the

leftover of the map tasks M2
j and all the reduce tasks on σ1 (see Fig. 5).

4.2 If Mj + R j > �2, schedule the portion M1
j = l1j−1 − l2j−1 of the map tasks

such that l2j−2 + M1
j = l1j−1 and denote the remainder of the map tasks as

M ′
j = Mj\M1

j . Invoke procedure P(M ′
j , R j) for the job J ′

j = {M ′
j , R j }.

123

Optimal online algorithms for MapReduce scheduling on two… 1671

Fig. 5 Step 4.1

Remark By the rules of procedure P and algorithm A1, we always have l1j ≥ α
1+s−αs l

2
j

after scheduling any job J j . Specifically,

(i) l1j = α
1+s−αs l

2
j after Steps 1 and 2 in procedure P , and Steps 3.2, 3.3(a), 3.3(b),

3.3(c1), and 4.1 in algorithm A1.
(ii) l1j > α

1+s−αs l
2
j after Step 3 in procedure P , and Steps 3.1 and 3.3(c2) in algorithm

A1.

In addition to obtaining the desired competitive ratio, we have to consider the feasi-
bility of the resulting schedule. The assignment of the map tasks is obviously feasible
because it is fractional and can be scheduled arbitrarily. To ensure the feasibility of the
reduce tasks, the algorithm must follow two rules. One is that the reduce tasks must
be processed after the map tasks and the other is that the time slots assigned to the
different parts of any preempted reduce task do not overlap.

Theorem 3.2 For any 1 ≤ j ≤ n, we have l1j ≥ α
1+s−αs l

2
j and

C
A1
j

C∗
j

≤ α.

Proof We use mathematical induction to prove the result.
First, we consider the case where j = 1, i.e., the assignment of the first job J1.

Note that l1j−1 = l2j−1 = 0, so the algorithm schedules job J1 by procedure P .

(i) If J j is scheduled by Step 1, the assignment of the job is obviously feasible as

shown in Fig. 2a. Noting that l1j−1 = l2j−1 = Pj−1
1+s and Pj = Mj + R j + Pj−1,

we have

l2j = l2j−1 + M1
j

1 + s
= l2j−1 + 1 + s − αs

1 + s

(

Mj + R j

− s(s + 1)(α − 1)

1 + s − αs
l2j−1

)

= 1 + s − αs

1 + s
Pj

and l1j = Pj − 1+s−αs
1+s Pj = α

1+s Pj . Thus, we have
C

A1
j

C∗
j

≤ α by Lemma 3.1.

(ii) If J j is scheduled by Step 2. It is easy to verify that l1j = α
1+s Pj and l2j =

1+s−αs
1+s Pj by the rule of the algorithm. If the reduce tasks are scheduled by Step

2.1, we only need to consider the assignment of the preempted task rkj . Since

rk2j ≤ rkj ≤ r1j by the assumption that r1j ≥ · · · ≥ r
v j
j , we have

r
k2
j
s ≤ r1j . This

123

1672 Y. Jian et al.

means that the start time of rk1j is not earlier than the finish time of rk2j as shown

in Fig. 2b. Thus the time slots assigned to rk1j and rk2j do not overlap. On the other
hand, if the reduce tasks are scheduled by Step 2.2, the assignment of the reduce
tasks is obviously feasible as shown in Fig. 2c. Thus, the desired result holds.

(iii) If J j is scheduled by Step 3, feasibility is trivial. From the rule of the algorithm

as shown in Fig. 2d and l1j−1 = 0, we haveCA1
j = l1j = l1j−1+ Mj

1+s + r1j
s = Mj

1+s +
r1j
s = C∗

j . By the assumption that r1j ≥ s�1, we obtain r1j ≥ αs
1+s Pj − s

1+s M j . It

follows that l1j = Mj
1+s + r1j

s ≥ α
1+s Pj and l2j ≤ 1+s−αs

1+s Pj , i.e., l1j ≥ α
1+s−αs l

2
j .

Hence, the result holds when j = 1.
Suppose that the result is true for j − 1 (j ≥ 2), i.e., l1j−1 ≥ α

1+s−αs l
2
j−1 and

C
A1
j−1

C∗
j−1

≤ α. We consider the assignment of J j below.

(I) J j is scheduled by Step 3.1. Note that all the tasks are scheduled on σ1, so the
schedule is obviously feasible and we have l2j = l2j−1 +Mj + R j ≤ l2j−1 +�1 −
l2j−1 ≤ 1+s−αs

1+s Pj by the assumption that Mj + R j ≤ �1 = 1+s−αs
1+s Pj − l2j−1.

So we have l1j = l1j−1 ≥ α
1+s Pj , i.e., l1j ≥ α

1+s−αs l
2
j . It is clear that C

A1
j = CA1

j−1
and C∗

j ≥ C∗
j−1. Hence,

CA1
j

C∗
j

≤ CA1
j−1

C∗
j−1

≤ α.

(II) J j is scheduled by Step 3.2. We have l2j = l2j−1 + �1 = 1+s−αs
1+s Pj and l1j =

α
1+s Pj as shown in Figs. 2 and 3. If the job is scheduled by Step 3.2(a), we only

need to consider the assignment of the preempted task rkj . Since r
k2
j ≤ rkj ≤ r1j ,

we have
r
k2
j
s ≤ r1j , which implies that the start time of rk1j is not earlier than the

finish time of rk2j , as shown in Fig. 3. If the job is scheduled by Step 3.2(b), the
assignment of the job is obviously feasible as shown in Fig. 4.

(III) J j is scheduled by Steps 3.3(a), 3.3(b), or 3.3(c1). It is not hard to verify that
l1j = α

1+s Pj and l2j = 1+s−αs
1+s Pj by the rule of the algorithm as shown in

Fig. 6. If the job is scheduled by Step 3.3(a), as shown in Fig. 6a, the time slots
assigned to R1

j , R
2
j , R

3
j , and R4

j do not overlap. If the job is scheduled by Step

3.3(b), we see that the time slots assigned to R1
j and R2

j do not overlap because

the completion time of r1j is greater than 1+s−αs
1+s Pj . If the job is scheduled

by Step 3.3(c1), the assignment of the job is obviously feasible as shown in
Fig. 6(c1).

(IV) J j is scheduled by Step 3.3(c2). We have CA1
j = l1j−1 + r

1′2
j
s > α

1+s Pj as can

been seen in Fig. 6(c2) and C∗
j ≥ Mj

1+s + r1j
s by Lemma 2.1. Since l1j−1 =

l2j−1 + Mj + r
1′
1
j ,

123

Optimal online algorithms for MapReduce scheduling on two… 1673

(a) (b)

(c1) (c2)

Fig. 6 Step 3.3

Pj = Mj + R j + sl1j−1 + l2j−1 ≥ Mj + r
1′
1
j + r

1′
2
j + sl1j−1 + l2j−1

= (s + 1)l1j−1 + r
1′
2
j .

Thus,

r
1′
2
j

s
>

(α − 1)s(s + 1)

1 + s − αs
l1j−1.

With the induction assumption that l2j−1 ≤ 1+s−αs
α

l1j−1, we have

CA1
j

C∗
j

≤ l1j−1 + r
1′2
j
s

M j
1+s + r1j

s

≤ l1j−1 + r
1′2
j
s

l1j−1−l2j−1
1+s + r

1′2
j
s + r

1′1
j
s − r

1′1
j

1+s

<
l1j−1 + r

1′2
j
s

l1j−1−l2j−1
1+s + r

1′2
j
s

≤ l1j−1 + (α−1)(s+1)
1+s−αs l1j−1

(1− 1+s−αs
α

)l1j−1
1+s + (α−1)(s+1)

1+s−αs l1j−1

= α.

Finally, we have l1j ≥ α
1+s−αs l

2
j from the fact that l1j > α

1+s Pj and l2j < 1+s−αs
1+s Pj .

(V) J j is scheduled by Step 4.1, feasibility is trivial. We have l2j = l2j−1 + �1 =
1+s−αs
1+s Pj and l1j = α

1+s Pj as shown in Fig. 6. Thus, the result is true.
(VI) J j is scheduled by Step 4.2. From the algorithm, we see that the loads of the

two machines are the same after scheduling the portion M1
j = l1j−1− l2j−1. Then

the leftover J ′
j = {M ′

j , R j } is scheduled by procedure P . If J ′
j is scheduled

123

1674 Y. Jian et al.

by Step 1 (or Step 2) in procedure P , then we obtain the desired result by the
same discussion in (i) [or (ii)]. So we only need to consider the case where J ′

j
is scheduled by Step 3.

It is easy to obtain that CA1
j = l1j−1 + M ′

j
1+s + r1j

s > α
1+s Pj by the assumption that

r1j ≥ s�1 and C∗
j ≥ Mj

1+s + r1j
s by Lemma 2.1. Since M1

j = l1j−1 − l2j−1, we have

Pj = M1
j + M ′

j + R j + sl1j−1 + l2j−1 ≥ r1j + (s + 1)l1j−1.

So we obtain

r1j ≥ (α − 1)s(s + 1)

1 + s − αs
l1j−1 >

(α − 1)s(s + 1)

1 + s − αs
l1j−1.

By the induction assumption that l2j−1 ≤ 1+s−αs
α

l1j−1, we have

CA1
j

C∗
j

≤ l1j−1 + M ′
j

1+s + r1j
s

M1
j

1+s + M ′
j

1+s + r1j
s

≤ l1j−1 + r1j
s

l1j−1−l2j−1
1+s + r1j

s

≤ l1j−1 + (α−1)(s+1)
1+s−αs l1j−1

(1− 1+s−αs
α

)l1j−1
1+s + (α−1)(s+1)

1+s−αs l1j−1

= α.

Clearly, we have l1j ≥ α
1+s−αs l

2
j in this case.

In sum,we conclude that the result holds for any j ≥ 2 and the proof is complete. �	

4 An optimal online algorithm for the non-preemptive variant

In this sectionweprovide anoptimal online algorithm A2 for the variantQ2|M(frac)R,

onine|Cmax. The main idea of the algorithm is to schedule the map tasks as early as
possible and then schedule all the reduce tasks by the List Scheduling (LS) rule.

Algorithm A2

1. For every job J j , 1 ≤ j ≤ n, schedule the map tasks as early as possible.
2. Schedule the reduce tasks by the LS rule.
3. Output the schedule.

Theorem 4.1 For the variant Q2|M(frac)R, online|Cmax, the competitive ratio of
algorithm A2 is

γ =
{

2s+1
s+1 , if s < 1+√

5
2 ;

s+1
s , if s ≥ 1+√

5
2

.

Proof The proof is similar to that for the problem Q2|online|Cmax. Let r be the last
finished reduce task and L j be the completion time of themachineσi before scheduling
the reduce task r , i = 1, 2. By the rule of Algorithm A2, we have

123

Optimal online algorithms for MapReduce scheduling on two… 1675

CA2 = min
{
L1 + r

s
, L2 + r

}
. (6)

It is clear that

Pn = sL1 + L2 + r ≤ (1 + s)C∗ (7)

and

r

s
≤ C∗. (8)

From (6), we have CA2 ≤ L1 + r
s and CA2 ≤ L2 + r . Combining with (7) and (8),

we get

(s + 1)CA2 − r ≤ (s + 1)C∗.

Thus, we have CA2

C∗ ≤ 2s+1
s+1 .

By CA2 ≤ L1 + r
s and (7), we have

CA2 ≤ sL1 + r

s
≤ sL1 + L2 + r

s
≤ (1 + s)C∗

s

so CA2

C∗ ≤ s+1
s .

Hence,

CA2

C∗ ≤ min

{
2s + 1

s + 1
,
s + 1

s

}

=
{

2s+1
s+1 , if s < 1+√

5
2 ;

s+1
s , if s ≥ 1+√

5
2 . �	

From the proof and the result, we conclude that the problem Q2|M(frac)R,

online|Cmax is not harder than the classical problem Q2|online|Cmax.

5 Conclusion

In this paper we study online MapReduce scheduling on two uniform machines to
minimize the makespan. Under the assumption that the map tasks are fractional,
we consider the cases involving preemptive and non-preemptive reduce tasks. For
both variants, we derive lower bounds and optimal online algorithms. We find that
the preemptive variant is more complicated than the classical preemptive problem
Q2|pmtn, online|Cmax, while the non-preemptive variant is the same as complicated
as the classical problem Q2|online|Cmax. Possible future research directions include
studying the general case with m ≥ 3 machines and online algorithms with partial
information.

123

1676 Y. Jian et al.

Acknowledgements Jiang was supported in part by the National Natural Science Foundation of China
(Grant No. 11571013). Cheng was supported in part by The Hong Kong Polytechnic University under the
Fung Yiu King—Wing Hang Bank Endowed Professorship in Business Administration. Ji was supported
in part by Zhejiang Provincial Natural Science Foundation of China (Grant No. LR15G010001).

References

1. Chang, H., Kodialam, M., Kompella, R.R., Lakshman, T.V.: Scheduling in MapReduce-like systems
for fast completion time. In: Proceedings of INFOCOM’14, pp. 3074–3082 (2015)

2. Chen,C.,Xu,Y., Zhu,Y., Sun,C.:OnlineMapReduce scheduling problemofminimizing themakespan.
J. Comb. Optim. 33(2), 590–608 (2017)

3. Dean, J., Ghemawat, S.: MapReduce: simplified data processing on large clusters. Proc. Oper. Syst.
Des. Implement. 51(1), 107–113 (2004)

4. Epstein, L., Noga, J., Seiden, S., Sgall, J., Woeginger, G.: Randomized on-line scheduling on two
uniform machines. J. Sched. 4, 71–92 (2001)

5. Huang, J., Zheng, F., Xu,Y., Liu,M.:OnlineMapReduce processing on two identical parallelmachines.
J. Combin. Optim. 35(1), 216–223 (2018)

6. Jiang, Y., Zhu, Y., Wu, W., Li, D.: Makespan minimization for MapReduce systems with different
servers. Future Gener. Comput. Syst. 67, 13–21 (2017)

7. Jiang, Y., Zhou, W., Zhou, P.: An optimal preemptive algorithm for online MapReduce scheduling on
two parallel machines. Asia-Pac. J. Oper. Res. 35(3), 1850013 (2018)

8. Luo, T., Zhu, Y., Wu, W., Xu, Y., Du, D.: Online makespan minimization in MapReduce-like systems
with complex reduce tasks. Optim. Lett. 11, 271–277 (2017)

9. Le, Y., Liu, J., Ergun, F., Wang, D.: Online load balancing for MapReduce with skewed data input. In:
Proceeding of INFOCOM’14, pp. 2004–2012 (2014)

10. Moseley, B., Dasgupta, A., Kumar, R., Sarlós, T.: On scheduling in Map-Reduce and flowshops.
In: Proceedings of the Twenty-Third Annual ACM Symposium on Parallelism in Algorithms and
Architectures, pp. 289–298 (2011)

11. Wen, J., Du, D.: Preemptive on-line scheduling for two uniform processors. Oper. Res. Lett. 23, 113–
116 (1998)

12. Zheng, Y., Shroff, N.B., Sinha, P.: A new analytical technique for designing provably efficient MapRe-
duce schedulers. In: Proceeding of INFOCOM’13, pp. 1600–1608 (2013)

13. Zhu, Y., Jiang, Y., Wu, W., Ding, L., Teredesai, A., Li, D., Lee, W.: Minimizing makespan and total
completion time in MapReduce-like systems. In: Proceeding of INFOCOM’14, pp. 2166–2174 (2014)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

123

	Optimal online algorithms for MapReduce scheduling on two uniform machines
	Abstract
	1 Introduction
	2 Lower bounds
	3 An optimal on-line algorithm for the preemptive variant
	4 An optimal online algorithm for the non-preemptive variant
	5 Conclusion
	Acknowledgements
	References

