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Abstract The difference-of-convex (DC) decomposition is an effective method for
designing a branch-and-bound algorithm. In this paper,wedesign twonewbranch-and-
bound algorithms based on DC decomposition, to find global solutions of nonconvex
box-constrained quadratic programming problems, and compare the efficiency of the
proposed algorithms with two previous state-of-the-art branch-and-bound algorithms.
Numerical experiments are conducted to show the competitiveness of the proposed
algorithms on 20–60 dimensional box-constrained quadratic programming problems.
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1 Introduction

Consider the following box-constrained quadratic programming problem:

v∗ = min F(x) = 1

2
xT Qx + cT x (Box-QP)

s.t. x ∈ [0, 1]n,

where Q ∈ R
n×n is a real symmetric matrix and c ∈ R

n is a real vector. Nonconvex
Box-QP is NP-hard in general, even when Q has only one negative eigenvalue [14].

Many branch-and-bound algorithms have been proposed to find global solutions
of Box-QP problems in the literature (see, e.g., [5–9,12,21,23]). One of the most
important ingredients of a branch-and-bound algorithm is to find a good relaxation
method (i.e., the lower bound method). Among different relaxations, the SDP+RLT
relaxation [3], which combines the semidefinite constraints [22] and the well-known
RLT constraints [18,19] together, is a very tight relaxation for Box-QP problems.
However, the SDP+RLT relaxation is not a competitive choice for a branch-and-
bound algorithm, due to its high computational cost. A looser but easily computed
lower bound is desired for designing an overall efficient branch-and-bound algorithm.

The DC decomposition is an effective method for designing convex relaxations
[1,2,8]. The main idea of DC decomposition is to decompose the objective function
F(x) = 1

2 x
T Qx + cT x to the difference of two convex functions G(x) and H(x),

i.e., F(x) = G(x) − H(x), and then relax −H(x) to a convex function L(x) such
that L(x) � −H(x) for any feasible solution x ∈ [0, 1]n . Various DC decompositions
have been proposed in the literature. For example, An andTao [1] decomposed F(x) =
[F(x) − 1

2λminxT x] + 1
2λminxT x , where λmin is the smallest eigenvalue of Q. Later

they designed an ellipsoidal relaxation, and used the DC approximation algorithm to
solve the ellipsoidal relaxation problem [2]. Cambini and Sodinia reformulated the
objective function to F(x) = 1

2 x
T Q0x + cT x − 1

2

∑
i=1,...,p λi (v

T
i x)

2, where Q0
is positive semidefinite, p ≤ n is the number of negative eigenvalue of Q, λi is the
negative eigenvalue and vi is the corresponding eigenvector, i = 1, . . . , p. The main
feature of the above methods is that the quadratic programming relaxations can be
solved much more efficiently than a semidefinite programming relaxation. However,
these lower bounds are generally not as tight as that of a semidefinite programming
relaxation. In recent years, many new relaxation methods of high quality have been
proposed [11,16,24].However, these papers only study the effectiveness of these lower
bounds. The efficiency of these bounds in a branch-and-bound algorithm is not known
yet. Different from their perspectives, this paper aims to design two complete branch-
and-bound algorithms for globally solving Box-QP programs. Our main concern is the
efficiency of the proposed branch-and-bound algorithms, rather than the performance
of certain lower bound methods.

The main contribution of this paper is that it proposes two branch-and-bound
algorithms with new DC decompositions. Different from previous DC decomposi-
tions designed in [1,2,8], we solve semidefinite relaxations and doubly nonnegative
relaxations of Box-QP problems, and use the optimal solutions of these relaxation
problems to construct tighter relaxations. The proposed algorithms are compared with
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DC decomposition based branch-and-bound algorithms… 987

the QUADPROGBB algorithm [9] and BARON [21], and numerical results show the
competitiveness of the proposed algorithms.

The rest of this paper is arranged as follows. In Sect. 2, we propose the first DC
decomposition based branch-and-bound algorithm, in which the convex quadratic pro-
gramming relaxation is constructed from the solution of the conventional semidefinite
relaxation problem. In Sect. 3, we design the second branch-and-bound algorithmwith
an improved DC decomposition, which is constructed from the solution of a doubly
nonnegative relaxation problem. Numerical results are presented in Sect. 4. Finally,
we conclude the paper in Sect. 5.

2 A branch-and-bound algorithm based on DC decomposition

In this section, we design the first DC decomposition based branch-and-bound algo-
rithm. For the nonconvex quadratic objective function F(x) = 1

2 x
T Qx + cT x , we

decompose it into the difference of two convex functions:

F(x) = xT
[
1

2
Q + diag(λ)

]

x + cT x −
n∑

i=1

λi x
2
i ,

where λ := (λ1, . . . , λn)
T � 0, diag(λ) is the diagonal matrix with λi being its

i-th diagonal entry, and 1
2Q + diag(λ) is positive semidefinite (denoted as 1

2Q +
diag(λ) � 0). Assume that the variable xi is bounded by li � xi � ui , then we have
−(li + ui )xi + li ui � −x2i for all xi ∈ [li , ui ], and the function F(x) can be relaxed
to

Pλ[l,u](x) = xT
[
1

2
Q + diag(λ)

]

x + cT x −
n∑

i=1

λi (li + ui )xi +
n∑

i=1

λi li ui ,

which is convex and satisfies Pλ[l,u](x) � F(x) for all x ∈ [l, u] := ∏n
i=1[li , ui ].

Thus, the problem minx∈[l,u] Pλ[l,u](x), denoted as DCR[l,u], is a convex quadratic
programming problem that provides a lower bound of F(x) over x ∈ [l, u].

Based on the convex relaxation DCR[l,u], the first branch-and-bound algorithm
(named as DC-BB algorithm) is designed and presented in Fig. 1. In the t-th enumer-
ation of DC-BB algorithm, the node that has the smallest lower bound is selected in
Line 8. Based on this node selection rule, the lower bound Lt defined in Line 8 satisfies
Lt � v∗, where v∗ denotes the optimal value of problem Box-QP. Besides, an upper
bound U∗ is estimated by recording the best known solution in Lines 22 and 29. If
U∗ − Lt � ε, then the DC-BB algorithm terminates, and U∗ − v∗ � ε is satisfied.
The following results guarantee the convergence of the DC-BB algorithm.

Lemma 1 Given a parameter λ such that λ � 0 and 1
2Q + diag(λ) � 0, let x̄ be

the optimal solution of DCR[l,u] and i∗ = argmaxi∈{1,...,n} ri , where ri = λi [(li +
ui )x̄i − li ui − x̄2i ]. For any given ε > 0, let δ = ( 4ε

nλi∗ )
1
2 . If ui∗ − li∗ � δ, then

F(x̄) − Pλ[l,u](x̄) � ε.
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988 C. Lu, Z. Deng

Input: A Box-QP instance, and a given error tolerance ε > 0.
1: Initialize [l0, u0] = [0, 1]n, Set t = 0.
2: Compute a λ, such that 1

2Q + diag(λ) 0, λ 0.
3: Solve DCR[l0,u0] for its optimal solution x0 and optimal value L0.
4: Set U∗ = F (x0), x∗ = x0

5: Construct P and insert {[l0, u0], x0, L0} into P.
6: loop
7: Set t ← t + 1.
8: Choose a problem from P, denoted as {[lt, ut], xt, Lt}, such that the bound Lt is the

smallest one in P.
9: Delete the chosen subproblem from P.
10: if U∗ − Lt ε then
11: return x∗ and terminate.
12: end if
13: Compute rti = λi[(lti + ut

i)x
t
i − ltiu

t
i − (xt

i)
2] for i = 1, ..., n

14: Set i∗ = argmaxi∈{1,...,n}rti , and z∗
i∗ = 1

2 (l
t
i∗ + ut

i∗).
15: Construct box [la, ua] by setting la = lt, ua

i = ut
i for i = i∗ and ua

i∗ = zi∗ .
16: Construct box [lb, ub] by setting ub = ut, lbi = lti for i = i∗ and lbi∗ = zi∗ .
17: Solve DCR[la,ua] for its optimal solution xa and optimal value La.
18: if La U∗ then
19: insert {[la, ua], xa, La} into P.
20: end if
21: if U∗ > F (xa) then
22: set U∗ = F (xa), x∗ = xa.
23: end if
24: Solve DCR[lb,ub] for its optimal solution xb and optimal value Lb.
25: if Lb U∗ then
26: insert {[lb, ub], xb, Lb} into P.
27: end if
28: if U∗ > F (xb) then
29: set U∗ = F (xb), x∗ = xb.
30: end if
31: end loop

Fig. 1 DC-BB algorithm for solving Box-QPs

Proof Let δ = ( 4ε
nλi∗ )

1
2 . Given the condition ui∗ − li∗ � ( 4ε

nλi∗ )
1
2 , we have ri∗ =

λi∗ [(li∗ + ui∗)x̄i∗ − li∗ui∗ − x̄2i∗ ] � λi∗
(ui∗−li∗ )2

4 � ε
n . Then F(x̄) − Pλ

(l,u)(x̄) =
∑n

i=1 ri � ε. ��
Theorem 1 For any given ε > 0, the DC-BB algorithm terminates in a finite number
of iterations and returns a feasible solution x∗ such that F(x∗) � v∗ + ε.

Proof Based on Lemma 1, we know that if i∗ is selected as a branching direction

in Line 14 of the DC-BB algorithm, then uti∗ − lti∗ > ( 4ε
nλi∗ )

1
2 . Otherwise, we have

U∗ − Lt � F(xt ) − Lt � ε, which means that the algorithm should have already
terminated in Line 11. Hence, the length of the interval being selected for branching

is larger than ( 4ε
nλi∗ )

1
2 . Since the initial set [l0, u0] = [0, 1]n is bounded, the DC-BB

algorithm must terminates in a finite number of iterations, and returns a solution x∗
such that F(x∗) − v∗ � ε. ��

The tightness of DCR[l,u] depends on the choice of the parameter λ. A different
λ may lead to a different lower bound, which affects the efficiency of the DC-BB
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algorithm significantly. Motivated by the results in [24], we construct a high quality
relaxation with the following method: find a λ ∈ R

n , such that 1
2Q + diag(λ) � 0,

λ � 0, and the optimal value of DCR[l0,u0] with [l0, u0] = [0, 1]n is maximized. This
problem can be formulated as

max
λ�0, 12 Q+diag(λ)�0

min
x∈[0,1] P

λ[0,1](x),

which is equivalent to the following problem (see Theorem 1 of [24]):

max
1

2
σ (SDR)

s.t.

[−σ (c − λ)T

c − λ Q + 2diag(λ)

]

� 0,

λ � 0.

The solution λ∗ is computed once and for all at the beginning of the DC-BB algorithm
and used throughout the algorithm. The above implementation is similar to the one of
quadratic convex reformulation for binary quadratic programming problems in [4,13],
in which a reformulation that provides the tightest relaxation bound is constructed
before solving the problem with a general-purpose global optimization solver.

3 An enhanced convex relaxation problem

In this section, we derive an enhanced convex relaxation that is tighter than DCR[l,u].
Let N ∈ R

n×n be a nonnegative symmetric matrix with zero diagonal entries. We
rewrite the function Pλ[l,u](x) as Pλ[l,u](x)− xT Nx + xT Nx . For any vector x ∈ [l, u],
we have xi x j � li x j + l j xi − li l j , i, j ∈ {1, . . . , n}. By choosing an N such that
1
2Q + diag(λ) − N � 0, we define the following convex function:

P̄λ,N
[l,u] (x) = Pλ[l,u](x) − xT Nx +

n∑

i=1

n∑

j=1

Ni j (li x j + l j xi − li l j ).

Problem Box-QP is then relaxed to the problem minx∈[l,u] P̄λ,N
[l,u] (x), which is denoted

as Enhanced-DCR[l,u].
Based on the enhanced convex relaxation, we propose an enhanced branch-and-

bound algorithmbymodifying theDC-BBalgorithm in Fig. 1: theDCR[l,u] relaxations
in Lines 3, 17 and 24 are replaced by Enhanced-DCR[l,u], and the definition of r ti in
Line 13 is replaced by r ti = λi [(lti +uti )x

t
i −lti u

t
i −(xti )

2]+∑n
j=1 Ni j (xti −lti )(x

t
j −ltj ).

The modified algorithm will be called as EBB algorithm. To show the convergence of
the EBB algorithm, we need the next lemma.

Lemma 2 Given λ � 0 and N � 0 such that 1
2Q + diag(λ) − N � 0, let x̄ be

the optimal solution of Enhanced-DCR[l,u] and i∗ = argmaxi∈{1,...,n} ri , where ri =
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λi [(li + ui )x̄i − li ui − x̄2i ] + ∑n
j=1 Ni j (x̄i − li )(x̄ j − l j ). Then, for any given ε > 0,

there exists a δ > 0, such that if ui∗ − li∗ � δ, then F(x̄) − P̄λ,N
[l,u] (x̄) � ε.

Proof Since xi − li ≤ ui − li � 1 for all i = 1, . . . , n, we have ri � (ui−li )2

4 +
∑n

j=1 Ni j (ui−li ) � ( 14+∑n
j=1 Ni j )(ui−li ). Letρ = 1

4+∑n
j=1 Ni j and δ = ε

nρ > 0.

If ui∗ − li∗ � δ, then ri∗ � ε
n and F(x̄) − P̄λ,N

[l,u] (x̄) = ∑n
i=1 ri � ε. ��

Based on Lemma 2, we provide the convergence result in the next theorem, which
can be proved in the same line as Theorem 1.

Theorem 2 For any given ε > 0, the EBB algorithm terminates in a finite number of
iterations and returns a feasible solution x∗ such that F(x∗) − v∗ � ε.

Similar to the analysis in Sect. 2, the tightness of Enhanced-DCR[l,u] depends on the
choice of λ and N . To obtain a high quality convex relaxation, we adopt the following
parameter strategy: Find a pair of (λ, N ) such that 1

2Q + diag(λ) − N � 0, λ � 0,
N � 0, and the optimal value of Enhanced-DCR[0,1] is maximized. This strategy can
formulated as

max
λ,N

min
x∈[0,1]n P̄λ,N

[0,1]n (x) (P1)

s.t.
1

2
Q + diag(λ) − N � 0,

λ � 0, N � 0.

The next theorem shows that problem P1 is equivalent to a semidefinite program-
ming problem.

Theorem 3 Problem P1 is equivalent to the following problem:

max
1

2
σ (P2)

s.t.

[−σ (c − λ)T

c − λ Q + 2diag(λ) − 2N

]

� 0,

λ � 0, N � 0.

Weomit the proof of Theorem3 since it can be derived similar to the one of Theorem
1 in [24]. Also note that the dual problem of P2 is

min
1

2
Q · X + cT x (DNN)

s.t. Xii � xi , i = 1, . . . , n,

X11 = 1, X � 0, X � 0,

which is a doubly nonnegative relaxation of Box-QP, and is indeed tighter than SDR.
Thus, the Enhanced-DCR[l,u] relaxation is tighter than the DCR[l,u] relaxation at the
root node.
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For a problemwith tens of variables, theDNNrelaxation cannot be solved efficiently
by using a typical interior-point-based algorithm, since theremay involve O(n2) linear
constraints in X � 0. To overcome this difficulty, we use the following iterative
procedure for solving the DNN problem1: At first, an initial problem, which drops
the nonnegativity constraint X � 0 in problem DNN, is solved to obtain a solution
X̄ . Then, the relaxation is resolved after adding constraints of the form Xi j � 0 for
i, j’s such that X̄i j < 0. This procedure is repeated until X̄ � 0 is satisfied. This
iterative procedure is generally much more efficient than a direct application of an
interior-point algorithm for solving the original DNN problem.

Remark 1 It is worth to point out that in our Enhanced-DCR[l,u] relaxation, the non-
diagonal entries of Q are perturbed. The idea of non-diagonal perturbation has also
been considered in the generalized α-BB algorithm [20]. Themain difference between
our algorithm and the generalized α-BB algorithm is that our convex relaxation
Enhanced-DCR[l,u] is defined as minx∈[l,u] P̄λ,N

[l,u] (x), which is a convex Box-QP with
n variables, while the convex relaxation in the generalized α-BB algorithm introduces
more variables and more linear constraints (the number of new variables and new
constraints may beO(n2) in the worst case, see [20] for more details). Moreover, our
method further exploits the special structure of Box-QP to derive the convex relaxation
Enhanced-DCR[l,u], which is as tight as the DNN relaxation at the root node.

4 Numerical experiments

In this section, we compare the proposed algorithms with the QUADPROGBB algo-
rithm,2 a previous state-of-the-art algorithm proposed by Chen and Burer [9]. The
main feature of the QUADPROGBB algorithm is that it implements an augmented
Lagrangian type method for computing doubly nonnegative relaxation based lower
bounds, and calls the CPlex interfaces to compute upper bounds.

Our proposed algorithms are implemented in Matlab R2014. We use “quadprog”
function to solve convex quadratic programming relaxations, SeDuMi [17] to solve
semidefinite programming problems, and the iterative method described in Sect. 3 to
solve the DNN relaxation problems. We run all of the three algorithms on a PC with
Intel Core i7-2600 (3.40GHz) and 4GB memory. Our numerical experiments have
been carried out on three test sets:

• Basic Set The Basic Set was generated by Vandenbussche and Nemhauser [23],
which contains 54 Box-QP instances with dimensions ranging from 20 to 60. The
Basic Set is a standard test set that has been widely used in the literature (Refs.
[7,9,23]).

• Extended Set The Extended Set was generated by Burer and Vandenbussche [7],
which contains 36 Box-QP instances with dimensions ranging form 70 to 100. The
Extended Set has been used in [7,9].

1 The idea of using an iterative procedure is motivated by the works in [5,15].
2 Available at https://github.com/sburer/QUADPROGBB.
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Table 1 Number of instances being solved to 10−4 relative error bound within 2h

Test sets information # Solved

Name # Instances Dimensions DC-BB EBB QUADPROGBB

Basic 54 20–60 54 54 54

Extended 36 70–100 18 31 32

Random 70 20–80 66 69 70

• Random Set This set contains 70 randomly generated Box-QP instances with
dimensions ranging from 20 to 80. The entries of matrix Q and vector c are
uniformly sampled from the interval [−100, 100].
The first two sets are publicly available.3 There are 160 instances in total in these

three sets. For all algorithms, we use a relative optimality tolerance 10−4 for termina-
tion, i.e., if |U∗ − Lt |/|U∗| < 10−4, then the algorithm terminates. A running time
limit of 2h is enforced for all the algorithms. We regard instances as trivial if they can
be solved by one of the three algorithms within 1 s, and regard instances as hard if
they cannot be solved by one of the three algorithms within 1000s. The information
of test sets and the number of problems having been successfully solved by these
algorithms are summarized in Table 1. Detailed comparison results will be presented
in the following two subsections.

4.1 Comparison between DC-BB and EBB

To compare the efficiency of the DC-BB algorithm and the EBB algorithm, we present
their log–log plots of the CPU times in Fig. 2. We observe that the EBB algorithm
performs better than theDC-BBalgorithm in terms of computational time onmost non-
trivial instances. Especially, the EBB algorithm runs faster than the DC-BB algorithm
on all instances that can not be solved within 10s by either one of the two algorithms.
The results on non-trivial instances indicate that the Enhanced-DCR[l,u] relaxation
provides a tighter relaxation bound than the DCR[l,u] relaxation, and reduces the
number of enumerations effectively.

Themain difference between the two algorithms is that theDC-BB algorithm solves
problem SDR in preprocess, while the EBB alorithm solves problem DNN. To see the
effects of the preprocessing steps more clear, we list information of the two relaxation
methods in Fig. 3, where the results are based on the numerical results on the 20–80
dimensional instances in Random Set. Define

Gap Closed := v(DNN) − v∗

v(SDR) − v∗ ,

where v(SDR), v(DNN) and v∗ denote the SDRbound, theDNNbound, and the global
optimal value (computed by the proposed branch-and-bound algorithm), respectively.

3 Available at http://sburer.github.io/files/Box-QP.tar.gz.
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For each dimension n, the results are averaged over 10 instances. From Fig. 3, we
discover that the DNN relaxation provides a tighter bound at the root node, but needs
longer computational time.However, for all nontrivial test instances, the preprocessing
time is relatively small in comparison with the total time being saved by the improved
lower bound. Quite the reverse for the trivial instances, the CPU time for solving the
DNN relaxation is even longer than the total time of DC-BB algorithm. Thus, EBB
algorithm outperforms DC-BB algorithm on non-trivial instances, but underperforms
on trivial instances.

Remark 2 The CPU time on solving the DNN relaxation is based on the iterative
procedure described in Sect. 3. The computational time for solving theDNN relaxation
by directly using SeDuMi is much longer. For example, it takes SeDuMi 32.26 s
on average to solve a 60-dimensional DNN relaxation directly, while the iterative
procedure only needs 2 s on average.

4.2 Comparison between EBB and QUADPROGBB

The log–log plots of the CPU times for the EBB algorithm versus the QUADPROGBB
algorithm are presented in Fig. 4. The conclusions on the comparison results between
the two algorithms are indefinite. For the Basic Set, the EBB algorithm performs better
than the QUADPROGBB algorithm onmost instances (53 out of 54 instances). For the
Extended Set and Random Set, the QUADPROGBB algorithm outperforms the EBB
algorithm onmost hard instances.Meanwhile, the EBB algorithm performs faster than
the QUADPROGBB algorithm on most non-hard instances. The above phenomenon
can be explained as follows: the EBB algorithm solves a DNN relaxation at the root
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Fig. 4 Log–log plots of CPU times—QUADPROGBB versus EBB. aBasic Set. bExtended Set. cRandom
Set

node to compute the parameters λ∗ and N∗, which are then fixed in later enumerations.
Thus, the convex quadratic relaxation can be as tight as the DNN relaxation at the root
node, and deteriorates as the enumeration goes into the deep layers of the branch-
and-bound tree. Therefore, the EBB algorithm is expected to perform well for most
non-hard instances, but not as well on hard instances.

4.3 Results on 20–60 dimensional instances

Based on the observations in Sects. 4.1 and 4.2, we discover that there is no single
algorithm outperforms the others on all instances with different dimensions. However,
the two proposed algorithms are competitive on 20–60 dimensional instances. This
motivates us to implement a composed algorithm (named as CP-BB), which runs
DC-BB for Box-QP instances with no more than 30 variables, and runs EBB for
the instances with more than 30 variables. The CP-BB algorithm is tested against
QUADPROGBB and BARON on all 20–60 dimensional instances in the three test
sets. The total number of 20–60 dimensional instances is 104, including the 54 test
instances inBasic Set. All of the 104 instances have been solved by the three algorithms
to a 10−4 relative error within 1-h time limit. The log–log plots are presented in
Fig. 5. We have two observations from this figure: (i) CP-BB performs better than
QUADPROGBB on 101 out of 104 test instances; (ii) CP-BB performs more robust
than BARON, in the sense that the CP-BB solves all the instances within 120s, while
BARON fails to solve 21 test instances within 120 instances and still fails to solve 10
instances within 1000s.4 These observations show that CP-BB is a competitive choice
for solving 20–60 dimensional Box-QP problems.

5 Conclusions

In this paper, we propose two DC decomposition based branch-and-bound algorithms,
DC-BB algorithm and EBB algorithm, to find global solutions of box-constrained
quadratic programming problems. The DC-BB algorithm is developed from a DC

4 The BARON solver is called via the interface provided on the NEOS Server [10]. However, we believe
that the significant difference of the performances betweenCP-BB andBARON ismainly due to algorithmic
design, rather than the hardware of the machines.
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Fig. 5 Log–log plots of CPU times on 20–60 dimensional instances

decomposition based quadratic convex relaxation, whose parameters are obtained
from the solution of problem SDR. The EBB algorithm is based on an enhanced
convex relaxation derived from the dual solution of problem DNN. We compare the
performances of the proposed algorithms with the state-of-the-art algorithms, includ-
ing the QUADPROGBB algorithm proposed by Chen and Burer, and the commercial
solver BARON. Numerical results show that the EBB algorithm outperforms QUAD-
PROGBB algorithm on the Basic Set, and a composed algorithm CP-BB, which
adaptively switches between the DC-BB algorithm and the EBB algorithm depending
on the size of the problem, performsmore efficient than theQUADPROGBBalgorithm
and more robust than BARON on 20–60 dimensional test instances.

An potential direction in our further research is to exploit more RLT inequalities,
rather than only the nonnegativity inequalities X � 0, to derive convex quadratic
programming relaxations that can be tighter than Enhanced-DCR[l,u]. The remaining
question is how to design efficient algorithms to solve the SDP+RLT relaxation.
A specially designed augmented Lagrangian algorithm might be a suitable solution
candidate.
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