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Abstract How to add glycerol to maximize production of 1,3-propanediol (1,3-PD)
is a critical problem in process control of microbial fermentation. Most of the existing
works are focusing on modelling this process through deterministic-based differen-
tial equations. However, this process is not deterministic, but intrinsically stochastic
considering nature of interference. Thus, it is of importance to consider stochastic
microorganism. In this paper, we will modelling this process through stochastic dif-
ferential equations and maximizing production of 1,3-PD is formulated as an optimal
control problem subject to continuous state constraints and stochastic disturbances. A
modified particle swarm algorithm through integrating the hybrid Monte Carlo sam-
pling and path integral is proposed to solve this problem. The constraint transcription,
local smoothing and time-scaling transformation are introduced to handle the continu-
ous state constraints. Numerical results show that, by employing the obtained optimal
control governed by stochastic dynamical system, 1,3-PD concentration at the terminal
time can be increased compared with the previous results.
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1 Introduction

The modern stochastic optimal control theory has been developed along the lines
of Pontryagin maximum principle and Bellman dynamic programming [1,2]. The
stochastic maximum principle has been first considered by Kushner [3]. A general
theory of stochastic maximum principle based on random convex analysis was given
by Bismut [4]. Modern presentations of stochastic maximum principle with backward
stochastic differential equations are considered in [5].

The optimal control of stochastic systems is a difficult problem, particularly when
the system is strongly non-linear and there are state and control constraints [6]. The
solution of higher dimensional problems demands a different approach. Rather than
trying to solve the problem globally, one can look for a locally optimal solution [7].
This is usually achieved by first solving the problem in the noise-free case, yielding
an optimal trajectory, and then modelling the influence of the noise around this tra-
jectory, hybrid Monte Carlo sampling was used to infer the control on the problem of
stochastic optimal control in continuous-time and state-action space of system with
state contraints [8]. A revised Hooke–Jeeves algorithm based on the above idea is
constructed to solve the stochastic optimal control problem on designing the trajec-
tory of horizontal wells [9]. A situation that is particularly common is that the state
space is constrained. Taking such constraints into account is an important issue in the
computation of the optimal control.

Over the past several years, 1,3-PD has been paid attention in microbial production
throughout theworld because of its lower cost, higher production and no pollution [10].
In order to get a better understanding of the processes involved, to extend results and
to make predictions, mathematical models are indispensable. For bacterial growth,
the models are usually taken the form of differential equations or systems thereof.
The bioprocess, including mathematical model, optimal control, robust H∞ control,
stochastic perturbance and uncertainty, have been widely studied in literatures [11–
14]. Compared with continuous and fed-batch cultures, under some certain operation
conditions, the motivations to study batch culture can be divided into two aspects [15]:
(1) batch culture is a simple and easy operation mode compared with fed-batch and
continuous cultures; (2) batch culture is the basis to understand or control fed-batch
and continuous cultures. Therefore, nonlinear dynamical systems in batch culture
have been extensively considered in recent years, including sensitivity analysis [16],
joint estimation [17], hybrid system [18], multi-objective optimization [19], robust
multi-objective optimal control [20] and strong stability [21].

However, for all the papers mentioned above, a major drawback is that they do not
take into account the presence of stochasticity. The dynamics of the system are not
deterministic, but intrinsically stochastic, and consideration of inherent stochasticity
of microorganism is necessary to uncover the precise nature of the real process. Dif-
ferential equations where some or all the coefficients are considered random variables
or that incorporate stochastic effects (usually in the form of white noise) have been
increasingly used to deal with errors and uncertainty which becomes a growing field
of great scientific interest. In this paper, the stochasticity in the model is introduced
by parameter perturbation in the specific growth rate of cells [22,23]. The process
is modeled by a stochastic ordinary differential system driven by five dimensional
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Brownian motion, which is time independent and suitable for the factual fermenta-
tion. Stochastic control is a subfield of control theory which deals with the existence of
uncertainty. Stochastic control aims to design the optimal controller that performs the
desired control task. In this paper, we study the stochastic optimal control of 1,3-PD
production where the volumetric productivity of 1,3-PD and dilution rate are used as
the optimization target and manipulated variable, respectively. The main differences
from our previous work [23] is that the dynamical system is time-dependent. Our main
concern is to seek the solution of this stochastic optimal control problem.

The remaining of the paper is organized as follows. In Sect. 2, we present a nonlinear
stochastic dynamical system of batch fermentation process. In Sect. 3, an optimal
control model is established. In Sects. 4 and 5, we develop a computational approach
to solve this optimal control model. Section 6 illustrates the numerical results. Finally,
conclusions are provided in Sect. 7.

2 Nonlinear stochastic dynamical system

2.1 Deterministic model

Mass balances of biomass, substrate and products in batchmicrobial culture arewritten
as follows (see [24]).

⎧
⎨

⎩

ẋ1(t) = μx1(t)
ẋ2(t) = −q2x1(t)
ẋi (t) = qi x1(t), i = 3, 4, 5.

t ∈ (0, T )

where the specific growth rate of cellsμ(t), specific consumption rate of substrateq2(t)
and specific formation rate of product qi (t) are expressed by Eqs. (2)–(4), respectively.

μ(t) = μm exp

(
−(t − tm)2

2t2l

)
5∏

i=2

(

1 − xi (t)

x∗
i

)

q2(t) = m2 + μ(t)

Y2
qi (t) = mi + μ(t)Yi , i = 3, 4, 5,

where x1(t), x2(t), x3(t), x4(t), x5(t) are the concentration of biomass, glycerol, 1,3-
PD, acetic acid and ethanol at time t in reactor, respectively. x(0) := x0 ∈ R

5+ denotes
the initial state. Under anaerobic conditions at 37 ◦Cand pH= 7.0,μm is themaximum
specific growth rate of cells, and ks isMonod saturation constant.mi , Yi , ki , i = 2, 3, 4
are system parameters [2]. T ∈ (0,+∞) is the terminal time of batch fermentation.

The growth of microorganisms such as bacteria and algae is of great interest in
biology and medicine. Field observations and laboratory experiments are expensive
and very difficult to perform. In the laboratory there is much more control. However,
it is almost impossible to keep the external factors constant and uniform in the field.
In addition, the conditions may still vary in time and also be different from actual
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Table 1 Parameters values of
each reactant in the system

Reactants tl tm μm mi Yi

– 1.7924 2.4508 0.9192 – –

i=2 – – – 1.358 0.01558

i=3 – – – − 8.9346 64.69

i=4 – – – 2.1098 4.541

i=5 – – – − 0.183 3.046

situations in the real environments of interest. Moreover, errors in measuring the
population sizes occur frequently. Even when measurements are done with the utmost
care, the measured values will differ between experiment batches. In most cases, this
variation is quite dramatic due to the large sizes and/or variability of the populations,
inaccuracies in the methods used to assess them, error (human or otherwise), as well
as other unknown factors. Thus, it is important to consider the stochastic disturbances
in the nonlinear multistage dynamical system, especially for the stochastic optimal
control problem in this case.

2.2 White noise stochastic disturbances on the model parameter

Based on our previous literature [22], mass balances of biomass, substrate, and prod-
ucts in batch culture can be formulated as the following nonlinearmultistage stochastic
dynamical system:

dx(t) = F(x(t))dt + G(x(t))dw, t ∈ I = [0, T ], (1)

x(0) = x0, (2)
where

F(x(t)) = (μx1(t),− q2x1(t), q3x1(t), q4x1(t), q5x1(t))
�, (3)

G(x(t)) = σμ(x1(t), x1(t)/Y2,Y3x1(t),Y4x1(t),Y5x1(t))
�, (4)

E( ˙w(t)) = 0,

D( ˙w(t)) = 1.

σμ is the intensity of the inherent stochasticity disturbance. In Eq. (1), x(t) =
(x1(t), . . . , x5(t))� is a stochastic process that reflects the fluctuating trend of the
proportion under the inherent stochasticity disturbance.

The value of the system parameters are listed in Table 1 (see [24]).

3 Stochastic optimal control problem

The solution of systems (1) and (2) with respect to control vector is defined by x(·, u).
When the concentration of glycerol was declined to 150 mmol/L, we terminate the
process of batch culture, that is,

Ec�
2 x(τ, u) = 150,

123



Practical algorithm for stochastic optimal control problem… 531

where c2 := (0, 1, 0, 0, 0)�, τ = inf{t : Ec�
2 x(t, u) = 150} and E denotes the

mathematical expectation. Similar with the deterministic case, in batch culture, the
initial concentrations of biomass, glycerol and the terminal time can be chosen as
control variables. Let u := (u1, u2, u3)� = (x01, x02, τ )� ∈ R

3+ be the control
vector. Based on the factual fermentation, there exist critical concentrations, outside
which cells cease to grow, of biomass, glycerol, 1,3-PD, acetate and ethanol. Hence,
it is biologically meaningful to restrict the concentrations of biomass, glycerol and
products in a set W and the control vector in a admissible control set U defined
respectively as follows:

x(t, u) ∈ W �
5∏

i=1

[xi∗, x∗
i ] ⊂ R

5+. ∀t ∈ I,

u ∈ U �
3∏

i=1

[ui∗, u∗
i ] ⊂ R

3+,

where u∗i and u∗
i denote the upper and lower bound of the control variables, respec-

tively.
The aim of the microbial fermentation in batch culture is to maximize the yield of

the 1,3-PD, so we establish the stochastic optimal control problem of the batch culture
as follows.

(SOCP) : inf J (u) � −E
x3(u3, u)

u3
s.t. x(t, u) ∈ W, ∀t ∈ [0, u3],

u ∈ U.

From the theory on continuous dependence of solutions on parameters, the existence
of the optimal control and some important properties had already been studied in our
previous work [23].

4 Time-scaling transformation

Problem SOCP can be treated as a constrained optimization problem. The control
variable u3 is decision variable to be optimized. It is cumbersome to integrate the
state and variational or costate systems numerically when the control variable u3 is
decision variable. To address the problem caused by the variable control variable u3,
the time-scaling transformation [25], whichmaps the variable switching times to fixed
points in a new time horizon, is now one of the most popular tools.

Define

t (s) = u3 · s. (5)
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Let x̃(s) = x(t (s)). If s ∈ [0, 1], then t (s) ∈ [0, u3] and (1)–(2) with
F(x),G(x), E(ẇ(t)), D(ẇ(t)) become

˙̃x(s) := f̃ (x̃(s), u, w̃(s))

= u3 F̃(x̃(s)) + u3G̃(x̃(s)) ˙̃w(s) = u3[F(x(t (s))) + G(x(t (s)))ẇ(t (s))],
(6)

x̃(0) = x0, (7)

where

F̃(x̃(s)) := (μ(t (s))x1(t (s)),−q2(t (s))x1(t (s)), q3(t (s))x1(t (s)), q4(t (s))x1(t (s)),

q5(t (s))x1(t (s)))
�,

G̃(x̃(s)) := σμ(x1(t (s)), x1(t (s))/Y2,Y3x1(t (s)), Y4x1(t (s)),Y5x1(t (s)))
�,

E( ˙̃w(s)) = 0,

D( ˙̃w(s)) = 1.

The solution of system (6) with (7) is defined by x̃(·, u). Problem SOCP becomes

S̃OCP : inf J̃ (u) � − x̃3(1, u)

u3
s.t. x̃(s, u) ∈ W, ∀s ∈ [0, 1]

u ∈ U.

5 Approximate problem

Problem S̃OCP can be treated as a constrained optimization problem by using the
control parametric method, see the monograph [25] or the recent survey papers [25].
In addition, based on the above description, we can easily see that the correspond-

ing parameter selection problem of Problem S̃OCP is a semi-infinite programming
problem. An efficient algorithm, in which the so-called constraint transform and local
smoothing techniques are involved, can address the issue [25].

For Problem S̃OCP, it is difficult to directly judge whether the constraint condition
holds or not. In practice, the essential difficulty lies in the judgement of the constraint:

x̃(s, u) ∈ W, ∀ s ∈ [0, 1]. (8)

To surmount these difficulties, let

g̃ j (x̃(s, u)) := x̃ j (s, u) − x∗
j , g5+ j (x̃(s, u)) := x j∗ − x̃(s, u), j ∈ I5.

The constraint (8) is equivalently transcribed into

G(u) = 0, (9)
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where G(u) :=
∑10

j=1

∫ 1

0
max{0, g j (x̃(s, u))}ds. However, G(u) is non-smooth in

u ∈ U . Consequently, standard optimization routines would have difficulties with this
type of equality constrains. We replace (9) with

G̃ε,γ (u) := G̃ε(u) − γ =
10∑

j=1

∫ 1

0
ϕε, j (s, u)ds − γ ≤ 0, (10)

where ε > 0, γ > 0 and

ϕε, j (s, u) :=

⎧
⎪⎪⎨

⎪⎪⎩

0, if g̃ j (x̃(s, u)) < −ε,

(g̃ j (x̃(s, u)) + ε)2

4ε
, if − ε ≤ g̃ j (s, u) ≤ ε,

g̃ j (x̃(s, u)), if g̃ j (x̃(s, u)) > ε.

Therefore, Problem S̃OCP can be approximated by a sequence of nonlinear

programming problems S̃OCPε,γ defined by replacing constraint (9) with (10), respec-
tively. As shown in [25], the following theorem shows that the solution of the

corresponding Problem S̃OCPε,γ , will satisfy the continuous state inequality con-
straint (10) under certain conditions. Let

Uε :=
{

u ∈ U
∣
∣
∣G̃ε(u) ≤ 0

}

,

Uε,γ :=
{

u ∈ U
∣
∣
∣G̃ε,γ (u) ≤ 0

}

.

Theorem 1 Given δ > 0, for each ε > 0, there exists a γ (ε) > 0 such that for all

γ (ε) > γ > 0, any feasible solution of Problem S̃OCPε,γ is also a feasible solution

of Problem S̃OCP.

Proof For any u ∈ U, we have

dg̃ j (s, u)

ds
=

5∑

i=1

∂ g̃ j (x̃(s, u))

∂ x̃i
f̃i (x̃(s), u, w̃(s)), j ∈ I10.

Clearly, g̃ j (x̃(s|θ)), j ∈ I10, are continuously differentiable. Then, there exists a
positive constant m j , j ∈ I10, such that, for all θ ∈ 
,

∣
∣
∣
dg̃ j (x̃(s|θ))

ds

∣
∣
∣ ≤ m j , ∀s ∈ [0, 1(δ)]. (11)
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Furthermore, for ε > 0, define

kε =
10∑

j=1

k j,ε :=
10∑

j=1

ε

10
min

{
1,

ε

2m j

}
. (12)

It suffices to show that Uε,γ ⊂ U, for any γ satisfying

0 < γ < kε. (13)

We assume if this is not the case. Then, there exists a u ∈ U such that

10∑

j=1

∫ 1

0
ϕε, j (s, u)ds − γ ≤ 0, (14)

but

10∑

j=1

∫ 1

0
max

{
0, g̃ j (x̃(s, u))

}
ds > 0. (15)

Since g̃ j (x̃(s, u)), j ∈ I10, are continuous functions of s in [0, 1], (15) implies that
there exists a s̄ ∈ [0, 1] such that

g̃ j (x̃(s̄, u)) > 0, j ∈ I10. (16)

Again by continuity, for each j ∈ I10, there exists an interval I j ⊂ [0, 1] containing
s̄ such that

g̃ j (x̃(s, u) > −ε

2
, ∀s ∈ I j . (17)

Using (11) it is clear from (17) that the length |I j | of the interval I j must satisfy

|I j | ≥ min
{
1,

ε

2m j

}
. (18)

From the fact that ϕε, j (s, u) is nonnegative, it follows from (14) that

0 ≥
10∑

j=1

∫ 1

0
ϕε, j (s, u)ds − γ ≥

16∑

j=1

∫

I j
ϕε, j (s, u)ds

−γ ≥
10∑

j=1

{
min
s∈I j

ϕε, j (s, u)
}
|I j | − γ. (19)
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Now, in view of (17) and the monotony of the function ϕε, j (s, u), j ∈ I10, we have

min
s∈I j

{
ϕε, j (s, u)

}
>

ε

10
, j ∈ I10. (20)

Combining (12), (13), (18), (19) and (20), we have

0 ≥
10∑

j=1

∫ 1

0
ϕε, j (s, u)ds − γ >

10∑

j=1

ε

10
min

{
1,

ε

2m j

}
− γ = kε − γ > 0.

This is a contradiction. Thus the proof is complete. ��
Remark 1 Theorem 1 ensures that the corresponding γ (ε) for each ε in this sequence
is finite.

For constructing the optimization algorithm, when the parameter u is not feasible,
we canmove the parameter towards the feasible region in the direction of the gradients
of constraint G̃ε,γ (u) with respect to parameter u. In this paper, we develop a scheme
for computing the gradients of constraint G̃ε,γ (u).

Theorem 2 For each ε > 0, γ > 0, the derivatives of the constraint functionals
G̃ε,γ (u) with respect to the i th component of the parameter vector are

∂G̃ε,γ (u)

∂ui
:=

∫ 1

0

∂H(s; u, χ, x̃)

∂ui
ds, i = 1, 2, 3,

where

H(s; u, χ, x̃) :=
10∑

j=1

ϕε, j (s, u) + χ�(s)
[
u3 F̃(x̃(s, u)) + u3G̃(x̃(s, u)) ˙̃w

]
, (21)

and

χ(s) := (χ1(s), χ2(s), . . . , χ5(s))
�, (22)

is the solution of the costate system

χ̇ (s) = −∂H(s; u, χ, x̃)

∂ x̃(s, u)
, (23)

with the boundary condition

χ(1) = (0, 0, 0, 0, 0)�. (24)
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Proof Let u∈U be an arbitrary but fixed vector and εi , i ∈ I3, be an arbitrary real
number. Define

u1,σ := (u1 + σε1, u
2, u3),

u2,σ := (u1, u2 + σε2, u
3),

u3,σ := (u1, u2, u3 + σε3),

where σ > 0 is an arbitrarily small real number such that ui∗ < ui +σεi < u∗
i , i ∈ I3.

Therefore, G̃ε,γ (ui,σ ) can be expressed as

G̃(ui,σ ) := γ +
10∑

j=1

∫ 1

0
ϕε, j (s, u)ds +

∫ 1

0
χ�(s)[ f̃ (x̃(s), u, w̃(s)) − ˙̃x(s, u)]ds,

(25)

where χ is yet arbitrary. Thus, it follows that

G̃ε,γ (ui,σ ):=dG̃ε,γ (ui,σ )

dσ
|σ=0 = ∂G̃(u)

∂ui
εi

=
∫ 1

0
{∂H(s; u, χ, x̃)

∂ x̃(s, u)
x̃(s, u) + ∂H(s; u, χ, x̃)

∂ui
εi − χ(t) ˙̃x(s, u)}ds,

(26)

where H(s; u, χ, x̃) is defined as in (21). Integrating (26) by parts and combining
(21)–(25), we have

∂G̃ε,γ (u)

∂ui
εi =

∫ 1

0

∂H(s; u, χ, x̃)

∂ui
εids. (27)

Since εi is arbitrary, (21) follows readily from (27) and the proof is complete. ��

6 Practical optimization algorithm of the stochastic optimal control
problem

Various optimization methods such as gradient-based techniques [26] can be applied

to solve Problems
{
S̃OCPε,γ

}
. Nonetheless, all those techniques mentioned above

are only aimed at finding local (not global) optimal solutions. Particle swarm opti-
mization (PSO) algorithm introducing by Kennedy and Eberhart [27] can find the
global optimum or a good suboptimal solution than gradient-based techniques. PSO
algorithm [28] shares many similarities with evolutionary computation techniques
such as Genetic Algorithms (GA). The system is initialized with a population of ran-
dom solutions and searches for optima by updating generations. However, unlike GA,
PSO algorithm has no evolution operators such as crossover and mutation. In PSO
algorithm, the potential solutions, called particles, fly through the problem space by
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following the current optimum particles. However, what we need to solve is a problem
with state constraints, to which the original PSO algorithm can not be applied directly.
Although there exist many constraint handling techniques in the evolutionary com-
putation [29], the treatment of continuous state constraints is seldom considered. We
propose a handling technique for this type of constraints. The optimization algorithm,

based on the theory of swarm intelligence algorithm, for Problem S̃OCPε,γ is directly
proposed as follows.

Algorithm 1

Step 1. Set constants wstart , wend ∈ (0, 1) and Iter = 0; c1, c2 are positive constants
and R1, R2 are random numbers in [0, 1].
Step 2.Randomly generate N initial particleswith a uniformdistribution onU . Denote
the position and velocity of particles by uIter , j ∈ U and v Iter , j ∈ V := [vmin, vmax],
respectively. Set Jgbest = +∞.

Step 3. If Iter < MIter , set j = 0; otherwise output Jgbest , Pgbest and stop.
Step 4. If j < N , compute the solution of system (6) and (7) with uIter , j and go to
Step 5; otherwise goto Step 6.
Step 5.Check the value of G̃ε,γ (uIter , j ). If G̃ε,γ (uIter , j ) ≤ 0, then computer J (uIter , j ),
set j = j+1 and go to Step 4; otherwise, that is, G̃ε,γ (uIter , j ) > 0,move the parameter

towards the feasible region in the negative direction of ∂G̃ε,γ (uIter , j )

∂uIter , j
i

, i ∈ I3, computed

by Theorem 2 with Armijo line searches until G̃ε,γ (uIter , j ) ≤ 0, compute J (uIter , j ),
set j = j + 1 and go to Step 4.
Step 6. Compute

Jbest (u
Iter ) = max

j=1,2,...N
J (uIter , j ),

pbest (u
Iter ) = arg max

j=1,2,...N
J (uIter , j ).

Step 7. If Jbest (uIter ) ≤ Jgbest , let Jgbest = Jbest (uIter ), pgbest = pbest (uIter ).
Step 8. Update particles:

uIter+1, j = uIter , j + v Iter+1, j ,

v Iter+1, j = w ∗ v Iter , j +c1 ∗ R1 ∗ (pbest (u
Iter )−uIter , j )+c2 ∗ R2 ∗ (pgbest − uIter , j ),

w = (wstart − wend) ∗ MIter − Iter
MI ter

+ wend;

set Iter = Iter + 1 and go to step 3.

Remark The set of velocity of particles V is bound and closed, The admissible control
setU can be call a “box” because of its rectangular shape. Thus, when the particles hit
the boundary, for i = 1, 2, 3 and j = 1, 2, . . . N , we use the classic method to cope
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with it as follows:

v
j
i =

{
vmax, if v

j
i ≥ vmax,

vmin, if v
j
i ≤ vmin,

u j
i =

{
2u∗

i − u j
i , if u j

i ≥ u∗
i ,

2u∗i − u j
i , if u j

i ≤ u∗i .

Combining Algorithm 1 with Theorem 1, we can develop the following algorithm

to solve Problem S̃OCP .

Algorithm 2

Step 1. Choose initial values of ε > 0, γ > 0.

Step 2. Solve Problem S̃OCPε,γ using Algorithm 2 to give u∗
ε,γ .

Step 3. Check feasibility of g̃ j (x̃(s, u∗
ε,γ )) for t ∈ [0, 1], j ∈ I10.

Step 4. If u∗
ε,γ is feasible, go to Step 5; otherwise, set γ := αγ . If γ > γ̄ , where γ̄ is

a prespecified positive constant, go to Step 2; otherwise go to Step 6.
Step 5. Set ε := βε. If ε > ε̄, where ε̄ is a prespecified positive constant, go to Step
2; otherwise, go to Step 6.
Step 6. Output u∗

ε,γ and stop.

Remark 2 In Algorithm 2, ε is a parameter to control the accuracy of the smoothing
approximation. γ is a parameter to control the feasibility of the constraint (10). ε̄ and
γ̄ are two predefined sufficiently small parameters to ensure the termination of the
algorithm. The parameters α and β must be chosen less than 1.

7 Numerical results and computer simulations

According to the model and algorithm mentioned above, we have programmed the
software and applied it to the optimal control problem of microbial fermentation in
batch culture.

The basic data are listed, respectively, as follows:
boundary value of control vector:
u∗1 = 0.01 mmol/L, u∗

1 = 1 mmol/L, u∗2 = 200 mmol/L, u∗
2 = 939.5 mmol/L,

u∗3 = 2 h, u∗
3 = 10 h.

boundary value of state vector:
x∗1 = 0.001 mmol/L, x∗

1 = 2039 mmol/L, x∗2 = 0.001 mmol/L, x∗
2 = 939.5

mmol/L, x∗3 = 0.01 mmol/L, x∗
3 = 10 mmol/L. u∗4 = 0.01 mmol/L, u∗

4 = 1026
mmol/L, u∗5 = 200, u∗

5 = 360.9 mmol/L.
We adopt wstart = 0.9, wend = 0.4, c1 = c2 = 2 and N = 1000 in the proce-

dure. Then, by Algorithms 1–3, the optimal control vector ū and objective function
J (ū) are (0.11201, 723.423, 5.2783)� and 58.256, respectively. In [30], the optimal
control vector ū and objective function J (ū) are (0.973186, 547.04, 5.17509)� and
54.5911, respectively. Numerical results show that, by employing the optimal control,
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Fig. 1 The future concentration
of 1,3-PD and the number of
sample trajectory is 5
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Fig. 2 The average future concentration of 1,3-PD and the number of sample trajectory is 5000

the concentration of 1,3-PD at the terminal time can be increased, compared with the
previous results.

To illustrate the stochastic nature of batch fermentation process sufficiently, a
numerical example is given. In the example, we let σμ = 0.01638 [31] and use
Monte Carlo method to generate five thousand random inputs, which consist of the
infinitesimal increment of standardBrownianmotion dW (s). Afterwards, we solve the
proposed stochastic model using the following Stochastic Euler–Maruyama scheme
and obtain five thousand solution paths of the model. Our numerical approximation
to X (τ j ) will be denoted by X j .

Stochastic Euler–Maruyama method [32]

Xk
j = Xk

j−1 + F(Xk
j−1)s + G(Xk

j−1)[W (τ j ) − W (τ j−1)],
j = 1, 2, ..., L
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where s = 1/L for some positive integer L; Xk denotes the k-th component of
the X (t); τ j = js; W (τ j ) − W (τ j−1) is normally distributed with mean zero and
variance τ j − τ j−1 = s; equivalently, W (τ j ) − W (τ j−1) ∼ √

sN (0, 1), where
N (0, 1) denotes a normally distributed random variable with zero mean and unit
variance.

Figure 1 shows that the different sample paths of 1,3-PD based on the different
perturbations and Fig. 2 shows that average path of 1,3-PD based on the 5000 sample
paths.

8 Conclusions

In this paper, different from the previous approach in [9], we proposed a modified
particle swarm algorithm to solve the stochastic optimal control problem based on the
theory of swarm intelligence algorithm.Numerical results show that, by employing the
optimal control, the concentration of 1,3-PD at the terminal time can increase signifi-
cantly when compared with those obtained by the previous results. Our current tasks
accommodate practical numerical method of the stochastic optimal control problem in
the fermentation process. However, the convergence analysis and optimality function
of the algorithm are also needed to be further investigated.
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