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Abstract Optimal process control with control constraints is a challenging task
related to many real-life problems. In this paper, a single input continuous time con-
strained linear quadratic regulator problem, is defined and fully solved. The constraints
include both bilinear inequality constraints and customary control force bounds. As a
first step, the problem is reformulated as an equivalent constrained bilinear biquadratic
optimal control problem. Next, Krotov’s method is used to solve it. To this end,
a sequence of improving functions suitable to the problem’s new formulation is
constructed and the corresponding successive algorithm is derived. The required com-
putational steps are arranged as an algorithm and proof outlines for the convergence
and optimality of the solution are given. The efficiency of the suggested method is
demonstrated by numerical example.

Keywords Optimal control · Constrained optimization · Krotov’s method · Bilinear
biquadratic regulator · Semi-active control

1 Introduction

Optimal process control with control constraints is a challenging task related to
many real-life problems [1], such as stabilization of mechanical plants [2,3], quantum
mechanics [4] and industrial processes [5]. The general form of these problems was
addressed in several studies, e.g. [6–9]. The complexity of the published results reflects
the complexity of the addressed problems.More specifically, for linear quadratic (LQ)
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problems, the imposition of constraints fundamentally impacts their solvability [10].
This study deals with a type of the continuous time constrained LQ regulator (CLQR)
problem, i.e. an optimal control problem, defined by a quadratic performance index
and a set of admissible processes, which satisfy a linear state-equation and some
predefined constraints.

Different formulations of CLQRproblems can be found in literature. For example, a
finite horizonwith state and control force boundswas studied and an iterative algorithm
was suggested for the control synthesis [5]; A finite horizon LQR with log-barrier
states constraints was reformulated as an unconstrained dynamic game [10]. The new
formulation and the properties that were developed can be useful for solving the
original CLQR problem.

Constraints on the control force direction can be formulated as a bilinear mapping
with control signal bounds [2,3,11]. Such formulation turns the linear state equation to
a bilinear one. Bilinear models are known to be simple and at the same time effective
nonlinear dynamic models that appear in many practical modern control problems [4].
Despite their nonlinearity, their characteristics are close to those of linear systems and
therefore facilitate the use of some techniques and procedures from linear systems
theory [12].

Optimal control of bilinear models without control constraints has been addressed
by many researchers [13–17]. Necessary conditions such as Pontryagin’s minimum
principle [13,14] or Lagrange multipliers [16] were used to derive suitable neces-
sary optimality conditions. Iterative algorithms where formulated by using successive
approximations [13,14] or Adomian decomposition [15]. In [2] a constrained finite
time optimal control problemwith a bilinearmodel and biquadratic performance index
was considered. The necessary optimality conditions were formulated but not solved.
Instead, a clipped optimal control and numerical method for suboptimal control were
given. Optimal control of a bilinear model with control signal bounds was treated in
[11]. A stochastic Hamilton–Jacobi–Bellman equation was used for the formulation
of the optimal control by means of a boundary value problem. The problem was not
solved however it was used as a theoretical basis for a corresponding clipped optimal
control.

The present paper introduces a method for optimal controller synthesis for a CLQR
problem, which is defined for a single control input with bilinear inequality constraints
and control bounds. In this study a constrained optimal control problem is formulated
and fully solved. As a first step, the CLQR problem is reformulated as an equivalent
constrained bilinear biquadratic optimal control problem (CBBR). The methodology,
used for solving the CBBR problem, is Krotov’s method. For the convenience of
readers, who are not familiar with Krotov’s theory, the necessary parts from the theory
are given in Sect. 3. Next, Krotov’s method is used to derive an algorithm for the
optimal control synthesis in a feedback form. As it will be described hereinafter, the
main novelty of the present study is formulating a sequence of improving functions
that suits the addressed problem and allows for Krotov’s method to be used for its
solution. The required computational steps are arranged as an algorithm and proof
outlines for the convergence and optimality of the solution, are given. The efficiency
of the suggested method is illustrated by numerical example.

123



Optimal control synthesis for the constrained bilinear. . . 1857

2 The optimal control problem

Definition 1 Let x : R → R
n be a state vector function and w : R → R be a control

signal. The pair (x, w) is said to be an admissible process if it satisfies the linear time
invariant state equation:

ẋ(t) = Ax(t) + bw(t); x(0),∀t ∈ (0, t f ) (1)

where x(0) is an initial state vector and w satisfies:

C1: w(t)cx(t) ≤ 0,
C2: cx(t) = 0 → w(t) = 0,
C3: |w(t)| ≤ wmax ,

for all t ∈ [0, t f ]; A ∈ R
n×n ; b ∈ R

n ; cT ∈ R
n and wmax > 0.

The set of admissible control signals will be denoted by W(x). Its x dependency is
clear from the above definition. Such constraints arise in semi-active control design
problems,where the control forces have physical constraints on their direction [18] and
amplitude. For example, when a control force is applied to a mechanical plant through
a controllable friction based actuator, e.g. a magnetorheological actuator [19], the
direction of the control force is opposed to the actuator motion, represented by cx(t).
When there is no motion, the actuator cannot generate force at all. These physical
constraints are represented by C1 and C2. Additionally, some design considerations,
such as actuator limitations or unwanted local plant effects, set bounds on the force
magnitude. These bounds are represented by C3. Later in this article we will refer
to constraints C1 and C2 as semi-active constraints. It also should be noted that by
imposing C2 the problem which was discussed in [18] is avoided.

ACLQRoptimal process is one thatminimizes the following quadratic performance
index.

Problem 1 (CLQR) The constrained linear quadratic regulator (CLQR) problem is a
search for an admissible process (x∗, w∗) that minimizes the quadratic performance
index:

J (x, w) = 1

2

t f∫

0

x(t)TQx(t) + w(t)2rd t (2)

for a given x(0), 0 � Q ∈ R
n×n and r > 0.

As it can be found in other works (e.g. [2,3]), instead of treating the CLQR directly,
an equivalent bilinear/biquadratic formulation can be used, as follows.

Let the mapping ŵ : R × R
n → R be

ŵ(t, x(t)) = −u(t)cx(t) (3)
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where u is a control signal that satisfies

u(t)

{= 0, cx(t) = 0

∈
[
0, wmax|cx(t)|

]
, otherwise

(4)

Therefore:

ŵ(t, x(t))cx(t) = −u(t)(cx(t))2 ≤ 0 (5)

and

|ŵ(t, x(t))| = |u(t)cx(t)| = u(t)|cx(t)| ≤
(

wmax

|cx(t)|
)

|cx(t)| = wmax (6)

Hence, by letting w(t) = ŵ(t, x(t)), we have w ∈ W(x) for any x. Substitution of ŵ

in (1) and (2) leads to the following optimal control problem.

Definition 2 Let x : R → R
n be a state vector function and u : R → R be a control

signal. The pair (x, u) is said to be an admissible process if it satisfies the bilinear state
equation [12]:

ẋ(t) = [A − u(t)bc]x(t); x(0),∀t ∈ (0, t f ) (7)

and u satisfies (4) for all t ∈ [0, t f ].
The set of admissible control signals are denoted byU (x). A CBBR optimal process
is one that minimizes the following biquadratic performance index.

Problem 2 (CBBR) The constrained bilinear biquadratic regulator (CBBR) prob-
lem is the search for an admissible process (x∗, u∗) that minimizes the biquadratic
performance index:

J (x, u) = 1

2

t f∫

0

x(t)TQx(t) + ru(t)2(cx(t))2d t (8)

where 0 � Q ∈ R
n×n and r > 0.

The methodology that is used for solving the CBBR problem is Krotov’s method.

3 Krotov’s sufficient conditions

Apopular approach for obtaining a suitable solution tomany optimal control problems
is to use first order variational calculus or Pontryagin’s minimum principle. However,
for many problems these theorems provide merely necessary conditions [20]. Starting
in the 1960s, new results on sufficient conditions for the global optimum of optimal
control problems, began to be published by Krotov [21]. A brief description of this
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approach with the main theorems is given hereinafter. The theorems are taken from
the published works of Krotov, however, the formulation was adapted to the needs and
nature of the problems relevant to this study. Their proofs can be found in [22].

Let U be a set of admissible control signals and X a linear space of state vector
functions. An admissible process is the pair (x,u), where u ∈ U , x ∈ X and they
both satisfy the states equation

ẋ(t) = f(x(t),u(t), t); x(0),∀t ∈ (0, t f ) (9)

Let q : R×R
n → R be a smooth function of states and time. The following theorem

states that each q is relatedwith some equivalent formulation of the performance index.

Theorem 1 Let a constrained control optimization problem be defined by the states
equation, performance index and a set of admissible control signals:

ẋ(t) = f(x(t),u(t), t); x(0),∀t ∈ (0, t f ) (10)

J (x,u) = l f (x(t f )) +
t f∫

0

l(t, x(t),u(t))d t

u ∈ U (11)

where x(0) is known.
Let q be a given smooth function and (x,u) be an admissible process. Jeq : X ×

U → R is an equivalent representation of J which corresponds to q and is defined
by:

J (x,u) ≡ Jeq(x,u) = s f (x(t f )) + q(0, x(0)) +
t f∫

0

s(t, x(t),u(t))d t (12)

where

s(t, ξ , ν) � qt (t, ξ) + qx(t, ξ)f(t, ξ , ν) + l(t, ξ , ν) (13)

s f (ξ) � l f (ξ) − q(t f , ξ) (14)

Here ξ ∈ R
n and ν ∈ R

nu .

In the published work of Krotov (such as [4,21,22]), s and q are defined with opposite
signs which turn some of the minimization problems into maximization ones. In the
present study, a formulation which leaves the problem as the customary one, i.e. a
minimization problem, was chosen. Though, there is no essential difference between
these two formulations.

The following theorem provides a sufficient condition for the global optimality of
a given admissible process–(x∗,u∗) by means of Jeq . In what follows, X (t) is a set
{x(t)|∀x ∈ X }.

123



1860 I. Halperin et al.

Theorem 2 Let s and s f be related with some q and let (x∗ ∈ X ,u∗ ∈ U ) be an
admissible process. If:

s(t, x∗(t),u∗(t)) = min
ξ∈X (t)
ν∈U (t)

s(t, ξ , ν) ∀t ∈ [0, t f )

s f (x∗(t f )) = min
ξ∈X (t f )

s f (ξ) (15)

then (x∗,u∗) is an optimal process.

Remarks – It is customary to refer q, which satisfies (15) and allows the computation
of (x∗,u∗), as Krotov function or solving function.

– An optimum, derived by this theorem, is global since the minimization problem,
defined in (15), is global [22].

– Note that in order that the equivalence J (x,u) = Jeq(x,u)will hold, x and umust
satisfy the state Eq. (10).

– Since q is not unique, s, s f and Jeq are non-unique too.
– The formulations above are defined with the assumption of a smooth q. This
assumption can be weakened into piecewise smooth [21], i.e. smooth over t and
x(t) except for some set of t’s with finite time difference between them.

This approach provides not only a sufficient condition for global optimality but it
also lays the foundation for novel algorithms, aimed at the solution of optimal control
problems [21]. One of these algorithms is known as Krotov’s method.

3.1 Krotov’s method–successive global improvements of control

The goal of Krotov’s method is the numerical solution of optimal control problems.
It was used successfully for solving optimal control problems in quantum mechanics
[4], as well as oscillation damping of a simple beam [23].

According to this method, the key to the solution is formulating a sequence of
functions with special properties. These functions will be referred to as improving
functions. If such a sequence can be found, it allows the computation of a global
optimum for the given optimal control problem.

As a first step, an optimizing sequence is defined.

Definition 3 Let {(xk,uk)} be a sequences of admissible processes. Such a sequence
is said to be an optimizing sequence if

J (xk,uk) ≥ J (xk+1,uk+1) (16)

for all k = 1, 2, . . . and:

lim
k→∞ J (xk,uk) = inf

x∈X ,u∈U
J (x,u) (17)

If an optimizing sequence can be found, it allows the computation of an admissible
process, which is ’arbitrarily close’ to the optimal one bymeans of J . Krotov’s method
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is aimed at the computation of such a sequence. It does so by successive improvements
of admissible processes. The concept underlying these improvements is the sufficient
condition given in the following theorem. Recall that each smooth function q is related
to some s and s f , defined in Theorem 1. The notation û is used to denote control
feedback, i.e. a mapping û : R × R

n → R
nu .

Theorem 3 Let a given admissible process be (xk ,uk) and let qk be a smooth function.
If (xk,uk) is the solution to the following maximization problem:

sk(t, xk(t),uk(t)) = max
ξ∈X (t)

sk(t, ξ ,uk(t))

s f,k(xk(t f )) = max
ξ∈X (t f )

s f,k(ξ) (18)

and if ûk+1 is a control feedback which satisfy

ûk+1(t, ξ) = arg min
ν∈U (t)

sk(t, ξ , ν); ∀t ∈ [0, t f ] (19)

then xk+1 which solves:

ẋk+1(t) = f(t, xk+1(t), ûk+1(t, xk+1(t)); xk+1(0) = x(0),∀t ∈ (0, t f ) (20)

and the controls signal uk+1(t) = ûk+1(t, xk+1(t)), satisfy (16).

It follows from this theorem that if for each (xk,uk) one can find qk such that (18)
holds, and the feedback defined by (19), then it is possible to find an improved process–
(xk+1,uk+1). Such qk will be denoted as improving function. Solving this problem
over and over yields an optimizing sequence and hence leads to the solution of the
optimization problem.

The required steps are summarized in the following algorithm. The algorithm ini-
tialization requires computation of some initial admissible process–x0 ∈ X ,u0 ∈ U .
The iterations are done for k = {0, 1, 2, . . .}, where each iteration is constituted from
three stages:

1. Find qk(t, x) that solves

sk(t, xk(t),uk(t)) = max
ξ∈X (t)

sk(t, ξ ,uk(t))

s f,k(xk(t f )) = max
ξ∈X (t f )

s f,k(ξ)

for a given (xk,uk).
2. Find an optimal feedback

ûk+1(t, ξ) = arg min
ν∈U (t)

sk(t, ξ , ν)
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3. Propagate into the next improved state and control processes, by solving

ẋk+1(t) = f
(
t, xk+1(t), ûk+1(t, xk+1(t))

)

and setting:

uk+1(t) = ûk+1(t, xk+1(t))

Remarks – This algorithm produces an optimizing sequence, i.e. a sequence of tra-
jectories which converges monotonically to an optimum which satisfies (15).

– This method has a significant advantage over algorithms based on small variations,
since the latter are constrained to small process variations. That is troublesome, as:
(1) it leads to a slow convergence rate, and (2) for some optimal control problems
small variations are impossible [21].

– Like in Lyapunov’s method for stability, the use of Krotov’s method is not straight-
forward. It requires formulation of a suitable sequence–{qk}. However, the search
for these functions is a significant challenge. As of this writing, there is no known
unified approach for their formulation and theyusually differ fromoneoptimal con-
trol problem to another. A form, which can be used as an improving function, was
indeed suggested in [21], though it is defined by means of some unknown matrix
function σ : R → R

n×n that should be found. The essential non-uniqueness of
the improving function is a key characteristic of this approach. This vagueness
is an advantage and at the same time a disadvantage. On the one hand, it poses
an additional challenge to the control design, but on the other hand, it provides a
solution method with a high level of flexibility.

– Additionally, sometimes the form of qk hints to the form of a corresponding
Lyapunov function. When dealing with non-linear plants this is an important con-
tribution, seeing that such systems stability is always questionable.

In the present study, a suitable sequence of improving functions was found for the
CBBR problem.

4 Main results

The following two theorems provide the improving function and the control law,which
enable the use of Krotov’s method for the CBBR problem. In what follows, U (t, x)
denotes the intersection ofU (x) at some t . It refers to the control signal values which
are admissible for a given x(t).

Theorem 4 Let

q(t, x(t)) = 0.5x(t)TP(t)x(t); P(t f ) = 0

where P : [0, t f ] → R
n×n is a continuous, piecewise smooth and symmetric matrix

function, and let v(t, x(t)) � x(t)T P(t)b
r .
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Then the control law, û, that minimizes s(t, x(t), u(t)), is

û(t, x(t)) = arg min
u(t)∈U (t,x)

s(t, x(t), u(t))

=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0, v(t, x(t))sign(cx(t)) ≤ 0
wmax

|cx(t)| , v(t, x(t))sign(cx(t)) ≥ wmax

v(t, x(t))
cx(t)

, otherwise

(21)

where sign : R → {−1, 0, 1} is the customary sign function.
Proof The partial derivatives of q are:

qt (t, x(t)) = 0.5x(t)T Ṗ(t)x(t); qx(t, x(t)) = x(t)TP(t) (22)

Substitution in (13) and (14) yields:

s f (x(t f )) = 0

s(t, x(t), u(t)) = 0.5x(t)T
[
Ṗ(t) + P(t) (A − u(t)bc)

+ (A − u(t)bc)T P(t) + Q + ru(t)2cT c
]
x(t)

= 0.5x(t)T
[
Ṗ(t) + P(t)A + ATP(t) + Q

]
x(t)

+ 0.5ru(t)2(cx(t))2 − 2u(t)x(t)TP(t)bcx(t) (23)

Completing the square leads to:

s(t, x(t), u(t)) = 0.5x(t)T
[
Ṗ(t) + P(t)A + ATP(t) + Q

]
x(t)

+ r

(
u(t)cix(t) − x(t)TP(t)b

r

)2

− (x(t)TP(t)b)2

r

= f2(t, x(t)) + r (u(t)cx(t) − v(t, x(t)))2

where v(t, x(t)) was defined in the lemma and f2 contains all the terms which are
independent of u(t). It follows that the minimum of s(t, x(t), u(t)) above U (t, x)
depends merely on the quadratic term. Hence, the minimizing and admissible u(t) ∈
U (t, x) is calculated as follows:

(a) When cx(t) = 0, u(t) vanishes from the performance index and the state equation,
hence its value has no effect and it can be set to u(t) = 0.

(b) When cx(t) �= 0 and v(t,x(t))
cx(t) ≤ 0, the admissibleminimum is attained atu(t) = 0.

However, since:

v(t, x(t))
cx(t)

= v(t, x(t))
|cx(t)|

|cx(t)|
cx(t)

= v(t, x(t))
|cx(t)| sign(cx(t))
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and since 1/|cx(t)| > 0, the inequality v(t,x(t))
cx(t) ≤ 0 can be replaced by

v(t, x(t))sign(cx(t)) ≤ 0.
(c) When cx(t) �= 0 and v(t,x(t))

cx(t) ≥ wmax|cx(t)| , the admissible minimum is attained at
u(t) = wmax|cx(t)| . However, since:

v(t, x(t))
cx(t)

≥ wmax

|cx(t)| → v(t, x(t))
|cx(t)|
cx(t)

≥ wmax

→ v(t, x(t))sign(cx(t)) ≥ wmax

it is possible to replace v(t,x(t))
cx(t) ≥ wmax|cx(t)| by v(t, x(t))sign(cx(t)) ≥ wmax .

(d) When cx(t) �= 0 and 0 <
v(t,x(t))
cx(t) < wmax|cx(t)| , the admissible minimum is attained

at u(t) = v(t,x(t))
cx(t) .

The admissible minimizing û(t, x(t)) that corresponds to the admissible minimizing
u(t) is given by (21). �
Theorem 5 Let (xk, uk) be a given process. If Pk satisfies:

Ṗk(t) = −Pk(t) (A − uk(t)bc) − (A − uk(t)bc)T Pk(t)

− Q − ruk(t)
2cT c (24)

∀t ∈ (0, t f ) and for Pk(t f ) = 0, then sk given in theorem 4 satisfies

sk(t, xk(t), uk(t)) = max
x(t)∈X (t)

sk(t, x(t), uk(t)) (25)

s f,k(xk(t f )) = max
x(t f )∈X (t f )

s f,k(x(t f )) (26)

Proof Substituting of Ṗk(t) which satisfies (24) in (23), yields:

sk(t, x(t), uk(t)) =0.5x(t)T [0]x(t) = 0 (27)

Since sk(t, x(t), uk(t)) = sk(t, xk(t), uk(t)) it is obvious that

sk(t, x(t), uk(t))) ≤ sk(t, xk(t), uk(t))

for all x(t). As P(t f ) = 0 and l f = 0, it follows that

s f,k(x(t f )) = l f (x(t f )) − 1

2
x(t f )TPk(t f )x(t f ) = 0

for all x(t f ) ∈ X (t f ). Hence s f,k(xk(t f )) ≥ s f,k(x(t f )) for all x(t f ) ∈ X (t f ). �
Putting together the steps, described at the end of Sect. 3 and these two theorems,

allows computation of two sequences: {qk} and {(xk, uk)} such that the second one
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is an optimizing sequence. As J is non negative, it has an infimum and {(xk, uk)}
converges to an optimum.

The method suggested here is quite different from those suggested in [6–9]. The
latter solves the constrained optimal control by sequential solution of constrained
parametric optimization problems. Each problem in this sequence is sub-optimal by
means of the original problem but the sequence converges to the original. Such an
approach allows for known parametric optimization programs to be used in the control
synthesis.

However, here a different approach is used. First, the addressed problem has
more specific structure than the general form used in [6–9]. That allowed the
authors to exploit its properties to achieve simpler and stronger results. Second,
the use of Krotov’s method allows for the control synthesis to be done without
using approaches such as constraint transcription [8], since û is assured to yield
an admissible control force, as was proven by theorem 4. It leads to an algo-
rithm whose convergence is monotonic, which is stronger than regular convergence.
Though, it should be noted that even though monotonicity is guaranteed theoreti-
cally, practically it might be affected by the existence of numerical computation
errors.

The corresponding algorithm is summarized in Fig. 1. Its output is an arbitrary
approximation for P∗, which defines the optimal control law Eq. (21). It should be
noted that the use of absolute value in step (4) of the iteration stage is theoretically
unnecessary. However, it is needed since numerical computation errors might cause
the algorithm to lose J ’s monotonicity when it gets closer to the optimum, as was
discussed above.

5 Numerical example

Consider the free vibrating mass-spring system shown in Fig. 2. It is composed of
three bodies connected by three identical springs. The mass of each body is 105 kg
and the stiffness of each spring is 3.6 × 106 N/m. The control force is applied to the
first body through a single semi-active actuator with wmax = 4 × 105 N. The state
space equation is [24]:

d

d t

⎡
⎢⎢⎢⎢⎢⎢⎣

z1(t)
z2(t)
z3(t)
ż1(t)
ż2(t)
ż3(t)

⎤
⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎣

0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

− 72 36 0 0 0 0
36 − 72 36 0 0 0
0 36 − 36 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎣

z1(t)
z2(t)
z3(t)
ż1(t)
ż2(t)
ż3(t)

⎤
⎥⎥⎥⎥⎥⎥⎦

+

⎡
⎢⎢⎢⎢⎢⎢⎣

0
0
0

10−5

0
0

⎤
⎥⎥⎥⎥⎥⎥⎦

w(t) (28)

where z2(0) = 0.6 and z3(0) = −0.6. As zd = z1, the constraints takes the form
(C1) w(t)ż1(t) ≤ 0; (C2) ż1(t) = 0 → w(t) = 0; and (C3) |w(t)| ≤ 4 × 105, for all
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Input:
A, b, c, wmax, x(0), Q ≥ 0, r > 0, tf .
Initialization:

(1) Select a convergence tolerance - 0.

(2) Set u0 = 0 and solve:

ẋ0(t) =Ax0(t); x(0)

Ṗ0(t) = − P0(t)A − ATP0(t) − Q; P0(tf ) = 0

(3) Compute: J0(x0, u0) = 1
2

tf

0
x0(t)TQx0(t)d t

Iterations: For k = {0, 1, 2, . . .}:
(1) Propagate to the improved process by solving:

ẋk+1(t) =[A − ûk+1(t,xk+1(t))bc]xk+1(t); xk+1(0) = x(0)

where

vk(t,x(t))
bTPk(t)x(t)

r

ûk+1(t,x(t)) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

0 , vk(t,x(t))sign(cx(t)) ≤ 0
wmax

|cx(t)| , vk(t,x(t))sign(cx(t)) ≥ wmax

vk(t,x(t))
cx(t)

, otherwise

and set uk+1(t) = ûk+1(t,xk+1(t)).
(2) Solve:

Ṗk+1(t) = − Pk+1(t)(A − uk+1(t)bc)

− (A − uk+1(t)bc)TPk+1(t) − Q − ruk(t)2cT c; Pk+1(tf ) = 0

(3) Set wk+1(t) = −uk+1(t)cxk+1(t) and compute:

J(xk+1, uk+1) =
1
2

tf

0

xk+1(t)TQxk+1(t) + rwk+1(t)2d t

(4) If |J(xk, uk) − J(xk+1, uk+1)| , stop, otherwise - continue iterating.

Output: Pk+1.

Fig. 1 CBBR–algorithm for successive control improvement

t ∈ [0, 8]. The performance index is:

J (x, w) = 1

2

t f∫

0

z1(t)
2 + (z2(t) − z1(t))

2 + (z3(t) − z2(t))
2 + 10−13w(t)2d t
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m0 m0 m0

k0
k0 k0

w

z1 z2 z3

Fig. 2 The evaluated model

Table 1 Peformance index
values for each process. Here
ΔJi = Ji − Ji−1

i Ji /10
12 ΔJi /J1,% i Ji /10

12 ΔJi /J1,%

0 35.99 10 9.023 7.3e−05

1 9.402 − 73.9 11 9.023 −2.64e−05

2 9.039 − 1.01 12 9.023 1.04e−05

3 9.025 − 0.039 13 9.023 −3.18e−06

4 9.024 − 0.000897 14 9.023 8.76e−07

5 9.022 − 0.00578 15 9.023 −3.42e−07

6 9.023 0.00127 16 9.023 1.47e−07

7 9.023 − 0.000251 17 9.023 −4.62e−08

8 9.023 0.000334 18 9.023 1.41e−08

9 9.023 − 0.000199 19 9.023 −6.4e−09

0 2 4 6 8 10 12 14 16 18

30

20

9.03

Iteration

J
i
/
10

1
2

Fig. 3 Peformance index values for each iteration

All computations were carried out using original routines written in MATLAB.
TheCBBRcontrol designwas carried out using the algorithmpresented in Fig. 1. 19

iterations were carried out. Performance index values per iteration are given in Table 1
and illustrated in Fig. 3. It can be seen that, from practical view point, convergence
has occured after two iterations where the major improvement was achieved due to the
first one. For iterations 1–5, the changes in J are monotonic. However, starting from
the 6th iteration, the changes in J lose monotonicity, though their magnitudes kept on
reducing, except for the 8th iteration, where it was increased. The magnitude of the
changes and the properties of Krotov’s method implies that this non-monotonicity is
a numerical issue.

The displacements in z3 for the uncontrolled plant and the CBBR controlled plant
are presented in Fig. 4.While the plant is unstable, this figure implies that the controlled
response stabilizes after approximately 8 s. The control force is depicted in Fig. 5. It
shows that w has some zero intervals. These intervals occurred due to constraint C1,
which does not allow the control force to resist the damper velocity. Additionally,
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z 3
(t
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Uncontrolled
Controlled

Fig. 4 Displacements in z3

0 1 2 3 4 5 6 7 8
−4

0

4
·105

t, sec

w
(t
),

N

Fig. 5 Control force w

−6 −4 −2 0 2 4 6
−4

0

4
·105

żd(t), m/sec

w
(t
),

N

Fig. 6 Control force w versus actuator velocity żd

during most of the control duration, the signal is very similar to that of signals derived
by the bang-bang control approach. This is because for the first 5 s the response
intensity required a large control force, which is not allowed due to the bounds on w,
hence saturation was reached.

Figure 6 illustrates the correspondence between the actuator’s control force and
velocity, that is each pair (żd(t), w(t)) is represented by a point on the graph. There
are no points in the 1st and 3rd quarter of the ż − w plane. This implies that the force
is always opposed to the actuator velocity. It can also be seen that the control force
magnitude does not exceed ±wmax . Hence, constraints C1 and C3 from definition 1
are satisfied. The control signal, u, is given in Fig. 7. Its discontinuous form is clearly
evident from the plot.
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Fig. 7 CBBR control signal

6 Conclusions

In this study a constrained optimal control problem was formulated and fully solved.
Namely, an optimal controller synthesis for a CLQR problem which is defined for a
single control input with semi-active constraints and control bounds, was found.

As a first step, the CLQR problem was reformulated as an equivalent constrained
bilinear biquadratic optimal control problem (CBBR). The solution of the CBBR
problem used Krotov’s method. For the convenience of the readers, the corresponding
parts from Krotov’s theory were given. A sequence of improving functions, which
is suitable to the CBBR problem, was constructed and the corresponding successive
algorithm was derived. The formulated optimal controller is in a feedback form.

The main novelty in this study is the formulation of the sequence of improving
functions that suits the addressed problem and allows for Krotov’s method to be
used for its solution. It enabled the solution of the CBBR and CLQR problems. The
required computational steps were arranged as an algorithm and proof outlines for the
convergence and optimality of the solution were given. The efficiency of the suggested
method was demonstrated by numerical example.
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