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Abstract Blackbox optimization problems are often contaminated with numerical
noise, and direct search methods such as the Mesh Adaptive Direct Search (MADS)
algorithmmay get stuck at solutions artificially created by the noise.We propose away
to smooth out the objective function of an unconstrained problem using previously
evaluated function evaluations, rather than resampling points. The new algorithm,
called Robust-MADS is applied to a collection of noisy analytical problems from the
literature and on an optimization problem to tune the parameters of a trust-region
method.

Keywords Robust optimization · Direct search · Blackbox optimization · MADS

B Sébastien Le Digabel
Sebastien.Le.Digabel@gerad.ca
http://www.gerad.ca/Sebastien.Le.Digabel/

Charles Audet
Charles.Audet@gerad.ca
https://www.gerad.ca/Charles.Audet/

Amina Ihaddadene
amina.ihaddadene@polymtl.ca

Christophe Tribes
christophe.tribes@polymtl.ca

1 Département de mathématiques et génie industriel, École Polytechnique de Montréal, GERAD,
C.P. 6079, Succ. Centre-ville, Montreal, QC H3C 3A7, Canada

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s11590-017-1226-6&domain=pdf
http://orcid.org/0000-0002-3043-5393
http://orcid.org/0000-0003-3148-5090
http://orcid.org/0000-0002-8740-6155


676 C. Audet et al.

1 Optimization with noisy functions

This work studies the unconstrained optimization problem

min
x∈Rn

f (x) (1)

in which the objective function f : Rn → R ∪ {+∞} is computed by a blackbox
simulation, contaminated with deterministic or stochastic noise. An objective function
with a deterministic noise component may be written as:

f (x) = (1 + φ(x)) z(x) (2)

where z : Rn → R ∪ {+∞} is a smoother function, but is unknown in practice, and
φ : Rn → R is a noise function that depends on x . In stochastic problems, φ is a
random variable whose distribution may be independent of x or not.

The proposed robust optimization algorithm aims to approach a minimizer of z(x)
when only having access to the noisy function values f (x). In the algorithms proposed
in [8,14,19,25] quadratic models are constructed with regression techniques using
previous evaluations of the noisy function values. The models are built on a trust-
region and weighted according to the evaluation uncertainty [8]. Repeated function
evaluations reduce the quadratic model variance and increase the accuracy of the
model parameters [25]. Several strategies for minimizing the quadratic model have
been tested in previous work: a trust-region algorithm in [10,19], a modified version of
the DIRECT algorithm in [17,23] or a variant of the BOBYQA algorithm [25] to solve
the stochastic problems [12]. Another technique for stochastic system optimization is
described in [28], in which a ranking and selection strategy is used to determine the
number of replicated responses to produce a sampling mean that satisfies a probability
of correct selection. On the one hand, this procedure allows to determine the size of
the sample which ensures obtaining a good estimation of the objective value. On the
other hand, this classification allows to select the point having the minimum objective
value. Furthermore, in [30] the smoothing function is constructed by elimination of
all local optimal solutions worse than the best solution.

In [22], a smoothing technique approximates f by a smooth function ˜f (x), con-
structed by the convolution with the probability density function v of the random
variable that represents the noise:

˜f (x) =
∫

Rn
f (x + u)v(u)du.

An application of a smoothing technique on the energy function of a molecular
model is described in [27]. The idea is to replace the value of the function at each
point by a weighted average of nearby values. A Gaussian distribution is used to
determine the weights:

˜fs(x) =
∫

Rn
H( f (u), s) exp

(−‖x − u‖2
σ 2

)

du,
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where the standard deviation σ and s are the smoothing parameters, H is the function
used to make the function f integrable, by using the energetic system transforma-
tion [31] based on the average value of f , or it can be also obtained by the diffusion
equation method [18]. The motivation is to assign a low weight for values of f whose
corresponding points are distant from the point x , and a high weight to values whose
points are close to x .

In practice only a finite set of function values f is available for smoothing in
blackbox optimization. Hence, the function ˜f can be approximated by a discrete
weighted sum of a set of observations. The function smoothing considered in this
work is commonly known as a kernel regression. It is also used in [13] to estimate the
convolution product.

The present work takes advantage of the function evaluations required by the opti-
mization process to dynamically smooth out the objective function. The document
is structured as follows. Section 2 proposes an algorithmic approach called Robust-
MADS that dynamically smoothes the objective function by using newly obtained
function evaluations, followed by a succinct convergence analysis. Section 3 illus-
trates its performance on a collection of test problems and on a blackbox problem
from the literature.

2 Algorithmic approach

Our algorithm is designed to perform a robust optimization of Problem (1) by smooth-
ing the noisy objective function. The approach is named Robust-MADS because it is
embedded into the Mesh Adaptive Direct Search (MADS) blackbox optimization
algorithm.

2.1 Mesh Adaptive Direct Search

MADS [3] is an iterative algorithm designed for a class of problems including uncon-
strained optimization of the form (1). The algorithm generates a sequence of trial
points at which the objective function is evaluated. Each trial point is located on a
mesh, a discretization of the space of variables, whose coarseness varies as the algo-
rithm unfolds. The mesh becomes coarser when a better solution is found, and gets
refined when local polling around the current best point fails to produce a better solu-
tion. The typical presentation of the MADS algorithm involves an iteration counter k
that is incremented every time the mesh size parameter is updated.

The present work does not go into the details of how the trial points are generated,
and simply considers the sequence of candidate points at which the objective function
is evaluated. The reader is invited to consult [1,6,26,29] for a thorough description of
the way MADS may generate trial points.

Let x0 ∈ R
n be the initial point, and denote x� the �-th candidate point at which f

is evaluated. In addition, V � = {x0, x1, . . . , x�} denotes the set of all trial points up
to x� for which f has been successfully evaluated. Later, we will use the information
(V �, f (V �)) to construct a smoothed version of the function f . For a given value of
�, we call x�

best ∈ argmin{ f (v) : v ∈ V �} the incumbent solution, i.e., the best known
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678 C. Audet et al.

solution. In the unlikely case that there are more than one candidate for the incumbent
solution, we select the one that is the closest to the previous incumbent x�−1

best .
The mesh Mk is updated at each iteration and is defined as follows. Let k be an

iteration number, and let � be the number of evaluations of f done by the start of
iteration k. The mesh is

Mk = V � +
{

δk Dz : z ∈ Z
m
}

(3)

where D is a n ×m matrix whose columns form a positive spanning set, and δk ∈ R+
is called the mesh size parameter. At iteration k, trial points are generated during two
separate steps, one global and one local, called the search and the poll. While search
trial points can be constructed using any technique as long as they remain on the mesh,
poll trial points are selected in a region around the incumbent x�

best, at a distance of at
most Δk : {x ∈ Mk : ‖x − x�

best‖∞ ≤ Δk}. The poll size parameter Δk is such that
Δk ≥ δk .

Typical values of the MADS parameters are to set the columns of D ∈ R
n×2n to

be the positive and negative coordinate directions. When either the search or poll step
is successful at improving the incumbent solution, the poll size parameter is doubled:
Δk+1 = 2Δk , and when the iteration is unsuccessful, the poll size parameter is halved:
Δk+1 = 1

2Δ
k . The mesh size parameter is set to δk+1 = min{(Δk+1)2,Δk+1}. This

way, the mesh size parameter will go to zero much faster than the poll size parameter.
In Robust-MADS we introduce a smoothed function ˜f to identify the incumbent

solutions whereas MADS uses the original function f .

2.2 Function smoothing

We define the function ˜f � : Rn 	→ R that uses the values (V �, f (V �)) to smooth f
using a kernel function. For any x ∈ R

n , we set

˜f �(x) = 1

P�(x)

∑

v∈V �

ψ(x, v) f (v) where P�(x) =
∑

v∈V �

ψ(x, v) (4)

andψ is a kernel function. There aremany kernel functions, for example, the Epanech-
nikov [15] or Gaussian functions. Here ψ is chosen to be a Gaussian function for a
random variable with average μ = 0 and variance σ 2. The kernel function is given
by:

ψ(x, v) = 1√
2πσ 2

e
−‖x−v‖2

2σ2 (5)

where ‖x −v‖ is the Euclidean distance between x and v. In this work, the smoothing
is dynamically adapted by setting the standard deviation as a multiple of the poll size
parameter when the trial point x is generated at iteration k: σ(x) = βΔk , where β > 0
is a fixed constant. The value σ(x) is tied to the poll size Δk when x was generated
and remains unchanged at ulterior iterations. Hence, ψ(x, v) and ψ(v, x) have the
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same value only if x and v have been produced with the same poll size Δk . Tying the
standard deviation to the poll size ensures that as the algorithm unfolds and Δk gets
small, more weight will be given to the neighbors of new trial points.

2.3 Updating the smoothed function

After evaluating f at a new trial point x and adding it to the set V �, the smoothed
function ˜f �(x) is evaluated using (4).

The smoothed function needs to be recalculated for all points in V �−1 when new
information is available and the smoothed function quality increases.

Proposition 1 Having a newly evaluated trial point x, the function ˜f � with � > 1 is
calculated for each point v ∈ V �−1 as follows:

˜f �(v) = 1

P�(v)

(

P�−1(v) ˜f �−1(v) + ψ(v, x) f (x)
)

(6)

where P�(v) = P�−1(v) + ψ(v, x).

Proof For each point v ∈ V �−1 = V �\{x},

˜f �(v) = 1

P�(v)

∑

w∈V �

ψ(v,w) f (w)

= 1

P�(v)

⎛

⎝

∑

w∈V �\{x}
ψ(v,w) f (w) + ψ(v, x) f (x)

⎞

⎠ .

The function ˜f �−1 has already been evaluated at v, and substituting the sum by
P�−1(v) ˜f �−1(v) in the previous equality gives (6). The quantity P�(v) is obtained by
adding the weight corresponding to (v, x) to the previous weight P�−1(v). ��

In a blackbox optimization context, this updating technique reduces the computa-
tional effort by storing the values ˜f �−1 and P�−1 in a cache.

2.4 The Robust-MADS algorithm

The Robust-MADS algorithm proceeds as follows. At each iteration, denoted by k,
the standard MADS algorithm generates a finite list Xk of search and poll trial points
located on the mesh Mk . Then, the blackbox function f is evaluated at trial points
in Xk . Due to hidden constraints [11,21], the evaluation of f may fail, and the cor-
responding point is simply discarded. When the evaluation succeeds, the smoothed
function f̃ � is constructed and evaluated at each point of the set V � and the incumbent
solution x�

best is determined. If the incumbent coincides with the last point where f
was evaluated, then the iteration ends and is called successful. The poll and mesh size
parameters are increased. Otherwise, the situation where the incumbent x�

best differs
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from x�−1
best is called a cache success because a previously evaluated trial point becomes

the incumbent solution. This is due to the new smoothing function. The iteration is
terminated, and the poll and mesh size parameters remain at their previous values. In
both cases of success, all trial points in Xk may not be evaluated at iteration k. This
is referred to as an opportunistic strategy. Finally, if x�

best = x�−1
best then the algorithm

proceeds to the next trial point. Algorithm 1 shows the pseudo-code of Robust-MADS.
Figure 1 illustrates the f̃ �(V �) evaluation for a given x ∈ Xk .

Algorithm 1 Pseudocode of the Robust-MADS algorithm.
procedure Initialization

Select MADS parameters and β for smoothing
Select an initial poll size Δ0 > 0, an initial point x0 in Rn and evaluate f at x0

Set � = 0, k = 0, x�
best ← x0 and V 0 ← {x0}

end procedure

procedure Robustmads
repeat

Prepare MADS iteration k: select the set Xk of search and poll trial points
Set the iteration success f lagk =false
Set the standard deviation smoothing parameter: σ = βΔk

Set Xk = Xk\V �

for all x ∈ Xk do
if f successfully evaluates at x then

Increase evaluation counter � ← � + 1
Set V � ← V �−1 ∪ {x}
Calculate ˜f �(v) and P�(v) using (4) or (6) for each v ∈ V �

Choose x�
best ∈ argmin{ ˜f �(v) : v ∈ V �}

if x = x�
best then

Iteration success: increase the MADS poll size: Δk+1 > Δk

Reset the iteration success f lagk =true
Break for all loop on x

else if x�
best �= x�−1

best then
Cache update success: MADS poll size unchanged: Δk+1 = Δk

Reset the iteration success f lagk =true
Break for all loop on x

end if
end if

end for
if f lagk = false then

MADS iteration failure: decrease the poll size: Δk+1 < Δk

end if
Increase the MADS iteration counter k ← k + 1

until meeting a MADS termination criterion
end procedure

2.5 Convergence analysis of Robust-MADS

The convergence analysis of Robust-MADS is similar to that of MADS [2]. The
cornerstone of the analysis states that if the set of trial points generated by a MADS
instance belongs to a bounded set, then the poll and mesh size parameters satisfy
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Fig. 1 Function smoothing of a
new point and all cache points in
Robust-MADS

lim inf
k→∞ δk = lim inf

k→∞ Δk = 0.

The requirement that the trial points belong to a bounded set is satisfied in particular
when the level sets of f are bounded. The proof of the result relies on the fact that
the mesh Mk contains finitely many points inside the bounded set. Consequently, the
result trivially holds when MADS is replaced by Robust-MADS.

The mesh and poll size parameters are only reduced at unsuccessful iterations, i.e.,
when the incumbent solution remains unchanged after completing an iteration. The
incumbent is then said to be a mesh local optimizer.

Definition 1 A convergent subsequence of mesh local optimizers, {xk}k∈K (for some
subset of indices K ), is said to be a refining subsequence if {Δk}k∈K converges to
zero.

It is shown in [2] that if the trial points generated by a MADS instance belong
to a bounded set, then refining subsequences exist and the following hierarchy of
convergence results hold. Let x̂ be the limit of a refining subsequence. If f is strictly
differentiable near x̂ , then ∇ f (x̂) = 0; if f is regular near x̂ then f ′(x̂; d) ≥ 0 for all
d ∈ R

n ; if f is Lipschitz near x̂ then f ◦(x̂; d) ≥ 0 for all d ∈ R
n ( f ◦ is the Clarke

Generalized derivative); if f is lower semi-continuous (lsc) at x̂ then f (x̂) ≤ f (xk)
for all k; and if none of the above hold, then x̂ is the limit of mesh local optimizers
on meshes that get infinitely fine. This last result is called the zeroth order result [5]
because it does not assume anything on the objective function f . In the present context,
the objective function f is noisy and therefore it does not satisfy any of the continuity
assumptions (lsc, Lipschitz, regular, strictly differentiable), and consequently, the only
part of the convergence analysis that remains valid is the zeroth order result.

3 Computational study

We first analyze the performance of Robust-MADS on a collection of artificially cre-
ated unconstrained deterministic noisy problems from the derivative-free optimization
literature [24], in the form of Eq. (2).

Second, we consider the blackbox optimization problem proposed and studied
in [7]. The objective function of this problem returns the CPU time required by a
trust-region algorithm to solve a collection of test problems. The variables of the
blackbox problem are the four trust-region parameters. Each blackbox evaluation is
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time-consuming and the objective function value is contaminated by numerical noise
because it consists of a CPU time. In fact, evaluating it twice with the same parameter
values produces slightly different values.

For both deterministic and blackbox problemswe study the effect of different values
of the kernel function standard deviation factor β with respect to noise level.

Both Robust-MADS and MADS are available in the freely availableNOMAD [20]
software package (version 3.8.0) using the OrthoMADS 2n directions of MADS with
quadratic models and anisotropic mesh disabled. The stopping criteria of NOMAD
are set to be a maximal number of evaluations and a minimal mesh size parameter
value of 10−13.

3.1 Analytical problems

The analytical problems are generated from the 22 different CUTEst [16] functions
used in [24] with different starting points giving a total of 53 smooth problems with
the dimension n ranging from 2 to 12. Note that for 8 problems, some variables
are constrained by a lower bound of zero. For these, infeasible trial points are simply
rejected.We consider the deterministic noisy variant of these functions in the form (2).
The parameter α ∈ R

+ ∪ {0} controls the noise amplitude:

φ(x) = αT3(κ(x))

where κ(x) = 0.9 sin(100‖x‖1) cos(100‖x‖∞)+0.1 cos(‖x‖2) and T3(x) = 4x3−3x
is the cubic Chebyshev polynomial.

We study the influence of the noise level on the performance of the algorithm
by considering other values than the default value (α = 0.001) given in [24] which
corresponds to a very weak noise. On the low end side of the noise level we obtain
smooth functions f (x) = z(x) for α = 0. For the deterministic noise, above α � 0.8
the noise amplitude is so large that it dominates the variations of f (x) due to z(x) and
the algorithms stop near the starting point. For this reason, we consider that α = 0.7
corresponds to the strongest noise level worth studying.

Ten optimization runs are reported for each function with 10 different pseudo-
random number generator seeds that influence the selection of candidate points in
MADS and Robust-MADS. Having a large enough set of problems allows the pre-
sentation of results with data profiles [24] using the following convergence test with
respect to the smooth objective function: z(x0) − z(xe) ≥ (1 − τ)

(

z(x0) − z∗
)

,
where x0 denotes the starting point, xe corresponds to the best point obtained
after e evaluations on one of the problems for all the compared methods and seed,
τ is the convergence tolerance, and z∗ is the smooth objective function value of
the best solution obtained by all the methods for all the runs of the considered
problem.

In the figures, the horizontal axis is the number of evaluations divided by n + 1,
and the vertical axis corresponds to the proportion of problems solved according to a
given τ . Each variant of MADS corresponds to one curve, so that graphic comparison
of the performance is easy.
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(a) (b)

(c) (d)

Fig. 2 Data profiles obtained with MADS and Robust-MADS for a convergence tolerance of τ = 10−3

with test problems of various noise levels (α = 0 is smooth and α = 0.7 is the noisiest). (a) smooth (α = 0)
(b) α = 0.1 (c) α = 0.4 (d) α = 0.7

The data profiles of Fig. 2 show that for problems with relatively low noise level
(α = 0 and α = 0.1),MADS tends to perform better than Robust-MADS, as expected.
However, Robust-MADS is less sensitive to the noise level, and for α ≥ 0.4 it tends
to become more effective than MADS. The parameter β that controls the smoothing
intensity impacts the performance of Robust-MADS. The small value β = 0.1 makes
Robust-MADS similar to MADS. For β = 4 the performance of Robust-MADS is not
as good as for smaller values of β. Based on these preliminary results, β = 2 appears
to be an adequate compromise for noisy problems.

3.2 Tuning trust-region parameters

The blackbox problem is taken from [7], and consists in finding values of a set of
continuous parameters of a trust-region (TR) algorithm:

p = (η1, η2, α1, α2) ∈ Ω = {p ∈ R
4 | 0 ≤ η1 < η2 and 0 < α1 < 1 < α2 ≤ 10}.
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(a) (b)

(c) (d)

(e) (f)

Fig. 3 Convergence history plots for the blackbox optimization problem using NOMAD and SNOBFIT
(a) Robust-MADS β = 0.1 (b) Robust-MADS β = 1 (c) Robust-MADS β = 2 (d) Robust-MADS β = 3
(e) MADS (f) SNOBFIT

The objective is to minimize the computational time required by TR to solve a
collection of 55 test problems. TheCPU time reported in [7] for solving these problems
is 3 hours and 45 minutes with the parameter values p = ( 14 ,

3
4 ,

1
2 , 2), but is now 5

minutes and 40 secondes with newer machines (Intel(R) Core(TM) i7 CPU 3.40GHz
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with 6 processors). The best solution reported in [7] is p∗
o = (0.22125, 0.94457031,

0.37933594, 2.3042969) with corresponding CPU time just under 2 hours and 50
minutes, an improvement of approximately 25%. The newer machines requires 4
minutes, a 29% improvement. The two relative improvements are comparable.

The objective function value f (p) returns the CPU time consumed by TR to solve
the problems with parameter values p ∈ Ω . The value f (p) is set to infinity if x /∈ Ω .
Furthermore, if TR fails to converge within ten minutes for any of the 55 problems,
f (p) is once again set to infinity. Consequently, these trial points are rejected by the
optimization method. A maximum budget of 500 evaluations is considered during the
optimization in addition to the default minimum mesh size convergence criterion of
NOMAD. Each optimization run requires approximately 500× 4 min ≈ 33 h of CPU
time. The duration of a single evaluation depends on the workload of the computer,
and to limit the impact of this factor on the optimization, a single optimization is
conducted at a time with no other significant workload.

A total of six optimization runswere performed. Four of them are donewithRobust-
MADS, and for comparisons, one of them is done with the standardMADS algorithms
(without any robustness treatment) and another one is done with theMATLAB imple-
mentation of SNOBFIT [9] (Stable Noisy Optimization by Branch and FIT). This last
algorithm is designed for the robust and fast solution of noisy optimization problems.
All tests were conducted with default algorithmic parameters, on the same computer
with the same type of workload.

Figure 3a–f show the convergence history plots for each optimization. The small
dots represent the finite objective function value f . In Fig. 3a–d, the other symbols
represent the smoothed function ˜f constructed byRobust-MADS to identify successes
during optimization. Robust-MADS produces many more successes than MADS and
the mesh size parameter is not reduced as quickly. The dispersion of the objective
function value is more important at the beginning of the optimization process and
tends to decrease toward the end. This is more obvious with the MADS optimization
in Fig. 3e where a small dispersion of f at the end of the optimization reduces to
the stochastic variation of the CPU time for a given evaluation for some trust-region
parameters that are in practice identical. The dispersion seen in Fig. 3f shows that
SNOBFIT has the opposite behavior.

The larger circles in Fig. 3a–d represent the smoothed objective function value
at every successful iteration. These values are not monotone because the smoothed
function is recalibrated at every iteration. The triangles represent the smoothed value
where a previously evaluated trial point was re-established as an incumbent solution: A
cache success. The decrease in the smoothed objective function value is more apparent
for Robust-MADSwithβ = 2 and 3which also leads to better objective function value
(see Table 1). As observed when running the analytical problems, a value of β larger
than 3 seems not beneficial when considering the final objective function value.

Table 1 proposes another way to evaluate the quality of the solutions produced by
MADS, Robust-MADSwith the four values of β, and SNOBFIT. The second column
lists f (p∗), the objective function value at the final point produced by the optimization
methods. Because of the smoothing techniques, this point is not the point that produced
the lowest value of f . In addition, and in order to quantify the stability of that solution,
the objective function valuewas evaluated at 16 additional neighbouring points of each
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p∗. These 16post-optimization points are obtainedby rounding-up and rounding-down
each of the four components of p∗ to the third decimal. The column labelled Failures
indicates the number out of these 16 solutions where the evaluation of f failed. The
minimal, maximal, range and mean values are reported in the table. The last column
of the table gives the smoothed value ˜f (p∗) produced by Robust-MADS.

Worst-case analysis of the table suggests that the best strategy is Robust-MADS
with β = 2. The corresponding value max f (p∗

i ) = 218.14 is less than f (p∗) and
min f (p∗

i ) for all other values of β and for MADS.
SNOBFIT produced a solution with f (p∗) = 205.41. At first glance, this might

appear to be interesting, but notice that the evaluation of f failed at 4 out of the
16 neighbouring solutions. This means that for these nearby values, the trust-region
algorithm failed to converge within the allotted time. The range of the SNOBFIT
solution values range f (p∗

i ) = 34.87 is much larger than that of all Robust-MADS
runs. Furthermore, Robust-MADS with β = 2 produced a trial point with f (x) =
183.76, but not considered as a success because the value of f increases significantly
for small perturbations on x .

In both the analytical and the blackbox problem, we recommend to set the standard
deviation of the Gaussian distribution used to determine the Robust-MADS weights
as twice (β = 2) the value of the poll size parameter.

4 Discussion

We have proposed a straightforward way to smooth out an objective function by
means of a weighted average involving a kernel function parameterized by the current
poll size parameter. This means that as the algorithm generates points that converge
to some region in the space of variables, the objective function is sampled more
and more in that region, thereby increasing the number of sampling points. There
are no additional mechanism to resample extra points. The method was tested on
a collection of analytical test problems, and on a real noisy black parameter-tuning
problem.

Future work will focus on extending this approach to constrained blackbox opti-
mization, using the progressive barrier [4].
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