
Optim Lett (2018) 12:1699–1712
https://doi.org/10.1007/s11590-017-1228-4

ORIGINAL PAPER

Improved scheme for selection of potentially optimal
hyper-rectangles in DIRECT

Linas Stripinis1 · Remigijus Paulavičius1 ·
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Abstract We consider a box-constrained global optimization problem with a
Lipschitz-continuous objective function and an unknown Lipschitz constant. The well
known derivative-free global-search DIRECT (DIvide a hyper-RECTangle) algorithm
performs well solving such problems. However, the efficiency of the DIRECT algo-
rithmdeteriorates on problemswithmany local optima andwhen the solutionwith high
accuracy is required. To overcome these difficulties different regimes of global and
local search are introduced or the algorithm is combinedwith local optimization. In this
paper we investigate a different direction of improvement of the DIRECT algorithm
and propose a new strategy for the selection of potentially optimal rectangles, what
does not require any additional parameters or local search subroutines. An extensive
experimental investigation reveals the effectiveness of the proposed enhancements.
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1 Introduction

In this paper we consider a box-constrained global optimization problem of the form

min
x∈D f (x) (1)

where f : Rn → R denotes the objective function and the feasible region is an n-
dimensional hyper-rectangle D = [a, b] = {x ∈ R

n : a j ≤ x j ≤ b j , j = 1, . . . , n}.
We also assume, that the objective function f (x) is Lipschitz-continuous, but can
be non-linear, non-differentiable, non-convex, and multi-modal. DIRECT is a popular
partitioning-based Lipschitz optimization [8,20,21,23,25,26,33] algorithm extending
ideas of Piyavskii [27] (independently rediscovered also by Shubert [32]) algo-
rithm to multidimensional derivative-free optimization. The DIRECT algorithm [9]
seeks a global optimum by partitioning potentially optimal (the most promising)
hyper-rectangles and evaluating the objective function at the centers of these hyper-
rectangles. Simplicity and efficiency of the DIRECT algorithm attracted considerable
research interest. Although most of DIRECT-type algorithms use hyper-rectangular
partitions [6,11,13–15], simplicial partitions (DISIMPL algorithm) [19,22,23] have
several advantages [24]. Central sampling of the objective function can be changed
to diagonal approach sampling at the endpoints of diagonal [10,29–31]. A trisection
of hyper-rectangles is usually used to reuse the objective function values at the center
or endpoints of diagonals in descendant subregions. However, a bisection can ensure
better shapes of hyper-rectangleswith a smaller variety of sizes in different dimensions
than trisection which produces sizes differing by three times, but a specific sampling
strategy is necessary to enable the reuse of sample points [18].

The original DIRECT algorithm has two main weaknesses [12,16,19,29]. First,
on problems with many local minima, DIRECT sometimes spends an excessive num-
ber of function evaluations exploring suboptimal local minima, thereby delaying the
discovery of the global minimum. To address this issue, a two-phase globally-biased
techniquewas proposed [19,29]. Second,DIRECTusually gets close to the global opti-
mum quickly, but it can be slow to converge with a high accuracy. To overcome the
latter issue, a two-phase locally-biased technique [13] or hybrid versions of DIRECT-
type algorithms enriched with the use of local searches [14,16] can be employed. In
this paper, we propose an alternative strategy to overcome both drawbacks without the
need to use local solvers or use two-phase scheme which requires the introduction of
new parameters.

The rest of the paper is organized as follows. In Sect. 2, we review existing ways
for the selection of potentially optimal hyper-rectangles used in various DIRECT-
type approaches. In Sect. 3, we describe a new strategy for the selection of the most
promising hyper-rectangles,which addresses bothmentionedweaknesses of DIRECT.
Descriptionof the newDIRECT-GL algorithm is given inSect. 4. The results of numer-
ical investigation with 54 Hedar test problems [7] using four different convergence
tolerances (in total 216 variants) is discussed in Sect. 5. Finally, we conclude the paper
in Sect. 6.
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2 The selection of the most promising hyper-rectangles

The essential step in DIRECT-type algorithms is identification of potentially optimal
(the most promising) hyper-rectangles of the current partition, which at the iteration
k is defined as

Pk = {Di
k : i ∈ Ik},

where Di
k = [ai , bi ] = {x ∈ R

n : 0 ≤ aij ≤ x j ≤ bij ≤ 1, j = 1, . . . , n,∀i ∈ Ik}
and Ik is the index set identifying the current partition Pk . The next partition Pk+1
is obtained after the subdivision of the selected potentially optimal hyper-rectangles
from the current partition Pk .

2.1 Potentially optimal hyper-rectangles in the original DIRECT algorithm

To make the selection of potentially optimal hyper-rectangles in the future iterations,
DIRECT assesses the goodness based on the lower bound estimates for the objective
function f (x) over each hyper-rectangle Di

k . The requirement of potential optimality
is stated formally in Definition 1.

Definition 1 (Potentially optimal hyper-rectangle) Let ci denote the center sampling
point and δi be a measure (distance, size) of the hyper-rectangle Di

k . Let ε > 0 be a
positive constant and fmin be the best currently known value of the objective function.
A hyper-rectangle D j

k , j ∈ Ik is said to be potentially optimal if there exists some
rate-of-change (Lipschitz) constant L̃ > 0 such that

f (c j ) − L̃δ j ≤ f (ci ) − L̃δi , ∀i ∈ Ik, (2)

f (c j ) − L̃δ j ≤ fmin − ε| fmin|, (3)

where the measure of the hyper-rectangle is

δi = 1

2
‖bi − ai‖2. (4)

The hyper-rectangle D j
k is potentially optimal if the lower Lipschitz bound for the

objective function computed by the left-hand side of (2) is the smallest one with some
positive constant L̃ among the hyper-rectangles of the current partition Pk . In (3) the
parameter ε is used to protect from an excessive refinement of the local minima [9,19].

2.2 Selection of the most promising hyper-rectangles in other DIRECT-type
algorithms

In the original DIRECT algorithm, the size of a hyper-rectangle is measured by the
Euclidean distance from its center to a corner or equivalently by a half length of a
diagonal (see (4)). In DIRECT-l [6], the measure of a hyper-rectangle is instead
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evaluated by the length of its longest side. Such a measure corresponds to the L∞-
norm and allows the DIRECT-l algorithm to group more hyper-rectangles with the
same measure. Thus, there are fewer distinct measures and therefore, less potentially
optimal hyper-rectangles are selected. Moreover, in DIRECT-l at most one hyper-
rectangle from each group is selected, even if there are more than one potentially
optimal hyper-rectangle in the same group. This allows reduction of the number of
divisions within a group. The results presented in [6] and extended in [19] suggest
that DIRECT-l performs well for lower dimensional problems, which do not have
too many local and global minima.

The main principle of an aggressive version of DIRECT [1] is to select and divide a
hyper-rectangle of everymeasure (δi ) in each iteration. The aggressive version requires
many more function evaluations than the other versions of DIRECT since the criteria
for choosing hyper-rectangles to be divided have been relaxed. Although this approach
does not appear to be favorable for simple test problems, more difficult problems may
be easier solved by this strategy on a large parallel supercomputer [1].

In the PLOR algorithm [17], the set of all Lipschitz constants (herewith the set
of potentially optimal hyper-rectangles) is reduced to just two: the maximal and the
minimal ones. In such a way the PLOR approach is independent of any user-defined
parameters and balances equally local and global search during the optimization pro-
cess.

A two-phase globally [19,29] and locally-biased [13] algorithms at one of the
phases work in the same as the original DIRECT algorithm, i.e., during the selection
procedure considers all hyper-rectangles from the current partition. However, in the
second phase, they limit the selection of potentially optimal hyper-rectangles based
on their measures. The globally-biased versions constrain themselves to the larger
subregions (primary addressing the first weakness), while the locally-biased version
constrains itself to the smaller ones and in such a way addresses the second weakness
of DIRECT-type algorithms.

3 Extended set of potentially optimal hyper-rectangles

In this section, we present a newway to identify the extended set of potentially optimal
hyper-rectangles. Using a new two-step based strategy, we enlarge the set of the best
hyper-rectangles by adding more medium-measured hyper-rectangles with the small-
est function value at their centers and additionally, closest to the current minimum
point. The first extension forces the algorithm to work more globally (compared to
the selection procedure used in DIRECT), while the second part assures faster and
broader examination around the current minimum point. In such way, we address both
weaknesses of DIRECT staying in the same algorithmic framework. Let’s state it
formally.

Let Lk be the set of all different indices at the current partition Pk , corresponding
to the groups of hyper-rectangles having the same measure (δk). The minimum value
lmin
k ∈ Lk corresponds to the group of hyper-rectangles having the smallest measure
δmin
k . The maximum value lmax

k of Lk corresponds to the group of hyper-rectangles
having the largest measures δmax

k , i. e., lmax
k = max{Lk} < ∞. Finally, let lik ∈ Lk be
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the index of the group the hyper-rectangle Di
k belongs to. Having this, in Definitions 2

and 3 we formalize new strategies for identification of an extended set of potentially
optimal hyper-rectangles from the current partition Pk .

Definition 2 (Enhancing the global search)

– Step 1 Find an index j ∈ Ik and a corresponding hyper-rectangle D j
k , such that

D j
k = argmax

j

⎧
⎨

⎩
l jk : j = argmin

i∈Ik : lmin
k ≤lik≤lmax

k

{ f (ci )}
⎫
⎬

⎭
. (5)

– Step 2 Set lmin
k = l jk + 1. If l jk ≤ lmax

k repeat from Step 1; otherwise terminate.

At Step 1, the hyper-rectangle containing the minimum point (xmin) is selected. If
there are several hyper-rectangles with the same lowest objective value f (ci ), the
preference is given to hyper-rectangles with the largest l jk value, i.e., a bigger size

measure. After this, in Step 2, the minimum value lmin
k = l jk + 1 is increased; thus all

hyper-rectangles from the groups with indices lower than the updated lmin
k (measures

of these hyper-rectangles belonging to these groups are smaller than themeasure of the
lmin
k group) are not considered in the recurrent Step 1. A geometrical interpretation and
comparison of the originalDIRECT and the globally enhanced (let us callDIRECT-G)
versions are shown in the left-hand side and middle graphs in Fig. 1. By this strategy,
we extend the number of medium-measured potentially optimal hyper-rectangles and
force DIRECT-G to work more globally. Let us stress, that opposed to the aggressive
DIRECT version, by Definition 2 DIRECT-Gwill not consider hyper-rectangles from
the groupswhere theminimumfunction value is larger compared to theminimumvalue
from the larger groups.

Definition 3 (Enhancing the local search)

– Step 1 At each iteration k, evaluate the Euclidean distance from the current mini-
mum point (xmin) to other sampled points:

d(xmin, ci ) =
√
√
√
√

n∑

j=1

(xmin
j − cij )

2 (6)

– Step 2 Apply the procedure described in Definition 2 in (5) using distances
d(xmin, ci ) instead of objective function values.

A geometrical interpretation of the selection of potentially optimal hyper-rectangles
using the locally enhanced strategy is shown on the right-hand side of Fig. 1. By this
strategy, we extend the number of potentially optimal hyper-rectangles locating close
to the current minimum point (xmin). Moreover, by this strategy, we select the closest
hyper-rectangles from various measures.
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Fig. 1 Geometric interpretation of the selection of potentially optimal hyper-rectangles by using DIRECT
(on the left-hand side), DIRECT-G (middle), and the locally enhanced strategy (on the right-hand side) on
the Shekel 5 test problem in the fifth iteration of corresponding algorithms/strategies

4 DIRECT-GL algorithm

In this section, we introduce a new DIRECT-type algorithm (let us call DIRECT-GL).
The key feature of DIRECT-GL is that DIRECT-GL performs the identification of
potentially-optimal hyper-rectangles twice in every iteration. First, by using Defini-
tion 2 the globally enhanced set of potentially optimal candidates is determined and
fully processed (sampled and partitioned). Second, by using Definition 3 the locally
enhanced set is identified and fully processed (sampled and partitioned) again. Thus,
our new approach is based on “Divide the best” strategy [28] and it has the everywhere-
dense type of convergence (like other DIRECT-type algorithms [4,9,18,19,29]). This
follows from the fact that, that using Definitions 2 and 3, DIRECT-GL always selects
for partitioning hyper-rectangles from the group (lmax

k ) with the largest measure
δmax
k . Since each group contains only a finite number of hyper-rectangles, after a
sufficient number of iterations, all hyper-rectangles will be partitioned. Such a pro-
cedure will be repeated with a new group of the largest hyper-rectangles and so on
until the largest hyper-rectangles will have the measure smaller than the required
tolerance ε.

The complete description of the DIRECT-GL algorithm is shown in Algorithm 1.
The input for the algorithm is one (or few) stopping criteria: required tolerance (εpe),
the maximal number of function evaluations (Mmax) and the maximal number of
DIRECT-GL iterations (Kmax). After termination, DIRECT-GL returns the found
objective value fmin and the solution point xmin together with algorithmic performance
measures: final tolerance—percent error (pe), the number of function evaluations (m),
and the number of iterations (k).
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input : εpe, Mmax, Kmax;
output: fmin, xmin;

1 Initialize k = 1, m = 1, Ik = {1}, fmin = f (c1), xmin = c1;
2 while pe > εpe and m < Mmax and k < Kmax do // pe defined in Eq. (7)
3 Identify the index set J1k ⊆ Ik of potentially optimal hyper-rectangles using Definition 2;

4 Set xmin
old = xmin;

5 foreach i ∈ J
1
k do

6 Subdivide (trisect) hyper-rectangle Di
k and update Ik;

7 Evaluate f at the centers of the new hyper-rectangles;

8 Update fmin, xmin, pe and m;
9 end

10 if xmin 	= xmin
old then

11 Calculate distances d(xmin, ci), i ∈ Ik to all sampled points; // using Eq. (6)

12 Set xmin
old = xmin;

13 else
14 Calculate distances d(xmin, ci) to newly sampled points;
15 end
16 Identify the index set J2k ⊆ Ik of potentially optimal hyper-rectangles using Definition 3;

17 foreach i ∈ J
2
k do

18 Subdivide (trisect) hyper-rectangle Di
k and update Ik;

19 Evaluate f at the centers of the new hyper-rectangles;

20 Update fmin, xmin, pe and m;
21 end
22 Increase k = k + 1 and check if condition described in lines 10-15;
23 end
24 return fmin, xmin, pe, k, m;

Algorithm 1: Pseudo code of the DIRECT-GL algorithm

5 Numerical investigation

The introduced DIRECT-G and DIRECT-GL as well as the original DIRECT algo-
rithm (Finkel’s implementation [3]) were implemented in the MATLAB programming
language. Note, that for the DIRECT algorithm potentially optimal hyper-rectangles
can be identified in at least two different ways: using modified Graham’s scan
algorithm [2] or the rule described by Lemma 2.3 in [5]. Usually this does not
impose significant differences, but occasionally it can have, e.g., when a higher pre-
cision is required. The selection procedure of potentially optimal hyper-rectangles in
DIRECT-GL differs significantly, however, this does not have a notable difference to
the overall performance, compared with the procedure used in DIRECT. This means,
that for the identification of the same quantity of potentially optimal hyper-rectangles
DIRECT and DIRECT-GL spent a similar amount of time.

We compare the efficiency of the algorithms on the Hedar test set [7], which consist
of 27 global optimization test functions. Some of test problems have several variants,
e.g., Bohachevsky, Hartman, Shekel, and some of them can be tested for different
dimensionality. In Table 1 we report main features of these problems: problem number
(No.), name, dimensionality (n), feasible region (D), the number of local minima (if
known), and the known minimum ( f ∗). Whenever the global minimum point lies at
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Table 1 Key characteristics of the Hedar test problems

Problem no. Problem name Dimension n Feasible region D No. of local
minima

Optimum f ∗

1, 2, 3 Ackley* 2, 5, 10 [− 15, 35]n Multimodal 0.0

4 Beale 2 [− 4.5, 4.5]2 Multimodal 0.0

5 Bohachevsky 1* 2 [− 100, 110]2 Multimodal 0.0

6 Bohachevsky 2* 2 [− 100, 110]2 Multimodal 0.0

7 Bohachevsky 3* 2 [− 100, 110]2 Multimodal 0.0

8 Booth 2 [− 10, 10]2 Unimodal 0.0

9 Branin 2 [− 5, 10] × [10, 15] 3 0.39789

10 Colville 4 [− 10, 10]4 Multimodal 0.0

11, 12, 13 Dixon & price 2, 5, 10 [− 10, 10]n Unimodal 0.0

14 Easom 2 [− 100, 100]2 Multimodal − 1.0

15 Goldstein & Price 2 [− 2, 2]2 4 3.0

16 Griewank* 2 [− 600, 700]2 Multimodal 0.0

17 Hartman 3 [0, 1]3 4 − 3.86278

18 Hartman 6 [0, 1]6 4 − 3.32237

19 Hump 2 [− 5, 5]2 6 − 1.03163

20, 21, 22 Levy 2, 5, 10 [− 10, 10]n Multimodal 0.0

23 Matyas* 2 [− 10, 15]2 Unimodal 0.0

24 Michalewicz 2 [0, π ]2 2! − 1.80130

25 Michalewicz 5 [0, π ]5 5! − 4.68765

26 Michalewicz 10 [0, π ]10 10! − 9.66015

27 Perm 4 [− 4, 4]4 Multimodal 0.0

28, 29 Powell 4, 8 [− 4, 5]n Multimodal 0.0

30 Power Sum 4 [0, 4]4 Multimodal 0.0

31, 32, 33 Rastrigin* 2, 5, 10 [− 5.12, 6.12]n Multimodal 0.0

34, 35, 36 Rosenbrock 2, 5, 10 [− 5, 10]n Unimodal 0.0

37, 38, 39 Schwefel 2, 5, 10 [− 500, 500]n Unimodal 0.0

40 Shekel, m = 5 4 [0, 10]4 5 − 10.15320

41 Shekel, m = 7 4 [0, 10]4 7 − 10.40294

42 Shekel, m = 10 4 [0, 10]4 10 − 10.53641

43 Shubert 2 [− 10, 10]2 760 − 186.73091

44, 45, 46 Sphere* 2, 5, 10 [− 5.12, 6.12]n Multimodal 0.0

47, 48, 49 Sum squares* 2, 5, 10 [− 10, 15]n Unimodal 0.0

50 Trid 6 [− 36, 36]6 Multimodal − 50.0

51 Trid 10 [− 100, 100]10 Multimodal − 210.0

52, 53, 54 Zakharov* 2, 5, 10 [− 5, 11]n Multimodal 0.0
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the initial sampling point for any tested algorithm the feasible region was modified
(increased). These modified problems are marked with the star sign *.

Note, that the most of test problems from the Hedar test set are multimodal, there-
fore suitable to investigate how introduced modifications help to overcome the first
weakness. Since all the global minima f ∗ are known for all Hedar test problems in
advance, investigated algorithms were stopped either when the point x̄ was generated
such that the percent error

pe = 100% ×
{

f (x̄)− f ∗
| f ∗| , f ∗ 	= 0,

f (x̄), f ∗ = 0,
(7)

is smaller than the tolerance value εpe, or when the number of function evaluations
exceeds the prescribed limit of 106. In our investigation, four different values for εpe
were considered: 10−2, 10−4, 10−6, 10−8. By doing this, we investigate algorithm’s
ability to avoid the second weakness. The comparison is based on the number of
function evaluations and the best (smallest) number for each problem is shown in bold
font.

The results of experiments are given in Table 2. First, observe that DIRECT-G
and DIRECT-GL perform on average much better (see Overall row in Table 2) com-
pared to DIRECT. Especially this is evident when a lower percentage error (pe)
(higher accuracy) is sought. Observe, that original DIRECT on average performs bet-
ter only for simpler (unimodal) test problems (see Unimodal row in Table 2). That
is mainly because the set of potentially optimal hyper-rectangles in DIRECT-G and
DIRECT-GL is larger per iteration. Consequently, a greater number of function eval-
uations is needed.

For small dimensional problems (see n ≤ 3 row in Table 2), DIRECT requires on
average from 4.5 times (when εpe = 10−2) to 175 times more function evaluations
(when εpe = 10−8) compared to DIRECT-GL. Observe, that DIRECT-G performed
worst with εpe = 10−2 and εpe = 10−4. Again, for most of these problems DIRECT
was able to converge after a small number of iterations. Therefore, by extending the set
of potentially optimal hyper-rectangles only globally enhanced (DIRECT-G) is not
very efficient for low-dimensional problems. However, when εpe = 10−6 and εpe =
10−8 was used, DIRECT-G performed significantly better compared to DIRECT.

For higher dimensional (see n ≥ 4 row in Table 2) and multimodal problems (see
Multimodal row in Table 2) both introduced versions performed significantly better
compared to DIRECT, and the best results were obtained using DIRECT-GL. Finally,
in total DIRECT failed (see Failed row in Table 2) for 30.1% (65/216) cases, most of
which when a lower percent error tolerance was required (10−6 and 10−8) and opti-
mization problemsweremore challenging.Meanwhile,DIRECT-G and DIRECT-GL
in total failed on 18.1% (39/216) and 9.2% (20/216) cases, accordingly.

6 Concluding remarks

In this paper, we introduced a new strategy for the selection of the extended set
of potentially optimal hyper-rectangles in the DIRECT-type algorithmic framework.
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Using the proposed approach two well-known weaknesses of DIRECT-type algo-
rithms were addressed. The experimental results confirmed the well-known fact that
while for simpler problems DIRECT performs well, for more challenging (higher
dimensional) andmultimodal problems the proposedmodified DIRECT-GL performs
significantly faster. Moreover, since the set of potentially optimal hyper-rectangles is
larger (compared to DIRECT), DIRECT-GL scheme looks promising for more effi-
cient parallelization too.
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17. Mockus, J., Paulavičius, R., Rusakevičius, D., Šešok, D., Žilinskas, J.: Application of reduced-set
Pareto–Lipschitzian optimization to truss optimization. J. Glob. Optim. 67(1–2), 425–450 (2017).
https://doi.org/10.1007/s10898-015-0364-6
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22. Paulavičius, R., Žilinskas, J.: Simplicial Lipschitz optimization without the Lipschitz constant. J. Glob.
Optim. 59(1), 23–40 (2013). https://doi.org/10.1007/s10898-013-0089-3
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