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Abstract Based on the memoryless BFGS quasi-Newton method, a family of three-
term nonlinear conjugate gradient methods are proposed. For any line search, the
directions generated by the new methods are sufficient descent. Using some efficient
techniques, global convergence results are established when the line search fulfills
the Wolfe or the Armijo conditions. Moreover, the r -linear convergence rate of the
methods are analyzed aswell. Numerical comparisons show that the proposedmethods
are efficient for the unconstrained optimization problems in the CUTEr library.

Keywords Nonlinear conjugate gradient method · Memoryless BFGS method ·
Sufficient descent property · Global convergence

1 Introduction

In this paper, we consider the unconstrained optimization problem

min f (x), x ∈ R
n, (1.1)

where f :Rn → R is continuously differentiable and its gradient g(x) is available.
Among different kinds of numerical methods for solving problem (1.1), nonlinear
conjugate gradient (CG) methods comprise a class of efficient approaches, especially
for large-scale problems, due to their low memory requirements and good global
convergence properties. A CG method generates a sequence of iterates x0, x1, x2, . . .
by using the recurrence
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1912 M. Li

xk+1 = xk + αkdk, k = 0, 1, . . . (1.2)

where αk is a positive steplength computed by a line search and dk is the search
direction generated by the rule

dk = −gk + βkdk−1, d0 = −g0, (1.3)

where gk = g(xk) and βk is a CG parameter. Different choices for the CG parameter
βk correspond to different CG methods. So far, the researches on the CG methods
have made great progress. There have been many famous CG methods, for example,
see [5,6,9–12,14,19,22,23,33], etc. In the survey paper [13], Hager and Zhang gave a
comprehensive review of the development of different versions of CG methods, with
special attention given to their global convergence properties. We refer to the survey
paper for more details.

In this paper, we are particularly interested in the Hestenes–Stiefel (HS) [14]
method, the Polak–Ribière–Polyak (PRP) [22,23] method and the Liu–Storey (LS)
[19] method, in which the CG parameters are specified by

βHS
k = gTk yk−1

dTk−1yk−1
, βPRP

k = gTk yk−1

‖gk−1‖2 , βLS
k = gTk yk−1

−dTk−1gk−1
, (1.4)

where yk−1 = gk − gk−1 and ‖.‖ is the Euclidean norm. These methods have been
regarded as themost efficientCGmethods and studied extensively, see [7,11,12,14,17,
22–25,29,30,32,33] etc. However, in summary, the convergences of thesemethods for
general nonlinear functions are still uncertain. In [24], Powell designed a 3 dimensional
example and showed that, when the function is not strongly convex, the PRP method
may not converge, even with an exact line search. Moreover, by Powell’s example
[24], the HS method may not converge for a general nonlinear function as well, since
βHS
k = βPRP

k holds with an exact line search. In [24], for the PRP method, Powell
also suggested to restrict the CG parameter to be non-negative, namely, βPRP+

k =
max{βPRP

k , 0}. Inspired by Powell’s work, Gilbert and Nocedal [11] gave an elegant
analysis and proved that the PRP+ method is globally convergent when the search
direction satisfies the sufficient descent condition gTk dk ≤ −c‖gk‖2 and the stepsize
αk is determined by the standard Wolfe line search. This technique can also be used to
analyze the global convergence of the HS+ method in which βHS+

k = max{βHS
k , 0}.

Recently, based on the standardHS, PRP andLSmethod, some descent CGmethods
have been developed, see [4,12,16,29,32,33], etc. The first one is the well-known
CG_DESCENTmethod proposed byHager andZhang [12,13], inwhich the parameter
βk is defined by

βHZ
k = gTk yk−1

dTk−1yk−1
− θk

‖yk−1‖2gTk dk−1

(dTk−1yk−1)2
, θk >

1

4
. (1.5)

123



A family of three-term nonlinear conjugate gradient… 1913

An attractive property of this method is that, for any line search, the direction dk
satisfies the sufficient descent condition

gTk dk ≤ −
(
1 − 1

4θk

)
‖gk‖2. (1.6)

Hager and Zhang dynamically adjusted the lower bound on βHZ
k by letting

β
HZ
k = max

{
βHZ
k , ηk

}
, ηk = −1

‖dk−1‖min{η, ‖gk−1‖} , η > 0,

and established the global convergence of their method when the line search fulfills
the Wolfe conditions

f (xk + αkdk) ≤ f (xk) + δαkg
T
k dk, (1.7)

g(xk + αkdk)
T dk ≥ σgTk dk, (1.8)

where 0 < δ ≤ σ < 1.
Similar to the CG_DESCENT method, there are some modified PRP and LS meth-

ods, such as the modified LS (MLS) method in [16] and the descent PRP (DPRP)
method in [29]. In these two methods, the CG parameters are defined by

βMLS
k = − gTk yk−1

gTk−1dk−1
− θk

‖yk−1‖2gTk dk−1(
gTk−1dk−1

)2 (1.9)

and

βDPRP
k = gTk yk−1

‖gk−1‖2 − θk
‖yk−1‖2gTk dk−1

‖gk−1‖4 , (1.10)

where θk > 1
4 is a constant. It is clear that the formulas (1.5), (1.9) and (1.10) have

similar structures. More interestedly, both MLS method and DPRP method satisfy the
sufficient descent condition (1.6). Based on some conditions, the global convergent
results were established.

Based on the secant condition often satisfied by quasi-Newton method, Zhang,
Zhou and Li developed sufficient descent three-term PRP and HS methods [32,33].
In the three-term PRP method [33], the search direction is defined by

dk = −gk + βPRP
k dk−1 − gTk yk−1

‖gk−1‖2 yk−1, d0 = −g0. (1.11)

Similarly, in the modified HS method [32], they set

dk = −gk + βHS
k dk−1 − gTk dk−1

dTk−1yk−1
yk−1, d0 = −g0. (1.12)
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A remarkable feature of these methods is that the sufficient descent condition gTk dk =
−‖gk‖2 will always hold. Zhang et al. [32,33] analyzed the global convergence of
their methods with suitable line search.

Among the descent CG methods above, the CG_DESCENT method is the most
famous one.When the exact line search is used, the method will reduce to the standard
HS method. Interestedly, it can also be seemed as a member of the Dai–Liao [5] CG
methods, in which

βDL
k = gTk yk−1

yTk−1dk−1
− t

gTk sk−1

dTk−1yk−1
, t ≥ 0,

where sk−1 = αk−1dk−1. The CG_DESCENT method can be viewed as an adaptive
version of DL method corresponding to

t = θk
‖yk−1‖2
sTk−1yk−1

, θk >
1

4
.

Due to the existence of the parameter t , the DL method has been seemed as a family
of CGmethods and studied extensively, see [1,2,15,28,31], etc. Very recently, to seek
an optimal choice of the parameter t in the DL method, Dai and Kou [4] provided the
following family of CG methods for unconstrained optimization

βDK(τk) = gTk yk−1

dTk−1yk−1
−

(
τk + ‖yk−1‖2

sTk−1yk−1
− sTk−1yk−1

‖sk−1‖2
)

gTk sk−1

dTk−1yk−1
,

where the parameter τk is corresponding to the scaling parameter in the scaled mem-
oryless BFGS method proposed by Perry [21] and Shanno [27]. Dai and Kou [4]
established the global convergence of their method with a improvedWolfe line search.

Inspired by the Dai–Kou method and the descent CG methods introduced above,
in this paper, we attempt to structure a family of three-term CG methods, in which
the search directions are close to the directions of the memoryless BFGS method in
[20,26]. The rest of the paper is organized as follows: in the next section, we propose
the algorithm. In Sects. 3 and 4, we analyze the convergence of the proposed methods.
In the last section, we present some numerical results to test the efficiency of the
algorithms.

2 The algorithm

The limited memory BFGS method [18,20] is an adaptation of the BFGS method
for large-scale problems. It requires minimal storage and often provides a fast rate
of linear convergence. The direction of the self-scaling memoryless BFGS method
[21,27] is defined by

dPSk = −Hkgk,
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where

Hk = 1

τk

(
I − sk−1yTk−1 + yk−1sTk−1

sTk−1yk−1

)
+

(
1 + 1

τk

‖yk−1‖2
sTk−1yk−1

)
sk−1sTk−1

sTk−1yk−1
,

where I denotes the identity matrix and τk is a scaling parameter. Therefore, the
direction can be rewritten as

dPSk = −gk +
[

gTk yk−1

sTk−1yk−1
−

(
τk + ‖yk−1‖2

sTk−1yk−1

)
gTk dk−1

dTk−1yk−1

]
sk−1 + gTk dk−1

dTk−1yk−1
yk−1.

Dai and Kou [4] derived the new formula by seeking the conjugate gradient direction
which is closest to dPSk .

In dPSk , if set τk = 1, we will get the memoryless BFGS method proposed by
Nocedal [20] and Shanno [26], in which

dLBFGSk = −gk +
(

gTk yk−1

dTk−1yk−1
− ‖yk−1‖2gTk dk−1

(dTk−1yk−1)2

)
dk−1 + gTk dk−1

dTk−1yk−1
(yk−1 − sk−1).

We note that the direction dLBFGSk is in fact a linear combination of gk , dk−1 and yk−1,
since sk−1 = αk−1dk−1. Based one the strategies used to design the the Dai–Kou
method [4], we think it is reasonable to replace the term (yk−1 − sk−1) in dLBFGSk by
tk yk−1 to construct a new search direction. Here, the scalar tk is a suitable parame-
ter. Combining the similar structure of formulas (1.5), (1.9) and (1.10), we give the
following scheme

dk = −gk + βNEW
k dk−1 + λk yk−1, d0 = −g0, (2.1)

βNEW
k = gTk yk−1

zk
− ‖yk−1‖2gTk dk−1

z2k
, (2.2)

λk = tk
gTk dk−1

zk
, 0 ≤ tk ≤ t < 1, (2.3)

where zk is a scalar to be specific, and t is a constant to guarantee the sufficient descent
property of the new search direction. In practical computation, we set t = 0.3 and
calculate tk by

tk = min

{
t, max

{
0, 1 − yTk−1sk−1

‖yk−1‖2
}}

. (2.4)

In the formula above, the scalar (1− yTk−1sk−1

‖yk−1‖2 ) is the solution of the univariate minimal
problem

min ‖(yk−1 − sk−1) − t yk−1‖2, t ∈ R.
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We calculate tk by (2.4) to make the direction defined by (2.1) close to the direction
of the memoryless BFGS method.

Lemma 1 If the sequences {xk} and {dk} are generated by (1.2) and (2.1), then

gTk dk ≤ −
(
1 − (1 + t)2

4

)
‖gk‖2. (2.5)

Proof Since d0 = −g0, we have gT0 d0 = −‖g0‖2, which satisfies (2.5) since 0 ≤
tk ≤ t < 1. Multiplying (2.1) by gTk , we have

gTk dk = −‖gk‖2 + βNEW
k gTk dk−1 + λkg

T
k yk−1

= −‖gk‖2 +
(
gTk yk−1

zk
− ‖yk−1‖2gTk dk−1

z2k

)
gTk dk−1 + tk

gTk dk−1

zk
gTk yk−1

= −‖gk‖2 + (1 + tk)
gTk yk−1gTk dk−1

zk
− ‖yk−1‖2

(
gTk dk−1

)2
z2k

= −‖gk‖2 + 2

(
1 + tk
2

gTk

)(
yk−1gTk dk−1

zk

)
− ‖yk−1‖2

(
gTk dk−1

)2
z2k

≤ −‖gk‖2 + (1 + tk)2

4
‖gk‖2 + ‖yk−1‖2

(
gTk dk−1

)2
z2k

− ‖yk−1‖2
(
gTk dk−1

)2
z2k

= −‖gk‖2 + (1 + tk)2

4
‖gk‖2

≤ −
(
1 − (1 + t)2

4

)
‖gk‖2,

which completes the proof. ��
In the scheme (2.1)–(2.3), different choices for the scalar zk inβNEW

k will correspond
to different modified CG methods. In this paper, we are mainly interested in the
following three cases.

– For zk = dTk−1yk−1, we get a modified HS method and the parameter βNEW
k equal

to βHZ with θk = 1. If an exact line search is used, this method will reduce to the
standard HS method since gTk dk−1 = 0 holds for k > 0.

– For zk = ‖gk−1‖2, we get a descent PRP method.
– For zk = −dTk−1gk−1, we get a modified LS method.

It follows from Lemma 1 that the new methods are sufficient descent. However,
how to prove the global convergence is still a problem, especially when the Armijo
or the standard Wolfe line search is used. To establish the global convergences of
CG methods, a common technique is to use the truncated technique in [11] to restrict
the the parameter βk to be nonnegative. Differently, in this paper, we will use a new
technique to set the lower bound for zk to guarantee the global convergence of the
proposed methods.
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– We set zk = max{τ‖dk−1‖, dTk−1yk−1}with some constant τ > 0 to get a modified
HS method, which we call the THS method.

– We let zk = max{τ‖dk−1‖, ‖gk−1‖2} to obtain a modified PRP method which we
call the TPRP method.

– We choose zk = max{τ‖dk−1‖,−dTk−1gk−1} to get a LS type method which we
call the TLS method.

In these methods, we always have zk ≥ τ‖dk−1‖. This inequality is very helpful to
establish the global convergence of the proposed methods. In the rest of this paper,
for simplicity, we will only analyze the global convergence of the TPRP method. The
conclusion can be extended to other methods in a similar way. Based on the precess
above, we present concrete steps of the TPRP method as follows:

Algorithm 2.1 (The TPRP method)

Step 0. Initiate x0 ∈ R
n, ε > 0, τ > 0 and 0 < δ ≤ σ < 1. Set k := 0;

Step 1. Stop if ‖gk‖∞ ≤ ε; Otherwise go to the next step;
Step 2. Compute dk by (2.1) with zk = max{τ‖dk−1‖, ‖gk−1‖2};
Step 3. Determine the steplength αk by a line search.
Step 4. Let xk+1 = xk + αkdk;
Step 5. Set k := k + 1 and go to Step 1.

It is not difficult to establish the global convergence of the TPRP method when
the Wolfe or Armijo line search is used. However, the numerical performance of the
TPRPmethod in practical computation is not as good as we expect. In the newmethod,
we still can not guarantee the scalar βNEW

k to be nonnegative. When βNEW
k < 0, we

think that the term βNEW
k dk−1 in (2.1) will reduce the efficiency of dk , since dk−1 is

a sufficient descent direction of f at xk−1 which is close to xk . Therefore, we give a
truncated TPRP (TPRP+) method by setting

dk =
⎧⎨
⎩

−gk, if βNEW
k ≤ 0,

dTPRPk , else,

where dTPRPk is the direction defined in the TPRP method. It is clear that the TPRP+
method is sufficient descent and satisfies (2.5). Similarly, we can define THS+ and
TLS+ methods by using this truncated technique.

In the next sections, we will establish the global convergence of the TPRP method
when the Wolfe or the Armijo line search is used. All the convergence results of the
TPRP method can be extended to the TPRP+ method in a similar way. From now on,
throughout the paper, we always suppose the following assumption holds.

Assumption A (I) The level set Ω = {x ∈ R
n : f (x) ≤ f (x0) is bounded.

(II) In some neighborhood N of Ω , function f is continuously differentiable and
its gradient is Lipschitz continuous, namely, there exists a constant L > 0 such
that

‖g(x) − g(y)‖ ≤ L‖x − y‖, ∀x, y ∈ N . (2.6)
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The assumption implies that there are positive constants B and γ1 such that

‖x‖ ≤ B and ‖g(x)‖ ≤ γ1, ∀x ∈ Ω. (2.7)

3 Convergence analysis of the TPRP method with Wofle line search

In this section, we devote to the global convergence of the TPRP method when the
Wolfe line search is used. The following useful lemma was essentially proved by
Zoutendijk [34].

Lemma 2 Suppose that the conditions in Assumption A hold, {gk} and {dk} are gen-
erated by the TPRP method with the Wolfe line search (1.7)–(1.8), then

∞∑
k=0

‖gk‖4
‖dk‖2 < +∞. (3.1)

Theorem 1 Suppose that the conditions in Assumption A hold and {gk} is generated
by the TPRP method with the Wolfe line search, then

lim
k→∞ ‖gk‖ = 0. (3.2)

Proof It follows from the descent condition (2.5) that ‖dk−1‖ �= 0 holds for k > 1.
Since zk = max{τ‖dk−1‖, ‖gk−1‖2}, we have

zk ≥ τ‖dk−1‖ > 0.

Combining this with (2.2), (2.6) and (2.7) gives

‖dk‖ ≤ ‖gk‖ +
∣∣∣βNEW

k

∣∣∣ ‖dk−1‖ + |λk |‖yk−1‖

≤ ‖gk‖ +
∣∣∣∣∣
gTk yk−1

zk
− ‖yk−1‖2gTk dk−1

z2k

∣∣∣∣∣ ‖dk−1‖ +
∣∣∣∣∣tk

gTk dk−1

zk

∣∣∣∣∣ ‖yk−1‖

≤ ‖gk‖ +
(‖gk‖‖yk−1‖

τ‖dk−1‖ + ‖yk−1‖2‖gk‖‖dk−1‖
τ 2‖dk−1‖2

)
‖dk−1‖

+ tk‖gk‖‖dk−1‖
τ‖dk−1‖ ‖yk−1‖

≤ ‖gk‖ +
(

‖gk‖2γ1
τ‖dk−1‖ + 4γ 2

1 ‖gk‖
τ 2‖dk−1‖

)
‖dk−1‖ + tk‖gk‖

τ
2γ1

=
(
1 + 2γ1

τ
+ 4γ 2

1

τ 2
+ 2tkγ1

τ

)
‖gk‖
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≤
(
1 + 4γ1

τ
+ 4γ 2

1

τ 2

)
‖gk‖

� C‖gk‖.

Namely,
‖dk‖ ≤ C‖gk‖. (3.3)

Combining this with (3.1) gives

∞∑
k=0

‖gk‖2 ≤
∞∑
k=0

C2‖gk‖4
‖dk‖2 < ∞.

This implies limk→∞ ‖gk‖ = 0. The proof is completed. ��

4 Convergence analysis of the TPRP method with Armijo line search

In this section,we analyze the global convergence of the TPRPmethodwith theArmijo
line search, that is, the steplength satisfies

f (xk + αkdk) ≤ f (xk) + δαkg
T
k dk, (4.1)

where αk = max{α0ρ
i , i = 0, 1, 2, . . .} with 0 < ρ, δ < 1, α0 ∈ (0, 1] is an initial

guess of the steplength. If the conditions in Assumption A hold, it follows directly
from (3.3) and (2.7) that

‖dk‖ ≤ C‖gk‖ ≤ Cγ1. (4.2)

Theorem 2 Suppose that the conditions in Assumption A hold, {gk} is generated by
the TPRP method with the Armijo line search (4.1). Then either ‖gk‖ = 0 for some k
or

lim inf
k→∞ ‖gk‖ = 0. (4.3)

Proof Suppose for contradiction that lim infk→∞ ‖gk‖ > 0 and ‖gk‖ �= 0 for all
k ≥ 0. Define

γ = inf{‖gk‖: k ≥ 0}.

Then
‖gk‖ ≥ γ > 0, ∀k ≥ 0. (4.4)

From (2.5), (4.1) and the conditions in Assumption A, we have

lim
k→∞ αk‖gk‖2 = 0. (4.5)
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On one hand, if lim infk→∞ αk > 0, (4.5) gives lim infk→∞ ‖gk‖ = 0, which contra-
dicts (4.4). On the other hand, if lim infk→∞ αk = 0, then there exists a infinite index
set K such that

lim
k∈K,k→∞ αk = 0 (4.6)

When k ∈ K is large enough, the Armijo line search rule implies that ρ−1αk does not
satisfy (4.1), namely

f (xk + ρ−1αkdk) − f (xk) > δρ−1αkg
T
k dk (4.7)

We get from the mean value theorem and (2.6) that, there is a ξk ∈ [0, 1], such that

f (xk + ρ−1αkdk) − f (xk) = ρ−1αkg(xk + ξkρ
−1αkdk)

T dk

= ρ−1αkg
T
k dk + ρ−1αk(g(xk + ξkρ

−1αkdk) − gk)
T dk

≤ ρ−1αkg
T
k dk + Lρ−2α2

k‖dk‖2.

This together with (4.7), (4.2) and (2.5) gives

(1 − δ)

(
1 − (1 + t)2

4

)
‖gk‖2 ≤ (δ − 1)gTk dk

≤ Lρ−1αk‖dk‖2
≤ αk Lρ−1C2γ 2

1 .

Combining this with (4.6) gives lim infk∈K,k→∞ ‖gk‖ = 0. This also yields contra-
diction and the proof is completed. ��

5 Linear convergence rate

In this section, we analyze the r -linear convergence rate of the TPRP method when
the objective function f is twice continuously differentiable and uniformly convex,
that is, there are positive constants m ≤ M such that

m‖y‖2 ≤ yT∇2 f (x)y ≤ M‖y‖2, ∀x, y ∈ R
n, (5.1)

where ∇2 f (x) denotes the Hessian of f at x .

Lemma 3 Suppose that f is twice continuously differentiable and uniformly convex.
Then the problem (1.1) has a unique solution x∗ and

1

2
m‖x − x∗‖2 ≤ f (x) − f (x∗) ≤ 1

2
M‖x − x∗‖2, ∀x ∈ R

n, (5.2)

m‖x − x∗‖ ≤ ‖g(x)‖ ≤ M‖x − x∗‖, ∀x ∈ R
n, (5.3)

m‖x − y‖2 ≤ (g(x) − g(y))T (x − y) ≤ M‖x − y‖2, ∀x, y ∈ R
n, (5.4)

‖g(x) − g(y)‖ ≤ M‖x − y‖, ∀x, y ∈ R
n . (5.5)
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Moreover, for any x0 ∈ R
n, the level set Ω0 � {x ∈ R

n : f (x) ≤ f (x0)} is bounded
and there is a constant B0 > 0 such that

‖x‖ ≤ B0, ∀x ∈ Ω0. (5.6)

Based on the assumptions above, it is no difficult to prove the following convergence
theorem.

Theorem 3 Suppose that f is twice continuously differentiable and uniformly convex.
If {xk} is generated by the TPRP method with the Wolfe or the Armijo line search, then
this sequence converges to the unique solution of problem (1.1).

In order to prove the r -linear convergence of the TPRP method, we first give the
following lemma, which gives a lower bound of the stepsize αk .

Lemma 4 Suppose that f is twice continuously differentiable and uniformly convex,
the sequence {xk} is generated by the TPRP method with the Wolfe or the Armijo line
search. Then there is a constant C1 > 0 such that

αk ≥ C1, ∀k > 0. (5.7)

Proof Since zk = max{τ‖dk−1‖, ‖gk−1‖2}, we get from (2.1), (2.2), (2.3), (5.5), (5.6)
that

‖dk‖ ≤ ‖gk‖ +
∣∣∣βNEW

k

∣∣∣ ‖dk−1‖ + |λk |‖yk−1‖

≤ ‖gk‖ +
∣∣∣∣∣
gTk yk−1

zk
− ‖yk−1‖2gTk dk−1

z2k

∣∣∣∣∣ ‖dk−1‖ +
∣∣∣∣∣tk

gTk dk−1

zk

∣∣∣∣∣ ‖yk−1‖

≤ ‖gk‖ +
(‖gk‖‖yk−1‖

τ‖dk−1‖ + ‖yk−1‖2‖gk‖‖dk−1‖
τ 2‖dk−1‖2

)
‖dk−1‖

+ tk‖gk‖‖dk−1‖
τ‖dk−1‖ ‖yk−1‖

≤ ‖gk‖ +
(

‖gk‖2MB0

τ‖dk−1‖ + 4M2B2
0‖gk‖

τ 2‖dk−1‖

)
‖dk−1‖ + tk‖gk‖

τ
2MB0

≤
(
1 + 2MB0

τ
+ 4M2B2

0

τ 2
+ tk2MB0

τ

)
‖gk‖

≤
(
1 + 4MB0

τ
+ 4M2B2

0

τ 2

)
‖gk‖.

Therefore
‖gk‖2
‖dk‖2 ≥

(
1 + 4MB0

τ
+ 4M2B2

0

τ 2

)−2

� C2. (5.8)
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When the Wolfe line search is used, we get from (2.5), (1.8) and (5.5) that

(1 − σ)
(
4 − (1 + t)2

)
4

‖gk‖2 ≤ (σ − 1)gTk dk ≤ (gk+1 − gk)
T dk ≤ Mαk‖dk‖2.

By (5.8),

αk ≥ (1 − σ)
(
4 − (1 + t)2

) ‖gk‖2
4M‖dk‖2 ≥ (1 − σ)

(
4 − (1 + t)2

)
C2

4M

When the Armijo line search is used. By the line search rule, αk �= α0 implies
ρ−1αk dose not satisfy (4.1). Similar to the proof of Theorem 2, we can prove that

αk ≥ ρ(1 − δ)(4 − (1 + t)2)

4M

‖gk‖2
‖dk‖2 ≥ ρ(1 − δ)(4 − (1 + t)2)C2

4M

So we can get (5.7) by setting

C1 = min

{
(1 − σ)(4 − (1 + t)2)C2

4M
,

ρ(1 − δ)(4 − (1 + t)2)C2

4M

}
.

The proof is completed. ��
Theorem 4 Suppose that f is twice continuously differentiable and uniformly convex,
x∗ is the unique solution of problem (1.1) and the sequence {xk} is generated by the
TPRPmethod with theWolfe or the Armijo line search. Then there are constants a > 0
and r ∈ (0, 1) such that

‖xk − x∗‖ ≤ ark . (5.9)

Proof From the Wolf condition (1.7) or the Armijo condition (4.1), we have

f (xk+1) − f (x∗) ≤ f (xk) − f (x∗) + δαkg
T
k dk

≤ f (xk) − f (x∗) − δαk

(
1 − (1 + t)2

4

)
‖gk‖2

≤ f (xk) − f (x∗) − δC1

(
1 − (1 + t)2

4

)
m2‖xk − x∗‖2

≤ f (xk) − f (x∗) − 2δC1m2

M

(
1 − (1 + t)2

4

)
( f (xk) − f (x∗))

=
[
1 − 2δC1m2

M

(
1 − (1 + t)2

4

)]
( f (xk) − f (x∗)).

Then we get,

f (xk) − f (x∗) ≤ r2
(
f (xk−1) − f (x∗)

) ≤ · · · ≤ r2k
(
f (x0) − f (x∗)

)
,
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where

r =
[
1 − 2δC1m2

M

(
1 − (1 + t)2

4

)]1/2
∈ (0, 1).

Combining this with (5.2) gives

‖xk − x∗‖2 ≤ 2

m

(
f (xk) − f (x∗)

) ≤ 2

m

(
f (x0) − f (x∗)

)
r2k .

Hence we can obtain (5.9) by letting a = √
2 ( f (x0) − f (x∗)) /m. The proof is

completed. ��

6 Numerical results

In this section, we report some numerical results of the proposedmethods and compare
their numerical performances with that of the CG_DESCENT method [12]. The test
problems are the unconstrained problems in the CUTEr library [3] with dimensions
varying from 50 to 1000. We excluded the problems for which different solvers con-
verge to different local minimizers. We often ran two versions of the test problem for
which the dimension could be chosen arbitrarily. Table 1 lists the names (Prob) and
dimensions (Dim) of the 152 valid test problems.

All themethodswere coded in Fortran and ran on a PCwith 3.7GHzCPUprocessor
and 4 GB RAM. The code for our methods are modifications of the subroutine of
CG_DESCENT method. We terminated the iteration when ‖gk‖∞ ≤ 10−6. Detailed
numerical results are omitted here since the data is too much.

Figures 1, 2, 3 and 4 plot the performances of the methods relative to the total
number of iterations and the CPU time by using the profiles of Dolan and Moré [8].
The curves in the figures have the following meanings:

– “CG_DESCENT” stands for the CG_DESCENT method with the approximate
Wolfe line search [12]. We use the Fortran code (Version 1.4, November 14, 2005)
from Prof. Hager’s web page: http://www.math.ufl.edu/~hager/ and the default
parameters there.

– “TPRP” stands for theTPRPmethodwith the same line search as “CG_DESCENT”.
We set τ = 10−6 for the scalar zk inβNEW

k and the parameter tk in (2.3) is calculated
(2.4) with t = 0.3.

– “TPRP+”, “THS”,“THS+”,“TLS”,“TLS+” denote the TPRP+, THS, THS+, TLS
and TLS+ methods with the same line search and parameters as “TPRP”, respec-
tively.

We observe from Figs. 1, 2, 3 and 4 that the performances of the TPRP+, THS+ and
TLS+methods are close and obviously better than that of the CG_DESCENTmethod.
Since all the methods are implemented with the same line search, we conclude that, on
average, the TPRP+, THS+ and TLS+methods seem to generate more efficient search
directions. We also observe that, the performance of the TPRP+, THS+ and TLS+
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Table 1 The problems and their dimensions

No. Prob Dim No. Prob Dim No. Prob Dim

1 ARGLINA 100 52 DIXMAANK 300 103 NONDQUAR 500

2 ARGLINA 200 53 DIXMAANK 1500 104 NONDQUAR 5000

3 ARGLINB 100 54 DIXMAANL 300 105 NONMSQRT 100

4 ARGLINB 200 55 DIXMAANL 1500 106 OSCIPATH 100

5 ARGLINC 100 56 DIXON3DQ 1000 107 OSCIPATH 500

6 ARGLINC 200 57 DIXON3DQ 10000 108 PENALTY1 500

7 ARWHEAD 100 58 DQDRTIC 500 109 PENALTY1 1000

8 ARWHEAD 1000 59 DQDRTIC 1000 110 PENALTY2 50

9 BDQRTIC 100 60 DQRTIC 100 111 PENALTY2 100

10 BDQRTIC 1000 61 EDENSCH 2000 112 PENALTY3 50

11 BDQRTIC 5000 62 EG2 1000 113 PENALTY3 100

12 BOX 100 63 ENGVAL1 100 114 POWELLSG 1000

13 BOX 1000 64 ENGVAL1 5000 115 POWELLSG 10000

14 BROWNAL 100 65 ERRINROS 50 116 POWER 500

15 BROWNAL 200 66 EXTROSNB 100 117 POWER 1000

16 BROYDN7D 5000 67 EXTROSNB 1000 118 QUARTC 500

17 BROYDN7D 10000 68 FLETCBV2 5000 119 QUARTC 10000

18 BRYBND 1000 69 FLETCBV2 10000 120 SCHMVETT 500

19 BRYBND 10000 70 FLETCBV3 100 121 SCOSINE 100

20 CHNROSNB 50 71 FLETCHBV 100 122 SCURLY10 100

21 COSINE 1000 72 FLETCHCR 100 123 SCURLY20 100

22 COSINE 10000 73 FLETCHCR 1000 124 SCURLY30 100

23 CRAGGLVY 1000 74 FMINSRF2 1024 125 SENSORS 100

24 CRAGGLVY 5000 75 FMINSRF2 5625 126 SINQUAD 1000

25 CURLY10 100 76 FMINSURF 5625 127 SINQUAD 10000

26 CURLY10 1000 77 FREUROTH 100 128 SPARSINE 50

27 CURLY20 100 78 FREUROTH 5000 129 SPARSINE 100

28 CURLY20 1000 79 GENHUMPS 100 130 SPARSQUR 1000

29 CURLY30 100 80 GENHUMPS 5000 131 SPARSQUR 5000

30 CURLY30 1000 81 GENROSE 100 132 SPMSRTLS 4999

31 DECONVU 61 82 GENROSE 500 133 SPMSRTLS 10000

32 DIXMAANA 3000 83 HILBERTB 50 134 SROSENBR 5000

33 DIXMAANA 9000 84 HYDC20LS 99 135 SROSENBR 10000

34 DIXMAANB 3000 85 INDEF 1000 136 TESTQUAD 1000

35 DIXMAANB 9000 86 INDEF 5000 137 TESTQUAD 5000

36 DIXMAANC 90 87 LIARWHD 5000 138 TOINTGOR 50

37 DIXMAANC 9000 88 LIARWHD 10000 139 TOINTGSS 1000

38 DIXMAAND 3000 89 MANCINO 50 140 TOINTGSS 5000

39 DIXMAAND 9000 90 MANCINO 100 141 TOINTPSP 50

40 DIXMAANE 300 91 MODBEALE 200 142 TOINTQOR 50
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Table 1 continued

No. Prob Dim No. Prob Dim No. Prob Dim

41 DIXMAANE 1500 92 MOREBV 100 143 TQUARTIC 1000

42 DIXMAANF 3000 93 MOREBV 500 144 TQUARTIC 5000

43 DIXMAANF 9000 94 MSQRTALS 100 145 TRIDIA 100

44 DIXMAANG 1500 95 MSQRTALS 1024 146 TRIDIA 10000

45 DIXMAANG 9000 96 MSQRTBLS 100 147 VARDIM 100

46 DIXMAANH 3000 97 MSQRTBLS 1024 148 VARDIM 200

47 DIXMAANH 9000 98 NONCVXU2 5000 149 VAREIGVL 1000

48 DIXMAANI 300 99 NONCVXU2 10000 150 VAREIGVL 5000

49 DIXMAANI 1500 100 NONCVXUN 100 151 WOODS 4000

50 DIXMAANJ 300 101 NONDIA 5000 152 WOODS 10000

51 DIXMAANJ 1500 102 NONDIA 10000
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Fig. 1 Performance profiles relative to the total number of iterations (a)
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0.8

1.0

P

Fig. 2 Performance profiles relative to the total number of iterations (b)
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Fig. 3 Performance profiles relative to the CPU time (a)
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Fig. 4 Performance profiles relative to the CPU time (b)

methods are better than that of the TPRP, THS and TLS methods, correspondingly.
This means that the nonnegative restriction on the CG parameter βNEW

k is benefit to
improve the efficiency of the methods.

Acknowledgements This work is supported by the Chinese NSF Grant (No. 11401242) and the SFED
Grant (No. 14B139) of Hunan Province.

References

1. Andrei, N.: Open problems in nonlinear conjugate gradient algorithms for unconstrained optimization.
Bull. Malays. Math. Sci. Soc. 34, 319–330 (2011)

2. Babaie-Kafaki, S., Reza, G.: A descent family of Dai–Liao conjugate gradient methods. Optim. Meth-
ods Softw. 21, 1–9 (2013)

3. Bongartz, I., Conn,A.,Gould,N., Toint, P.:CUTE: constrained andunconstrained testing environments.
ACM Trans. Math. Softw. 21, 123–160 (1995)

4. Dai, Y., Kou, C.: A nonlinear conjugate gradient algorithm with an optimal property and an improved
Wolfe line search. SIAM J. Optim. 23, 296–320 (2013)

5. Dai, Y., Liao, L.: New conjugate conditions and related nonlinear conjugate gradient methods. Appl.
Math. Optim. 43, 87–101 (2001)

6. Dai, Y., Yuan, Y.: A nonlinear conjugate gradient method with a strong global convergence property.
SIAM J. Optim. 10, 177–182 (2000)

7. Dai, Z.: Two modified HS type conjugate gradient methods for unconstrained optimization problems.
Nonlinear Anal. 74, 927–936 (2011)

123



A family of three-term nonlinear conjugate gradient… 1927

8. Dolan, E., Moré, J.: Benchmarking optimization software with performance profiles. Math. Program.
91, 201–213 (2002)

9. Fletcher, R.: Practical Method of Optimization, Vol. 1: Unconstrained Optimization. Wiley, New York
(1987)

10. Fletcher, R., Reeves, C.: Function minimization by conjugate gradients. Comput. J. 7, 149–154 (1964)
11. Gilbert, J., Nocedal, J.: Global convergence properties of conjugate gradient methods for optimization.

SIAM J. Optim. 2, 21–42 (1992)
12. Hager, W., Zhang, H.: A new conjugate gradient method with guaranteed descent and an efficient line

search. SIAM J. Optim. 16, 170–192 (2005)
13. Hager, W., Zhang, H.: A survey of nonlinear conjugate gradient methods. Pac. J. Optim. 2, 35–58

(2006)
14. Hestenes, M., Stiefel, E.: Methods of conjugate gradients for solving linear systems. J. Res. Natl. Bur.

Stand. 49, 409–436 (1952)
15. Li, G., Tang, C., Wei, Z.: New conjugacy condition and related new conjugate gradient methods for

unconstrained optimization. J. Comput. Appl. Math. 202, 523–539 (2007)
16. Li, M., Feng, H.: A sufficient descent LS conjugate gradient method for unconstrained optimization

problems. Appl. Math. Comput. 218, 1577–1586 (2011)
17. Li,M., Liu, J., Feng, H.: The global convergence of a descent PRP conjugate gradient method. Comput.

Appl. Math. 31(1), 59–83 (2012)
18. Liu,D.,Nocedal, J.:On the limitedmemoryBFGSmethod for large-scale optimization.Math. Program.

45, 503–528 (1989)
19. Liu, Y., Storey, C.: Efficient generalized conjugate gradient algorithms, part 1: theory. J. Optim. Theory

Appl. 69, 177–182 (1991)
20. Nocedal, J.: Updating quasi-Newtonmatrices with limited storage.Math. Comput. 35, 773–782 (1980)
21. Perry, J.M.: A class of conjugate gradient algorithms with a two-step variable-metric memory.

Discussion Paper 269, Center for Mathematical Studies in Economics and Management Sciences,
Northwestern University, Evanston, Illinois (1977)

22. Polak, B., Ribière, G.: Note sur la convergence de méthodes de directions conjuguées. Rev. Francaise
Inform. Recherche. Opérat. 16, 35–43 (1969)

23. Polyak, B.: The conjugate gradient method in extreme problems. USSR Comput. Math. Math. Phys.
9, 94–112 (1969)

24. Powell, M.: Nonvonvex minimization calculations and the conjugate gradient method. In: Lecture
Notes in Mathematics, vol. 1066. Springer, Berlin (1984)

25. Powell, M.: Convergence properties of algorithms for nonlinear optimization. SIAMRev. 28, 487–500
(1986)

26. Shanno, D.: Conjugate gradient methods with inexact searches. Math. Oper. Res. 3, 244–256 (1978)
27. Shanno, D.F.: On the convergence of a new conjugate gradient algorithm. SIAM J. Numer. Anal. 15,

1247–1257 (1978)
28. Yabe, H., Takano, M.: Global convergence properties of nonlinear conjugate gradient methods with

modified secant condition. Comput. Optim. Appl. 28, 203–225 (2004)
29. Yu, G., Guan, L.: Modified PRP methods with sufficient descent property and their convergence

properties. Acta Scientiarum Naturalium Universitatis Sunyatseni 45(4), 11–14 (2006). (Chinese)
30. Yuan, G.: Modified nonlinear conjugate gradient methods with sufficient descent property for large-

scale optimization problems. Optim. Lett. 3, 11–21 (2009)
31. Zhang, J., Deng, N., Chen, L.: New quasi-Newton equation and related methods for unconstrained

optimization. J. Optim. Theory Appl. 102, 147–167 (1999)
32. Zhang, L.: New versions of the Hestenes–Stiefel nonlinear conjugate gradient method based on the

secant condition for optimization. Comput. Appl. Math. 28, 1–23 (2009)
33. Zhang, L., Zhou, W., Li, D.: A descent modified Polak–Ribière–Polyak conjugate gradient method

and its global convergence. IMA J. Numer. Anal. 26, 629–640 (2006)
34. Zoutendijk, G.: Nonlinear programming, computational methods. In: Abadie, J. (ed.) Integer and

Nonlinear Programming, pp. 37–86. North-Holland, Amsterdam (1970)

123


	A family of three-term nonlinear conjugate gradient methods close to the memoryless BFGS method
	Abstract
	1 Introduction
	2 The algorithm
	3 Convergence analysis of the TPRP method with Wofle line search
	4 Convergence analysis of the TPRP method with Armijo line search
	5 Linear convergence rate
	6 Numerical results
	Acknowledgements
	References




