
Optim Lett (2018) 12:691–712
https://doi.org/10.1007/s11590-017-1227-5

ORIGINAL PAPER

On the Product Knapsack Problem

Claudia D’Ambrosio1 · Fabio Furini2 ·
Michele Monaci3 · Emiliano Traversi4

Received: 22 September 2016 / Accepted: 21 December 2017 / Published online: 3 January 2018
© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Abstract Given a set of items, each characterized by a profit and a weight, we study
the problem of maximizing the product of the profits of the selected items, while
respecting a given capacity. To the best of our knowledge this is the first manuscript
that studies this variant of the knapsack problem which we call Product Knapsack
Problem (PKP). We show that PKP is weakly NP-hard. We propose and implement a
Dynamic Programming algorithm and different Mixed Integer Linear and Nonlinear
Programming formulations for the PKP. Finally, we present an extensive computa-
tional study on a large set of benchmark instances derived from the literature.

Keywords Knapsack problem ·Dynamic programming ·Complexity ·Mixed integer
(non)linear programming

B Fabio Furini
fabio.furini@dauphine.fr

Claudia D’Ambrosio
dambrosio@lix.polytechnique.fr

Michele Monaci
michele.monaci@unibo.it

Emiliano Traversi
emiliano.traversi@univ-paris13.fr

1 LIX CNRS (UMR7161), École Polytechnique, Palaiseau, France

2 PSL, Université Paris Dauphine, LAMSADE, Paris, France

3 DEI, University of Bologna, Bologna, Italy

4 LIPN, Paris 13, Villetaneuse, France

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s11590-017-1227-5&domain=pdf
http://orcid.org/0000-0002-1839-5827

692 C. D’Ambrosio et al.

1 Introduction

In many selection problems, one is given a set N of items and is asked to determine a
subset of items S ⊆ N that maximizes a profit function f (S) under some operational
constraints. The most common problem in this family is the well-known Knapsack
Problem (KP), in which each item j has associated a weight w j (∀ j ∈ N) and the
capacity constraint imposes that the total weight of the selected items does not exceed a
given positive thresholdC . In addition, each item j has associated a profit p j (∀ j ∈ N)
and the objective function asks tomaximize the sum of the profits of the selected items,
i.e., f (S) = ∑

j∈S p j .
TheKP can bemodeled by the following Integer Linear Program (ILP) formulation:

max

⎧
⎨

⎩

∑

j∈N
p j x j :

∑

j∈N
w j x j ≤ C, x j ∈ {0, 1}, j ∈ N

⎫
⎬

⎭
,

where eachvariable x j takes value 1 if andonly if item j is inserted in the knapsack.The
KP is NP-hard, although in practice fairly large instances can be solved to optimality
within low running time. We note that one can assume, without loss of generality,
that profits and weights of all items are positive. The reader is referred to [14,16] for
comprehensive surveys on applications and variants of this problem.

Different profit functions f (S) have been studied in the literature but, surprisingly,
the natural variant which considers the product of the item profits has not received
much attention yet. Considering generic profits, i.e., the case in which each p j can
take either a positive or a negative value, the profit function studied in this paper is the
following:

f (S) =
∏

j∈S
p j . (1)

More precisely, (1) describes a profit function f (S) that assigns to each feasible set
of items S the product of the profits of the items in S. We can now formally define the
problem considered in this manuscript, i.e., the Product Knapsack problem (PKP), as
follows:

(PKP) input: A set N = {1, . . . , n} of items, the j-th item having a weight w j

and a profit p j , and a single knapsack with positive capacity C .

objective: Determine a subset of items S ⊆ N such that
∑

j∈S w j ≤ C and

∏
j∈S p j is maximized.

As usual in knapsack problems, we assume that the weight of each item j ∈ N
is not larger than the capacity C ; indeed, any item k with wk > C can be removed
from consideration as it cannot be inserted in any feasible solution. In the following
we will denote by N+ = { j ∈ N : p j > 0} and N− = { j ∈ N : p j < 0} the sets of
items with positive and negative profits, respectively. Without loss of generality, we
can assume that all profits are different from zero; indeed, including in the solution

123

On the Product Knapsack Problem 693

an item with null profit would yield a null profit, that we can obtain also by taking
no items. Moreover, we note that, without loss of generality, also items with profit in
(0, 1] can be excluded. Indeed, the only situation in which an optimal solution contains
an item, say k, with pk ∈ (0, 1] is the case in which all items have profit in (0, 1] and
k is the item with largest profit in N (the only item in the solution).

To the best of our knowledge this is the first paper that specifically addresses the
Product Knapsack Problem (PKP); for this reason, we first study the computational
complexity of the problem, and then propose effective exact methods to solve it.

Preprocessing of items with negative weights. In the following, we will further assume
that all items have a non-negative weight. We now show that this assumption can
be done without loss of generality. In particular, we will show that for any instance,
say I = (n, p, w,C), in which some items have negative weights, we can define an
equivalent instance, say Ĩ = (̃n, p̃, w̃, C̃), with only non-negative weights, whose
optimal solution allows to recover the optimal solution of the former instance. Our
transformation is based on the following trivial observation:

Observation 1 An optimal solution to PKP must include an even number of items
j ∈ N−.
Let us assume that items are sorted by non-decreasing weights, i.e., all items with
negative weight (if any) precede items with non-negative weight. Let n̄ and n̂ denote
the number of items with negative weight and the number of items that have both
negative weight and profit, respectively. For simplicity, we assume that n̂ is even;
later, we will show how to modify the transformation in case n̂ is odd.

Given an instance I with n̄ > 0, define a new instance Ĩ as follows: ñ = n,
C̃ = C − ∑

j≤n̄ w j , and

w̃ j =
{−w j if j ≤ n̄

w j otherwise,
p̃ j =

{
1
p j

if j ≤ n̄

p j otherwise.

The transformation above allows us to state the following result:

Proposition 1 Let S̃∗ be an optimal solution for instance Ĩ . Then, an optimal solution
S∗ for instance I can be computed as follows:

S∗ = { j ∈ S̃∗ : j > n̄} ∪ { j /∈ S̃∗ : j ≤ n̄}.
Proof First, we show that S∗ is a feasible solution. Indeed, we have

∑

j∈S∗
w j =

∑

j∈S̃∗
j>n̄

w j +
∑

j /∈S̃∗
j≤n̄

w j =
∑

j∈S̃∗
j>n̄

w̃ j +
∑

j /∈S̃∗
j≤n̄

w j −
∑

j∈S̃∗
j≤n̄

w j +
∑

j∈S̃∗
j≤n̄

w j =
∑

j∈S̃∗
w̃ j

+
∑

j≤n̄

w j ≤ C

where the last inequality derives from feasibility of solution S̃∗ with respect to capacity
C̃ .

123

694 C. D’Ambrosio et al.

Let us denote by z and z̃ the optimal solution values of instances I and Ĩ , respec-
tively. We have

z =
∏

j∈S∗
p j =

∏

j∈S̃∗
j>n̄

p j

∏

j /∈S̃∗
j≤n̄

p j =
∏

j∈S̃∗
j>n̄

p j

∏

j /∈S̃∗
j≤n̄

p j

∏

j∈S̃∗
j≤n̄

p j

∏

j∈S̃∗
j≤n̄

1

p j

=
∏

j∈S̃∗
j>n̄

p̃ j

∏

j≤n̄

p j

∏

j∈S̃∗
j≤n̄

p̃ j =
∏

j∈S̃∗
p̃ j

∏

j≤n̄

p j =
⎛

⎝
∏

j≤n̄

p j

⎞

⎠ z̃.

Since n̂ is even, z̃ is multiplied by a positive constant and, accordingly, the values of the
two solutions are proportional to each other. This implies that an optimal solution of
the first problem corresponds to an optimal solution of the second one, and vice-versa.

We conclude the proof showing the transformation in case n̂ is odd. In this case,
we define an additional item with index ñ = n + 1, profit p̃ñ = − M , and weight
w̃ñ = 0, where M is a large (positive) number. It is easy to see that, in this case, any
optimal solution includes both item ñ and an odd number of items from set N−. As
to the solution values, we have

∏

j∈S∗
p j = − 1

M

∏

j∈S̃∗
p̃ j

∏

j≤n̄

p j =
⎛

⎝− 1

M

∏

j≤n̄

p j

⎞

⎠ z̃

which concludes the proof. �	
Thus, we may assume, without loss of generality, that all weights are positive. In

addition, we will assume that all input data are integer numbers; fractions, if any, can
be handled by multiplying through a proper factor.

Other nonlinear variants of the Knapsack Problem.Different variants of the nonlinear
knapsack problem have been considered in the literature. For example, [9] proposed
heuristics for the generalmixed integer nonlinear knapsackproblemwhen the objective
function is separable. Another relevant variant is the Quadratic Knapsack Problem
(QKP). Given an item set S, the QKP profit function reads as

f (S) =
∑

j∈S
p j +

∑

i∈S

∑

j∈S,i< j

ai j (2)

and considers the pairwise interaction between couples of items. Observe that in this
case the ai j coefficients can take also negative values; thus, the maximum profit item
set may be nonmaximal with respect to inclusion, which is a main difference with
respect to KP.

QKP has been introduced in the eighties, see [11], and models many real-world
applications. Though its simple definition, it is one of the most challenging optimiza-
tion problems arising in practice, and it attracted a large amount of research. A survey

123

On the Product Knapsack Problem 695

on heuristics, reduction techniques, branch-and-bound algorithms, and approxima-
tion results is given in [18], where some QKP applications are also mentioned. The
interested reader is referred to [7,14,19] for further reading on the topic.

A further generalization of KP arises when considering the profit for item sets with
cardinality larger than two. In this case, one is given a family T that contains all item
sets with non-zero profit, and the profit for a given item set S ∈ T is defined as

f (S) =
∑

S′⊆S

g(S′) (3)

where g(S′) denotes the (possibly, negative) profit associated with each item set S′ ∈
T . The profit of an item set S defined by (3) takes into account also the contribution
of each proper subset S′ ⊂ S.

There are, however, many applications in which the profit of an item set does not
involve included subsets, i.e., f (S) does not explicitly depend on the profit f (S′) of all
subsets S′ ⊂ S. The resulting class of problems has been addressed in the Computa-
tional Social Choice literature, in the context of preference aggregation, voting theory,
and ranking systems among others (see, e.g., [8]). We refer the interested reader to the
seminal work of [5] where the paradox of multiple elections is studied. For example,
consider a situation in which one has to select a number of members for a committee
subject to a budget constraint, and the quality of the committee is related to both indi-
vidual “scores” of the members, and to interrelations between subsets of members.
It may happen that two members have high individual scores, but show some incom-
patibility that produces a negative impact on the quality of the committee, and the
same situation may involve a larger number of members of the committee. This kind
of situations have been introduced and studied in [23]. Thus, an optimal committee
can be determined by taking into account the mutual scores of all subsets of candidate
members that may reduce the total quality of the solution found. Similarly, the model
above can be used inMultiagents Systemswhere the interest of some individual agents
is conflicting with that of the overall system (see, [12]).

More in general, PKP can be used tomodel situations in which items are partitioned
into two subsets, and a hard constraint imposes that the solution must include an even
number of items from one subset. In this case, maximizing the product of the profits
of the selected items is a proxy for guiding the solution to include an even number of
items from that subset. In the context of Computational Social Choice, PKP models
the special case of selection of committee members built starting from two groups of
people, i.e., candidates that have to be taken in pairs and the others.

PKP also models a category of knapsack problems where one has to select among
two different categories of items, say, “small” and “large” ones. Consider for example
a special knapsack divided into compartments, where each compartment can accom-
modate either a large item or two small ones. Moreover, there are side constraints
(e.g., stability when shipping fragile objects) imposing that in a feasible solution each
compartment has to be either empty or full. This problem can be modelled as a PKP
by assigning a negative profit to the small items while the knapsack constraint limits
the total weight.

123

696 C. D’Ambrosio et al.

The Product Knapsack Problem considered in this paper is a special case of the
KP with objective function (3). To the best of our knowledge, this is the first paper on
this specific nonlinear variant of the KP, whereas a large amount of research has been
devoted to 0–1 polynomial optimization. In particular, the most effective approaches
either transform the problem at hand into a quadratic one (see, e.g., [6,20]), or linearize
each monomial in the objective function by adding new variables and constraints (see,
e.g., [3,17,22]).

Paper contribution. In Sect. 2 we introduce possible integer nonlinear and linear pro-
gramming formulations for PKP; for each integer linear formulation, we discuss how
to solve the associated linear programming relaxation and the quality of the corre-
sponding upper bound. In Sect. 3, we give an alternative approach based on a dynamic
programming algorithm, and discuss about the complexity of PKP. A computational
analysis on the presented models and algorithms on a large set of instances derived
from the literature is given in Sect. 4. Finally, Sect. 5 draws some conclusions.

2 Mathematical formulations

In this section we first present a simple mixed integer nonlinear formulation of PKP.
Then, we present a reduction of PKP to KP that can be applied under some hypotheses.
Finally, we remove these hypotheses and consider the general version of PKP for
which we introduce two alternative ILP formulations and study the associated linear
programming relaxations.

2.1 Mixed integer nonlinear formulation

We introduce two variables for each item j ∈ N : a binary variable x j , which takes
value 1 if item j is selected and 0 otherwise, and a continuous variable y j , which takes
value p j if item j is selected and 1 otherwise. Then, a mathematical (MINLP) model
for PKP can be obtained as follows:

max
∏

j∈N
y j (4)

∑

j∈N
w j x j ≤ C (5)

y j = 1 + (p j − 1)x j j ∈ N (6)

x j ∈ {0, 1} j ∈ N . (7)

Objective function (4) maximizes the product of y variables. Constraints (6) define
the correct value of each variable y j (∀ j ∈ N): if x j = 1, variable y j takes value p j

and item j contributes to the objective function with its profit. If instead x j = 0 then
we have y j = 1, i.e., item j gives no contribution to the solution profit. Observe that
some entries in the objective function (4) can take negative values, hence y variables
cannot be bounded to non-negative values. The model has 2n variables (half binary,

123

On the Product Knapsack Problem 697

half continuous) and n+1 linear constraints. The objective function is highly nonlinear
as it includes the product of the y variables.

2.2 Reduction to KP

We present here a reduction of PKP to KP that is valid only in case all profits are
positive, i.e., p j > 0 ∀ j ∈ N .

Indeed, observe that in this case we have that each y j is strictly positive ∀ j ∈ N .
Thus, we can apply the log operator to objective function (4) and exploit the fact that
log

∏
j∈N y j = ∑

j∈N log y j . This allows us to reformulate MINLP as a separable
problem. Observing that log y j is zero if x j = 0, and is equal to log p j otherwise, we
can project the y variables out, and obtain the following reformulation

max

⎧
⎨

⎩

∑

j∈N
(log p j) x j :

∑

j∈N
w j x j ≤ C, x j ∈ {0, 1}, j ∈ N

⎫
⎬

⎭
,

that is a standard KP in which each item j has a profit equal to log p j .

2.3 First ILP formulation

In this section, we present an ILP formulation for the case N− �= ∅. The ILP model is
obtained by explicitly modeling Observation 1 by means of linear constraints, so as
to avoid the distinction between items with positive and negative profit. In particular,
considering the absolute values of the profits, one can apply the reduction to KP
described in the previous section.

More in details, we introduce an additional variable

α = Number of pair of items j ∈ N− that are selected

that is bounded to assume integer values, and obtain the following (ILP1) model:

max
∑

j∈N
(log |p j |) x j (8)

∑

j∈N
w j x j ≤ C (9)

∑

j∈N−
x j = 2α (10)

x j ∈ {0, 1} j ∈ N (11)

α ∈ Z+. (12)

In the model above, the left-hand-side of constraint (10) counts the number of
items with negative profit that are selected. Since variable α is integer, the effect of

123

698 C. D’Ambrosio et al.

this constraint is to impose this number to be even, which makes the resulting solution
value positive, i.e., it allows us to have the absolute value of the profits in the objective
function.

Let us denote by LP1 the Linear Programming (LP) relaxation of ILP1, obtained
by replacing (11) and (12) by 0 ≤ x j ≤ 1 ∀ j ∈ N and α ≥ 0, respectively.

Proposition 2 An optimal solution to LP1 can be computed in linear time.

Proof Dropping integrality requirement on α makes constraint (10) immaterial. The
remaining problem is the LP relaxation of KP, that can be solved in O(n) time finding
the critical item in linear time (see [1]) and applying Dantzig’s algorithm [10]. Given
an optimal solution to the LP relaxation of KP, the optimal value for variable α can
be computed a posteriori using (10). �	

2.4 Second ILP formulation

An alternative ILP formulation for PKP can be obtained by modelling Observation
1 in a different way. Let us define the set J = {(i, j) : i ∈ N−, j ∈ N−, i < j}
containing all distinct pairs (i, j) of items that have negative profit, and introduce a
binary variable z j for each item j ∈ N+ which takes value 1 if item j is selected
and 0 otherwise. In addition, for each pair (i, j) ∈ J , we introduce a binary variable
βi j which takes value 1 if both items i and j are selected (and 0 otherwise). Then, a
second (ILP2) model for PKP is as follows:

max
∑

j∈N+
(log p j) z j +

∑

(i, j)∈J

(log pi p j) βi j (13)

∑

j∈N+
w j z j +

∑

(i, j)∈J

(wi + w j) βi j ≤ C (14)

∑

i :(i,k)∈J

βik +
∑

i :(k,i)∈J

βki ≤ 1 k ∈ N− (15)

z j ∈ {0, 1} j ∈ N+ (16)

βi j ∈ {0, 1} (i, j) ∈ J. (17)

Variables β are used to model the fact that items in N− must be selected in pairs
in any optimal solution; hence, each variable βi j counts the profit (and weight) of
simultaneously packing items i and j . Given that, we can remove the distinction
between items with positive and negative profit and apply the reduction given in Sect.
2.2 to define objective function (13). Finally, constraints (15) impose that each item
k ∈ N− is paired with at most another item i ∈ N−.

2.5 Comparison between the two ILP models

Observe that the number of variables of model ILP2 is |N+| + |N−|(|N−| − 1)/2,
i.e., it is quadratic in the number of items with negative profits—as opposed to model

123

On the Product Knapsack Problem 699

ILP1 that has a linear size independently of the number of positive and negative items.
Furthermore, the first model is smaller also in terms of number of constraints, 2 versus
1 + |N−|. However, the following observation shows that model ILP2 dominates
model ILP1 in terms of LP relaxation. As before, let us denote by LP2 the Linear
Programming (LP) relaxation of ILP2, obtained by replacing (16) and (17) by 0 ≤
z j ≤ 1 ∀ j ∈ N and 0 ≤ βi j ≤ 1 ∀(i, j) ∈ J , respectively. In addition, let
opt (LP1) and opt (LP2) denote the upper bounds produced by relaxations LP1 and
LP2, respectively.

Proposition 3 LP2 dominates LP1. Moreover, the ratio opt (LP1)
opt (LP2) can be arbitrarily

large.

Proof We will show that any feasible solution (z∗, β∗) of LP2 can be converted into
a feasible solution x∗ to LP1 that has the same objective function value, and that the
opposite is not always possible.

Let (z∗, β∗) be a feasible solution to LP2, and define a solution x∗ as fol-
lows

x∗
k =

⎧
⎨

⎩

z∗k if k ∈ N+;∑

i :(i,k)∈J

β∗
ik +

∑

i :(k,i)∈J

β∗
ki otherwise k ∈ N (18)

First, observe that upper bounds on the z variables and constraints (15) ensure
that no item is taken more than once. The total weight of the selected items
is

∑

k∈N
wk x

∗
k =

∑

k∈N+
wk z

∗
k +

∑

k∈N−
wk

⎛

⎝
∑

i :(i,k)∈J

β∗
ik +

∑

i :(k,i)∈J

β∗
ki

⎞

⎠ =
∑

k∈N+
wk z

∗
k

+
∑

(i,k)∈J

(wi + wk)β
∗
ik

i.e., solution x∗ is feasible by definition. Similarly, plugging x∗ into (8), the solution
profit is

∑

k∈N
(log |pk |) x∗

k =
∑

k∈N+
(log |pk |)z∗k +

∑

k∈N−
(log |pk |)

⎛

⎝
∑

i :(i,k)∈J

β∗
ik +

∑

i :(k,i)∈J

β∗
ki

⎞

⎠

=
∑

k∈N+
(log pk)z

∗
k +

∑

(i,k)∈J

(log pi pk)β
∗
ik

that is the same profit given by (13).
Consider now the following instance with n = 3, profits p = (− 2M,− 1

M , 2),
weights w = (1, 1, 1) and capacity C = 2, where M is a sufficiently large number.
An optimal solution to LP1 is x1 = 1, x2 = 0, x3 = 1 and α = 1/2, and has value
log 2M + log 2, while an optimal solution of LP2 is z3 = 1 and β1,2 = 1/2 and

123

700 C. D’Ambrosio et al.

has value 3/2 log 2. Thus, the ratio opt (LP1)
opt (LP2) is arbitrarily large for sufficiently large

M . �	
Though LP2 theoretically dominates LP1 (see Proposition 3), Proposition 4 here-

inafter shows that instances forwhichopt (LP2) < opt (LP1) are very rare in practice,
in particular when the number of items with negative profit is large.

Proposition 4 Let x∗ be an optimal solution of LP1 and N̄− = { j | j ∈ N− and x∗
j >

0}. If |N̄−| ≥ 3, then opt (LP1) = opt (LP2).

Proof Using Proposition 3, we have only to show that opt (LP2) cannot be smaller
than opt (LP1). To this aim, we construct a solution (z∗, β∗) that is feasible for LP2
and has the same value as solution x∗. Assume w.l.o.g. that N is sorted with items with
negative profit first, i.e., N− = {1, . . . , |N−|} and N+ = {|N−|+1, . . . , |N |}. Assume
also that the negative-profit items and positive-profit items are sorted separately by
non-increasing non-increasing

log |p j |
w j

values. Let s = |N̄−|, t = s − 1, u = s − 2 and
assume that s is odd. As observed in the proof of Proposition 2, the optimal solution
of LP1 has the same structure as that of the continuous relaxation of the knapsack
problem, i.e., all items j ∈ N− : j < s (including t and u) have x∗

j = 1. Define the
following solution:

z∗j = x∗
j for each item j ∈ N+

β∗
j, j+1 = 1 for j = 1, 3, 5, . . . , s − 4

β∗
ut = 1 − x∗

s

2
; β∗

us = x∗
s

2
; β∗

ts = x∗
s

2
,

and all the remaining β variables are set to zero. It is easy to check that solution
(z∗, β∗) is feasible for LP2 and its value is

∑

j∈N+
w j z

∗
j +

s−4∑

j=1
j odd

log(p j p j+1)β
∗
j, j+1 + log(pu pt)β

∗
ut

+ log(pu ps)β
∗
us + log(pt ps)β

∗
ts

=
∑

j∈N+
w j x

∗
j +

s−4∑

j=1
j odd

(log(p j)x
∗
j + log(p j+1)x

∗
j+1) + log(pu pt)

(

1 − x∗
s

2

)

+ log(pu ps)
x∗
s

2
+ log(pt ps)

x∗
s

2

=
∑

j∈N+
w j x

∗
j +

s−4∑

j=1
j odd

(log(p j)x
∗
j + log(p j+1)x

∗
j+1) + log(ps)x

∗
s

+ log(pt)x
∗
t + log(pu)x

∗
u .

123

On the Product Knapsack Problem 701

Similarly, if s is even, let v = s − 3 and define the following solution

z∗j = x∗
j for each item j ∈ N+

β∗
j, j+1 = 1, j = 1, 3, 5, . . . , s − 5;

β∗
ts = x∗

s ;β∗
ut = 1 − x∗

s

2
; β∗

vt = 1 − x∗
s

2
; β∗

vu = 1 + x∗
s

2
.

In this case too, all the remaining β variables are set to zero. The value of this solution
is

∑

j∈N+
w j z

∗
j +

s−5∑

j=1
j odd

log(p j p j+1)β
∗
j, j+1 + log(pt ps)β

∗
ts + log(pu pt)β

∗
ut

+ log(pv pt)β
∗
vt + log(pv pu)β

∗
vu

=
∑

j∈N+
w j x

∗
j +

s−5∑

j=1
j odd

(log(p j)x
∗
j + log(p j+1)x

∗
j+1) + log(pt ps)x

∗
s

+ log(pu pt)
1 − x∗

s

2
+ log(pv pt)

1 − x∗
s

2
+ log(pv pu)

1 + x∗
s

2

=
∑

j∈N+
w j x

∗
j +

s−5∑

j=1
j odd

(log(p j)x
∗
j + log(p j+1)x

∗
j+1) + log(ps)x

∗
s + log(pt)x

∗
t

+ log(pu)x
∗
u + log(pv)x

∗
v .

Thus, the solution has the same profit as x∗, which concludes the proof. �	
Asimilar argument shows that opt (LP1) = opt (LP2) holds also in case |N̄−| = 2

provided that x∗
j = 1 ∀ j ∈ N−, i.e., the optimal solution of LP1 fully packs exactly

two items with negative profit. Therefore, it is very unlikely to generate instances
which do not satisfy the requirements of Proposition 4.

We conclude this section by observing that model ILP2 can be viewed as a 0-1
Knapsack Problem with Conflict Graph (KGC) with |N+| + |J | items. Objective
function (13) and constraints (14), (16), and (17) can be rewritten as a standard KP,
while (15) are the conflict constraints, see [24]. The conflict constraints can be repre-
sented via a conflict graph, with one node for each item in the knapsack and one edge
for each couple of items that can not be taken together in a feasible solution.

The results presented in [4] show that, from a computational point of view, the
density (i.e., the ratio between the number of edges and the the cardinality of the
edge set of the complete graph having the same number of vertices) of the associated
conflict graph can impact the performances of the solution method used to solve one
instance of KGC. In our case, the density of the conflict graph can be computed with
a closed formula that depends only on |N+| and |N−|. The conflict graph contains

|N+|+ |J | = |N+|+ |N−|(|N−| − 1)

2
nodes. Since there are |N−| constraints (15),

123

702 C. D’Ambrosio et al.

each involving |N−| − 1 variables, it is easy to see that the total number of edges is
|N−|(|N−| − 1)(|N−| − 2)

2
. As |N+| = O(n) and |N−| = O(n), the overall density

of the graph is O(1/n), i.e, the resulting conflict graph is sparse for sufficiently large
instances. It has been computationally proved in [4,21] that, for sparse graphs, the
direct use of an ILP solver is the most efficient way to solve KGC, whereas more
efficient combinatorial methods exist for dense graphs.

3 Dynamic Programming and computational complexity

Dynamic Programming (DP) was introduced by Bellman [2]. Subsequently, several
authors proposed DP algorithms for KP (see for example [13] or [15]). In this sec-
tion we first present a dynamic programming for PKP and then we determine the
computational complexity of the problem.

Our DP algorithm (called DPPKP) is composed by n steps. At each step j , the
algorithm computes, for each capacity value s = 0, . . . ,C , both the most positive and
the most negative PKP objective function values that can be obtained using the first
j items with a capacity equal to s. All these values can be stored into two matrices
f j [s] and g j [s], and can be computed using the following recursive formulas:

f j [s] =
{
max{ f j−1[s], p j · f j−1[s − w j], p j · g j−1[s − w j]} if s ≥ w j ;
f j−1[s] otherwise

(19)

g j [s] =
{
min{g j−1[s], p j · g j−1[s − w j], p j · f j−1[s − w j]} if s ≥ w j ;
g j−1[s] otherwise

(20)

with the initialization f0[s] = 1 and g0[s] = 1, ∀s = 0, . . . ,C . The optimal PKP
solution value is finally given by fn[C].
Proposition 5 DPPKP computes an optimal solution value of PKP in O(nC) time.

Proof The time complexity is obvious, as O(nC) entries have to be computed, each
requiring O(1) time. We now prove that the algorithm computes an optimal solution
by induction. Assume that f j−1 and g j−1 have been correctly computed for each
capacity value s; consider now a capacity value s and evaluate the possible update
of the associated f j entry—the proof is identical for what concerns the g j entry. If
s < w j then item j cannot be inserted in any feasible solution, hence no update can
take place. Otherwise, either the new item is not packed in the partial solution, keeping
f j [s] unchanged, or item j is selected. In this latter case, if p j > 0 the new value
of f j [s] is obtained multiplying p j by the most positive objective function value
obtained with a partial capacity decreased by w j , i.e., p j · f j−1[s − w j]. If instead
p j < 0, a maximum profit solution that packs item j is obtained multiplying p j by
the most negative objective function value obtained with a partial capacity decreased
by w j , i.e., p j · g j−1[s − w j]. In both cases, the update is implemented only in case
it is profitable. �	

To illustrate the algorithm, Table 1 reports matrices f and g for the following
numerical example: n = 4 (four items), profits p = (5,− 3,− 4, 2), weights w =

123

On the Product Knapsack Problem 703

Table 1 States of algorithm
DPPKP for the example instance
of four objects and capacity
C = 3

f j

0 1 2 3 4

s 0 1 1 1 1 1

1 1 1 1 1 2

2 1 5 5 12 12

3 1 5 5 12 24

g j

0 1 2 3 4

s 0 1 1 1 1 1

1 1 1 − 3 − 4 − 4

2 1 1 − 3 − 4 − 8

3 1 1 − 15 − 20 − 20

Fig. 1 Dynamic programming
algorithm DPPKP

Algorithm DPPKP:

initialization
for s := 0 to C do

f [s] = 1; g[s] = 1

consider one item at a time
for j := 1 to n do

for s := C down to wj do
if pj ≥ 0 then

if (pj · f [s − wj] > f [s]) then f [s] = pj · f [s − wj]
if (pj · g[s − wj] < g[s]) then g[s] = pj · g[s − wj]

else
if (pj · g[s − wj] > f [s]) then f [s] = pj · g[s − wj]
if (pj · f [s − wj] < g[s]) then g[s] = pj · f [s − wj]

return f [C].

(2, 1, 1, 1) and capacity C = 3. Entry f4[3] provides the optimal solution value equal
to 24.

Apossible implementation of the algorithm is given in Fig. 1. In this scheme, instead
of storing two n ·(C+1)matrices for the f and g entries, we use twoC+1 vectors. For
each item j , these vectors are scanned according to decreasing values of the available
capacity s, possibly updating the associated entries. This implementation allows to
reduce the memory requirement of the algorithm, yielding some improvements from
a computational viewpoint.

Finally, it is important to remark that an equivalent version of Algorithm DPPKP can
be obtained by storing in f and g the logarithm of the (absolute values of the) products
showed in equations (19) and (20). This a crucial step for the practical applicability
of the algorithm (see, Sect. 4).

Proposition 6 PKP is weakly NP-hard.

Proof Given the dynamic programming algorithm above, PKP cannot be strongly
NP-hard. We now show that any instance I of KP can be polynomially transformed
into an instance I ′ of PKP that has the same solution. Let I = (n,C, p, w) be a KP
instance, and define I ′ as follows: n′ = n, C ′ = C , p′

j = log−1 p j and w′
j = w j

123

704 C. D’Ambrosio et al.

∀ j . Indeed, all profits in I ′ are positive and we can apply the reduction introduced in
Sect. 2.2, which produces an optimal solution to a KP instance with profits log p′

j =
log log−1 p j = p j , i.e., the same profits as in instance I . �	

4 Computational experiments

The primary goal of this computational study is to compare the performances of the
ILP models discussed in Sect. 2 with the Dynamic Programming algorithm (DPPKP)
described in Sect. 3. A second goal of this section is to determine the size of the
instances that can be solved to proven optimality within short computing time.

All the experiments have been performed on a computerwith a 3.40Ghz 8-core Intel
Core i7-3770 processor and 16GbRAM, running a 64 bits Linux operating system. All
the codes were compiled with g++ (version 4.8.4) using -O3 as optimization option.
We have tested the ILP formulations using Cplex 12.6.0, in single-thread mode.
AllCplexparameters are at their default values except the optimality toleranceswhich
have been set to 0 to allow a meaningful comparison with the solutions produced by
the DP algorithm.

Instances: The PKP is a new problem and, accordingly, no benchmark instances are
available in the literature. Nevertheless, since a PKP instance can be easily obtained
from a KP instance by introducing items with negative profits, we create a PKP bench-
mark starting from nine classes of KP instances of the literature. The KP item profits
and weights are obtained using the random generator proposed in [15] (available
at http://www.diku.dk/~pisinger/codes.html) with the following features, where u.r.
stands for “uniformly random integer”:

1. Uncorrelated: w j u.r. in [1, R], p j u.r. in [1, R].
2. Weakly correlated: w j u.r. in [1, R], p j u.r. in [max{1, w j − R/10}, w j + R/10].
3. Strongly correlated: w j u.r. in [1, R], p j = w j + R/10.
4. Inverse strongly correlated: p j u.r. in [1, R], w j = p j + R/10.
5. Almost strongly correlated:w j u.r. in [1, R], p j u.r. in [w j +R/10−R/500, w j +

R/10 + R/500].
6. Subset-sum: w j u.r. in [1, R], p j = w j .
7. Even-odd subset-sum: w j even value u.r. in [1, R], p j = w j , C odd.
8. Even-odd strongly correlated: w j even value u.r. in [1, R], p j = w j + R/10, C

odd.
9. Uncorrelated with similar weights: w j u.r. in [100 R, 100 R + R/10], p j u.r. in

[1, R].
For a given class, a given number of items n, and a specific value of R, the capacity
C is defined as a percentage of the total item weight (W = ∑n

j=1 w j) as follows:
C = �c̄·W�.where c̄ is another instance-generator parameter.Moreover,C is increased
by 1, if even, for classes 7 and 8. Given a KP instance, we define a PKP problem using
an additional parameter m̄, that represents the percentage of items with negative profit.
In particular, we set n̄ = �m̄ · n� and change the sign of the profit for n̄ randomly
selected items.

123

http://www.diku.dk/~pisinger/codes.html

On the Product Knapsack Problem 705

Our test bed is divided in two sets. The first set (called set A) consists of instances
of small size obtained using the following set of instance-generator parameters:
R = 1000; n ∈ {50, 100, 500, 1000}; c̄ = 0.5; and m̄ ∈ {0.66, 0.50, 0.25}. For
each combination of these parameters, one problem is generated for each of the 9
aforementioned classes, thus producing a test bed with 108 instances. The second set
(called set B) consists of instances of larger size, and is obtained using the following set
of instance-generator parameters: R ∈ {100, 1000, 10000}; n ∈ {500, 1000, 2000};
c̄ ∈ {0.1, 0.2, 0.3, 0.4, 0.5, 0.6}; and m̄ ∈ {0.66, 0.50, 0.25}. In this case too, one
problem is generated for each combination of the parameters and for each class of KP
instances, yielding a benchmark with 1458 problems. Set A is used to compare the per-
formances of the two ILP models, while set B is used to compare the best-performing
ILP model against the DP algorithm.

The test bed has been thought to measure the impact on the computational per-
formances of the principal features of a PKP instance, i.e., the instance class, the
number of items n, the capacity C , and the percentage of negative-profit items m̄. It
is worth mentioning that items in class 9 have, on average, weights that are 2 orders
of magnitude larger than in the other classes. Since C is defined as a percentage of
the sum of all item weights, and the time complexity of DP is O(nC), these instances
are specifically designed to be hard for the DP algorithm. Similarly, increasing the
value of R produces instances with larger W and, hence, harder for the DP algorithm.
Preliminary computational experiments showed that the direct application of MINLP
solvers to model (4)–(7) is not a viable way for solving these sets of instances. In most
of the cases, the optimal solution includes many items, which makes the product of the
associated profits (i.e., the objective function value) too large for being stored in the
memory of a computer. For this reason, we do not present results for this approach. All
the instances considered in our computational analysis are available at the following
address: http://or.dei.unibo.it/library/product-knapsack-problem.
Comparison between ILP models.We now compare the computational performances
of ILP1 and ILP2, i.e., the models presented in Sects. 2.3 and 2.4, on the instances of
set A.

Table 2 is horizontally divided in three parts according to the 3 values taken by m̄,
i.e., the percentage of items with negative profit. Each line is associated with instances
having the same number n of items, and each entry reports the aggregated results
concerning 9 instances, one for each class. For both ILP1 and ILP2, we report the
average CPU time (in seconds) required by Cplex to solve the model (tI L P) and
to solve its linear programming relaxation (tL P). We also report the average number
of explored nodes in the Branch-and-Cut tree and the size of the model in terms of
number of variables (vars) and constraints (cons). In all tests, a time limit of 600
seconds is imposed. For model ILP2, some of the instances are not solved to proven
optimality within the time limit; thus, we also report the number of unsolved instances
(column T.L.). The average CPU time and number of nodes are computed considering
only instances solvedwithin the time limit. As already observed, ILP2 requires |N+|+
|N−|(|N−|−1)/2 binary variables, i.e., the size of the formulation grows quadratically
with respect to the number of items and may became large in practice, which yields to
computationally demanding models. In particular, ILP2 behaves poorly on average on
this set of instances, and is unable to solve any instance with n = 1000 items within

123

http://or.dei.unibo.it/library/product-knapsack-problem

706 C. D’Ambrosio et al.

Ta
bl
e
2

C
om

pu
ta
tio

na
lc
om

pa
ri
so
n
be
tw
ee
n
IL
P1

an
d
IL
P2

fo
r
in
st
an
ce
s
se
tA

In
st
an
ce
s

IL
P1

IL
P2

m̄
n

ga
p

t I
L
P

no
de
s

t L
P

va
rs

co
ns

t I
L
P

T.
L
.

no
de
s

t L
P

va
rs

co
ns

0.
66

50
1.
21

0.
01

15
0.
00

51
2

68
.4
0

2
10

87
43

2
0.
00

54
5

34

10
0

0.
39

0.
01

40
0.
00

10
1

2
10

1.
01

7
62

34
36

0.
00

22
44

68

50
0

0.
07

0.
04

13
3

0.
00

50
1

2
–

9
–

0.
33

55
44

5
33

4

10
00

0.
03

0.
04

30
0.
00

10
01

2
–

9
–

6.
12

22
24

44
66

8

0.
50

50
1.
19

0.
00

0
0.
00

51
2

0.
54

0
68

81
0.
00

32
5

26

10
0

0.
38

0.
02

34
0.
00

10
1

2
1.
02

6
42

31
0.
00

12
75

51

50
0

0.
07

0.
03

11
4

0.
00

50
1

2
17

.6
4

8
75

26
0.
15

31
37

5
25

1

10
00

0.
03

0.
04

57
0.
00

10
01

2
–

9
–

2.
05

12
52

50
50

1

0.
25

50
1.
22

0.
01

9
0.
00

51
2

0.
06

0
81

1
0.
00

11
5

14

10
0

0.
39

0.
03

27
4

0.
00

10
1

2
49

.3
5

2
74

29
54

0.
00

37
5

26

50
0

0.
07

0.
03

18
9

0.
00

50
1

2
58

.1
4

4
81

96
1

0.
02

81
25

12
6

10
00

0.
04

0.
05

28
3

0.
00

10
01

2
–

9
–

0.
15

31
87

5
25

1

123

On the Product Knapsack Problem 707

10 minutes of CPU time. In addition, ILP2 is not capable of solving several instances
with n ≤ 500. On the contrary, ILP1 is able to solve all the instances in a fraction of
a second. For this reason, we decided to exclude ILP2 in the following analysis.

It is worth mentioning that, though LP2 is theoretically stronger than LP1, the
two models always provide the same upper bound for the instances in set A. Strict
dominance applies only for instances with specific characteristics (see Sect. 2.5) and
it never happens in our test bed. For this reason, in Table 2 we report only one LP gap
for both models (computed as gap = 100 · opt (LP)−opt

opt (LP)
where opt (LP) is the optimal

solution value of the linear programming relaxation, and opt is the optimal solution
value).

Moreover, thanks to an additional set of preliminary experiments, we noticed that
LP2 is stronger in practice only for instances where the percentage of items with
negative profit m̄ is very small, namely for m̄ < 0.1.

Finally, we observe that the LP gap decreases when the number of items increases.
This is not surprising as, given a solution of LP1, one can derive a feasible integer
solution by removing at most two items, namely the critical item (if any) and possibly
one item with negative profit. As the gap is related to the contribution of at most two
items, its percentage value decreases when feasible solutions include many items (as
in the case in which n is large), similar to what happens to the LP relaxation of the
knapsack problem. In addition, we note that the number of nodes explored by ILP2 is
always several orders of magnitudes larger than the same figure for ILP1.

Since the solution of LP2 requires considerably more time than LP1, a future line
of research could be devoted to the development of a branch-and-price algorithm,
generating binary variables on the fly, to reduce the overall CPU time of the associated
relaxation.

Comparison between ILP1 and algorithm DPPKP. Tables 3 and 4 report the average
CPU times required by algorithm DPPKP and by Cplex for model ILP1 in order to
solve to proven optimality the instances of setB.A time limit of 600 seconds is imposed
for each run; as for Table 2, we report the number of instances that are not solved to
proven optimality (columns T.L.). Table 3 is divided in 9 blocks, one for each class of
instances. Each block is horizontally divided in three parts according to the 3 values
of R, and each line is associated with instances that share the same number n of items.
Each entry reports the average CPU time of the instances solved out of 18 instances,
i.e., grouping together the different values of the parameters c̄ and m̄. The results show
that algorithm DPPKP is able to solve to proven optimality all the instances of the first
8 classes, but fails on some problems of class 9. The CPU time of the DP algorithm is
directly proportional to the value R and n, which is not surprising as its computational
complexity is O(nC). On the other hand, the computational performance of ILP1
is less predictable, i.e., for many classes of instances there are several problems for
which ILP1 hits the time limit. Nevertheless for instances of classes 1 and 9, ILP1
dominates algorithm DPPKP. For the instances with R = 100 and classes from 2 to 8
the DP algorithm almost always outperforms ILP1. The instances of classes 3 and 8
are the most difficult ones for ILP1, with 6 and 5 unsolved instances, respectively.

Table 4 reports additional results aimed at evaluating the effect of the capacity C
on the computational performances of ILP1 and algorithm DPPKP. Since the value

123

708 C. D’Ambrosio et al.

Ta
bl
e
3

C
om

pu
ta
tio

na
lc
om

pa
ri
so
n
be
tw
ee
n
IL
P1

an
d
th
e
D
P
al
go
ri
th
m

fo
r
in
st
an
ce

se
tB

R
n

C
la
ss

1
C
la
ss

2
C
la
ss

3

t D
P

T.
L
.

t I
L
P
1

T.
L
.

t D
P

T.
L
.

t I
L
P
1

T.
L
.

t D
P

T.
L
.

t I
L
P
1

T.
L
.

10
0

50
0

0.
02

0
0.
03

0
0.
02

0
0.
07

0
0.
02

0
0.
01

1

10
00

0.
07

0
0.
05

0
0.
07

0
0.
03

0
0.
07

0
0.
01

2

20
00

0.
27

0
0.
07

0
0.
26

0
0.
57

0
0.
26

0
0.
01

2

10
00

50
0

0.
15

0
0.
03

0
0.
15

0
0.
03

0
0.
16

0
0.
03

0

10
00

0.
59

0
0.
05

0
0.
64

0
0.
08

0
0.
65

0
0.
03

0

20
00

2.
95

0
0.
06

0
2.
92

0
6.
05

1
2.
92

0
0.
07

0

10
00

0
50

0
1.
47

0
0.
05

0
1.
46

0
0.
09

0
1.
43

0
0.
03

0

10
00

5.
99

0
0.
08

0
5.
94

0
0.
06

0
6.
00

0
0.
06

0

20
00

25
.3
6

0
0.
09

0
27

.6
7

0
0.
09

0
25

.2
9

0
0.
05

1

R
n

C
la
ss

4
C
la
ss

5
C
la
ss

6

t D
P

T.
L
.

t I
L
P
1

T.
L
.

t D
P

T.
L
.

t I
L
P
1

T.
L
.

t D
P

T.
L
.

t I
L
P
1

T.
L
.

10
0

50
0

0.
02

0
0.
06

0
0.
02

0
0.
01

0
0.
02

0
0.
01

1

10
00

0.
08

0
1.
34

0
0.
07

0
10

.4
9

0
0.
07

0
0.
44

0

20
00

0.
33

0
0.
06

0
0.
28

0
0.
01

1
0.
30

0
0.
01

0

10
00

50
0

0.
18

0
0.
06

0
0.
15

0
0.
03

0
0.
15

0
0.
02

0

10
00

0.
77

0
0.
07

0
0.
60

0
0.
03

1
0.
61

0
0.
02

0

20
00

3.
49

0
0.
37

0
2.
86

0
0.
06

0
2.
79

0
0.
03

0

123

On the Product Knapsack Problem 709

Ta
bl
e
3

co
nt
in
ue
d

R
n

C
la
ss

4
C
la
ss

5
C
la
ss

6

t D
P

T.
L
.

t I
L
P
1

T.
L
.

t D
P

T.
L
.

t I
L
P
1

T.
L
.

t D
P

T.
L
.

t I
L
P
1

T.
L
.

10
00

0
50

0
1.
72

0
0.
07

0
1.
46

0
0.
04

0
1.
44

0
0.
02

0

10
00

7.
12

0
0.
13

2
5.
94

0
0.
09

0
5.
93

0
0.
09

0

20
00

30
.5
4

0
0.
09

0
25

.2
5

0
0.
11

0
25

.2
3

0
0.
04

0

R
n

C
la
ss

7
C
la
ss

8
C
la
ss

9

t D
P

T.
L
.

t I
L
P
1

T.
L
.

t D
P

T.
L
.

t I
L
P
1

T.
L
.

t D
P

T.
L
.

t I
L
P
1

T.
L
.

10
0

50
0

0.
02

0
0.
00

0
0.
02

0
0.
00

0
2.
95

0
0.
03

0

10
00

0.
07

0
0.
01

1
0.
07

0
0.
01

1
11

.9
1

0
0.
04

0

20
00

0.
29

0
2.
18

0
0.
28

0
0.
01

1
54

.2
0

0
0.
56

3

10
00

50
0

0.
16

0
0.
56

0
0.
15

0
0.
60

2
29

.8
7

0
0.
02

0

10
00

0.
59

0
0.
02

0
0.
63

0
0.
02

0
12

3.
16

0
0.
03

0

20
00

2.
77

0
0.
19

1
2.
77

0
8.
45

1
34

3.
36

6
0.
27

0

10
00

0
50

0
1.
42

0
0.
02

0
1.
43

0
0.
02

0
29

7.
57

0
0.
03

0

10
00

5.
91

0
14

.1
1

0
5.
94

0
10

.6
3

0
33

0.
42

15
0.
03

0

20
00

25
.9
3

0
0.
06

0
26

.4
2

0
0.
06

0
−−

18
0.
18

0

123

710 C. D’Ambrosio et al.

Ta
bl
e
4

C
om

pu
ta
tio

na
lc
om

pa
ri
so
n
be
tw
ee
n
IL
P1

an
d
th
e
D
P
al
go
ri
th
m

fo
r
in
st
an
ce
s
w
ith

R
=

10
0
an
d
di
ff
er
en
tc
ap
ac
ity

pe
rc
en
ta
ge
s

C
la
ss

D
P P

K
P

IL
P1

c̄
=

0.
2

c̄
=

0.
4

c̄
=

0.
6

c̄
=

0.
8

c̄
=

0.
2

T.
L
.

c̄
=

0.
4

T.
L
.

c̄
=

0.
6

T.
L
.

c̄
=

0.
8

T.
L
.

1
0.
06

0.
14

0.
20

0.
26

0.
05

0
0.
04

0
0.
07

0
0.
05

0

2
0.
06

0.
13

0.
20

0.
26

0.
08

0
0.
06

0
0.
94

0
0.
04

0

3
0.
06

0.
12

0.
20

0.
27

0.
01

1
0.
01

0
0.
01

2
0.
01

2

4
0.
07

0.
15

0.
23

0.
33

0.
01

0
0.
13

0
0.
01

0
0.
03

0

5
0.
06

0.
13

0.
20

0.
26

0.
01

0
0.
01

0
0.
01

1
0.
01

0

6
0.
06

0.
15

0.
20

0.
26

0.
88

0
0.
01

0
0.
01

1
0.
01

0

7
0.
06

0.
14

0.
20

0.
26

0.
01

0
0.
01

0
0.
00

0
22

.6
5

0

8
0.
06

0.
13

0.
20

0.
26

0.
00

0
0.
01

0
0.
01

0
0.
19

1

9
11

.5
7

23
.6
1

36
.2
5

49
.9
1

0.
85

0
0.
07

0
0.
09

3
0.
03

0

123

On the Product Knapsack Problem 711

of the capacity depends on two parameters, R and c̄, we decided to include in this
analysis only instances with the same value of R, namely R = 100, and to report
results for different values of c̄. Each line of the table is associated with a class of
problems, thus entries report aggregated results for the 9 instances obtained with
different combinations of parameters n and m̄. We report the results associated with
instances that have c̄ ∈ {0.2, 0.4, 0.6, 0.8}, i.e., some problems of the instance set B
plus some additional instances with c̄ = 0.8. As for the previous tables, we report
the average computing time and, for ILP1, the number of instances that could not be
solved to proven optimality within the 600-second time limit. These results clearly
show that increasing the capacity produces harder instances for algorithm DPPKP,
for which the associated CPU time grows almost linearly with parameter c̄. Indeed,
while the performances of algorithm DPPKP are strongly dependent on R and n, the
behaviour of ILP1 is less predictable: out of the 22 instances that are not solved to
optimality within the time limit, 4 involve 500 items only. In addition, we notice that
classes 3 and 8 are the most challenging for ILP1. As to algorithm DPPKP, classes
from 1 to 8 are equally hard while, as expected, instances of class 9 are instead much
harder.

5 Conclusions

In this article we study the PKP which is a variant of the Knapsack Problem in which
the objective function optimizes the product of the profits of the selected items. The
PKP is particularly interesting in the context of Computation Social Choice since it is a
step in the direction of measuring the interaction among the members of a committee.
We have demonstrated the computational complexity of the PKP and proposed differ-
ent linear and nonlinear mathematical formulations. We have introduced a Dynamic
Programming algorithmwith a pseudo polynomial computational complexity. Finally,
an extensive analysis on a large set of instances with diverse characteristics has com-
putationally demonstrated that the Integer Linear Programming model ILP1 and the
new DP algorithm proposed are the best performing exact approaches for the PKP.

With this manuscript we hope to stimulate the research in the boundaries of Opti-
mization and Computation Social Choice. An interesting line of research in this
direction would be the analysis of others objective functions which take into consid-
eration different kinds of interrelation between the selected members of a committee.

Acknowledgements The authors would like to thank two anonymous referees for their helpful comments
and Cecilia Bruni for her linguistic assistance.

References

1. Balas, E., Zemel, E.: An algorithm for large zero-one knapsack problems. Oper. Res. 28, 1130–1154
(1980)

2. Bellman, R.: Dynamic Programming. Princeton University Press, Princeton (1957)
3. Belotti, P., Lee, J., Liberti, L., Margot, F., Wächter, A.: Branching and bounds tightening techniques

for non-convex MINLP. Optim. Methods Softw. 24, 597–634 (2009)

123

712 C. D’Ambrosio et al.

4. Bettinelli, A., Cacchiani, V., Malaguti, E.: A branch-and-bound algorithm for the knapsack problem
with conflict graph. Technical report (2016)

5. Brams, J.S., Kilgour,M.D., Zwicker, S.W.: The paradox of multiple elections. Soc. ChoiceWelf. 15(2),
211–236 (1998)

6. Buchheim, C., Rinaldi, G.: Efficient reduction of polynomial zero-one optimization to the quadratic
case. SIAM J. Optim. 18(4), 1398–1413 (2007)

7. Caprara, A., Pisinger, D., Toth, P.: Exact solution of the quadratic knapsack problems. INFORMS J.
Comput. 11, 125–137 (1998)

8. Chevaleyre, Y., Endriss, U., Lang, J., Maudet, N.: A short introduction to computational social choice.
In: van Leeuwen, J., Italiano, G.F., van der Hoek, W., Meinel, C., Sack, H., Plášil, F. (eds.) SOFSEM
2007: Theory and Practice of Computer Science. SOFSEM 2007. Lecture Notes in Computer Science,
vol 4362. Springer, Berlin, Heidelberg (2007)

9. D’Ambrosio, C., Martello, S.: Heuristic algorithms for the general nonlinear separable knapsack prob-
lem. Comput. Oper. Res. 38(2), 505–513 (2011)

10. Dantzig, G.: Discrete variable extremum problems. Oper. Res. 5, 266–277 (1957)
11. Gallo, G., Hammer, P., Simeone, B.: Quadratic knapsack problems.Math. Program. Study 12, 132–149

(1980)
12. Hao, J., Leung, H.: Interactions in Multiagent Systems: Fairness, Social Optimality and Individual

Rationality, chap. Fairness in Cooperative Multiagent Systems. Springer, Berlin (2016)
13. Horowitz, E., Sahni, S.: Computing partitions with applications to the knapsack problem. J. ACM

21(2), 277–292 (1974)
14. Kellerer, H., Pferschy, U., Pisinger, D.: Knapsack Problems. Springer, Berlin (2004)
15. Martello, S., Pisinger, D., Toth, P.: Dynamic programming and strong bounds for the 0–1 knapsack

problem. Manag. Sci. 45(3), 414–424 (1999)
16. Martello, S., Toth, P.: Knapsack Problems: Algorithms and Computer Implementations. Wiley, Chich-

ester (1990)
17. Misener, R., Floudas, C.A.: ANTIGONE: algorithms for continuous/integer global optimization of

nonlinear equations. J. Glob. Optim. 59(2), 503–526 (2014)
18. Pisinger, D.: The quadratic knapsack problem—a survey. Discrete Appl. Math. 155, 623–648 (2007)
19. Pisinger, D., Rasmussen, A., Sandvik, R.: Solution of large quadratic knapsack problems through

aggressive reduction. INFORMS J. Comput. 19, 280–290 (2007)
20. Rosenberg, I.G.: Reduction of bivalent maximization to the quadratic case. Cahiers du Centre d’Etudes

de Recherche Opérationelle 17, 71–74 (1975)
21. Sadykov, R., Vanderbeck, F.: Bin packing with conflicts: a generic branch-and-price algorithm.

INFORMS J. Comput. 25, 244–255 (2013)
22. Tawarmalani,M., Sahinidis, N.V.: A polyhedral branch-and-cut approach to global optimization.Math.

Program. 103, 225–249 (2005)
23. Uckelman, J.: Alice and bobwill fight: the problem of electing a committee in the presence of candidate

interdependence. Front. Artif. Intell. Appl. 215, 1023–1024 (2010)
24. Yamada, T., Kataoka, S.,Watanabe, K.: Heuristic and exact algorithms for the disjunctively constrained

knapsack problem. Inf. Process. Soc. Jpn. J. 43, 2864–2870 (2002)

123

	On the Product Knapsack Problem
	Abstract
	1 Introduction
	2 Mathematical formulations
	2.1 Mixed integer nonlinear formulation
	2.2 Reduction to KP
	2.3 First ILP formulation
	2.4 Second ILP formulation
	2.5 Comparison between the two ILP models

	3 Dynamic Programming and computational complexity
	4 Computational experiments
	5 Conclusions
	Acknowledgements
	References

